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Two-particle interferometry, a second-order interference effect, is explored as another possible tool
to distinguish between massive Dirac and Majorana neutrinos. A simple theoretical framework is
discussed as well as some experimental considerations. While the method can in principle provide
both the mass scale and the quantum nature of the neutrino for a certain class of incoherent left
handed source currents, the detector requirements are currently beyond what is technically possible.

Two contemporary problems in neutrino physics are
determining the absolute mass of the neutrino and
discovering if the neutrino is its own antiparticle [1];
that is, is the neutrino a massive Majorana or Dirac
fermion? The existence of neutrino mass has been es-
tablished through oscillation experiments such as Super-
Kamiokande, SNO, and KamLAND [2–4], which have
successfully extracted the differences of the masses be-
tween the energy eignstates. Various experimental ap-
proaches, such as tritium decay [5, 6] and cosmological
background studies [7], are capable of extracting the ab-
solute mass scale of the electron neutrino. While these
challenging experiments have been able to put an ever-
improving upper limit on the neutrino mass, they tell us
nothing about the neutrino’s nature.

Currently, the only experimental approach used to de-
termine the quantum nature of the neutrino is neutrino-
less double beta decay (ββ(0ν)) [8]. The decay rate is
proportional to the effective mass of the neutrino and
only proceeds if the neutrino is a Majorana particle.
While a claim of ββ(0ν) discovery in 76Ge has been made
[9], this result has not been independently confirmed. A
host of next generation experiments are poised to verify
the current claim and, if the claim proves false, further
explore ever-smaller mass scales using this exotic decay
as a tool [10–12]. This discovery approach has clear ad-
vantages because if the neutrino is a Majorana particle
this approach will, with enough patience, confirm it. The
strategic disadvantage to this approach is equally clear.
If the neutrino is a Dirac fermion one is left staring at
background for decades with no knowledge that the de-
cay will not proceed.

There are other problems with the approach. While
the existence of the decay unambiguously identifies the
Majorana character of the electron neutrino, extracting
a precise value of the mass is model-dependent. The
decay rate is proportional to the square of the effective
neutrino mass times the square of nuclear matrix ele-
ments that govern the process. The effective mass is the
magnitude of a sum of the mass eigenvalues weighted by
unknown phases. Because of these unknown phases and
the intrinsic difficultly in calculating the matrix elements,
the effective mass extracted for a measured ββ(0ν) rate
is highly model and isotope dependent. The masses for
a given lifetime limit and isotope are often quoted as a

range of masses based on a growing, and not entirely uni-
versally standardized, body of theoretical work. Lastly,
if the current claim is refuted, the most favored theoret-
ical neutrino mass region, the direct hierarchy, will only
be potentially accessible to next-next generation ββ(0ν)
experiments whose technological feasibility has not been
fully assessed or determined.

Another experimental technique that provides infor-
mation about the mass and nature of the neutrino, as will
be shown below, is two-particle intensity interferometry.
This form of interferometry has been used extensively in
many areas of physics and has served to cross-pollinate
ideas in different sub-fields for over fifty years. It is nat-
ural to wonder what role this technology might play in
neutrino physics.

Intensity interferometry was originally developed by
Robert Hanbury Brown and Richard Twiss as an alter-
native to Michelson interferometry to measure the angu-
lar sizes of stars in radio astronomy [13]. This and re-
lated methods are often called HBT after the original co-
founders. By correlating intensities rather than adding
amplitudes, the measurement is insensitive to high fre-
quency noise fluctuations that would normally make first
order interferometry prohibitive.

The ideas of intensity interferometry were eventually
quantum mechanically applied to photons rather than
classical waves, instigating a revolution in modern quan-
tum optics. Two- and multi-photon effects are rou-
tinely studied, often in the time domain. The technology
was independently applied in momentum space to final
state particles in elementary particle physics and is some-
times called the Goldhaber-Goldhaber-Lee-Pais (GGLP)
effect [14–18] in that context. The modern incarnation
of GGLP, “femtscopy” [19], is routinely used to study
the space-time dynamics of incoherent particle sources in
high energy and heavy ion collisions. The effect has also
been studied in fermionic systems such as with neutrons
and protons [20, 21] (also see [15]). Two-electron HBT
in 2D condensed matter systems has also been reported
[22].

The essential observation in a two-particle interferom-
etry is that pairs of incoherently generated indistinguish-
able bosons tend to clump while close in phase space
while similarly generated fermions tend to anti-clump.
What “close” means exactly depends on the scale and
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geometry of the problem and in what space one is per-
forming the measurement. The sensitivity to the quan-
tum statistics obeyed by measured pairs, in particular the
tendency for fermions to anti-clump in phase space, is of
interest in an attempt to measure the quantum nature of
the neutrino.

The physical-observable in intensity interferometry is
the two-particle correlation function, C2, which is a mea-
sure of the degree of independence between a joint mea-
surement of two particle events in some variable of inter-
est such as momentum, space, or time. The two-particle
correlation function can be written

C2 =
P (1, 2)
P (1)P (2)

∼
Tr[ρ̂â†kâ

†
qâkâq]

Tr[ρâ†kâk]Tr[ρâ†qâq]
(1)

where P (1, 2) represents the joint probability of mea-
suring two events while P (i) represents the individual
probabilities of events i = 1, 2 and can be naturally gen-
eralized to higher order correlations. The explicit mo-
mentum space form of C2 on the right highlights the es-
sential physical components of the correlation function.
The density matrix is ρ̂ while â† and â are the creation
and annihilation operators for the quanta of momenta
q and k associated with the appropriate fields of inter-
est. When normalized to the single particle distributions
as shown, C2 is proportional to the relative probability
for a joint two-particle measurement as compared to two
single-particle measurements. If the measurements are
independent, then C2=1. If the measurements are corre-
lated, C2 deviates from unity.

As can be seen in Eq. (1), the correlation function is
sensitive to several interesting physics effects. First, it
probes the quantum statistics obeyed by the pairs being
studied (e.g. boson, fermion, anyon [23], etc.) as de-
termined by the (anti-)commutation relations between â
and â†. The form of the density matrix will determine
the quantum field configuration (e.g. thermal states, co-
herent states, Fock states, etc.). Tacitly contained in the
density matrix, when projected as a Wigner function,
are the space-time geometry of the source, the source
dynamics (e.g. space-momentum correlations such as ex-
plosions, flow, jets, conservation laws etc.), and any pair-
wise interactions (Coulomb, strong, weak, etc.). As men-
tioned, although counterintuative, the quantum mechan-
ical aspect of this interference effect is maximal for inco-
herent sources, making it a powerful tool to study such
systems. Coherent sources of non-interacting bosons,
such as laser light well above the lasing threshold, give
a constant C2 = 1, reflecting their Poissonian, and thus
independent, nature. For a complex source such as in
a heavy ion collision, disentangling all of the effects de-
scribed above is a challenging task. However, for static,
incoherent sources of non-interacting fermions, as will ap-
proximately be the case with neutrinos, the correlation

function will only be sensitive to the spatial source size
and the quantum statistics. Therefore, by performing a
two particle correlation measurement on neutrino pairs,
one can obtain direct information about the quantum
statistics obeyed by such particles.

As Eq. (1) implies, there are many possible approaches
one can use to obtain an explicit expression for the cor-
relation function. They all give essentially the same final
results – although some methods illuminate relevant de-
tails more clearly than others. A particularly simple form
for Eq. (1) that illustrates the essential physics is given
by the Koonin-Pratt equation [15, 24]

C2 =
∫
d3R|ψ(~x1, ~x2)|2ρ(~R). (2)

The equation assumes an incoherent emission of a pair
of particles from a normalized source pair distribution
ρ(~R) where ~R is the vector separation between the source
pairs. For simplicity, and without loss of generality, time
has been implicitly integrated out of Eq. (2). However,
the formalism can easily be expanded to include such
correlations. The two-particle wave function, ψ(~x1, ~x2),
contains information about the quantum statistics and
any pairwise interactions. Working in natural units (c =
h̄ = 1), if we consider a pair of free identical fermions
in any specific triplet spin configuration, the spatial part
of the wave function will be antisymmetric upon label
exchange and given by the usual plane wave solution

ψ(~x1, ~x2) =
1√
2
(e−i~pa·~x1e−i~pb·~x2 − e−i~pa·~x2e−i~pb·~x1). (3)

One interprets this two-particle wave function to be the
amplitude for particles emitted at points ~x1 and ~x2 to be
measured with momenta ~pa and ~pb. For free particles, C2

is simply related to the cosine transform of the incoherent
pairwise source distribution, ρ(~R).

If we assume two identical free fermions are emitted
from exactly two point sources separated by ~R (ρ(~R) ∼
δ(~R)), Eq. (2) can be written

C2( ~Q) = 1− ξ cos( ~Q · δ ~x) (4)

where ~Q = ~pa − ~pb and δ~x = ~x1 − ~x2. The parameter
ξ = 1 for triplet states and −1 for singlet states. If the
system is spin-averaged, then ξ = 1

2 . Notice in the triplet
case C2(Q = 0) = 0 and the fermions are anticorrelated
if in the same momentum state. For identical spinless
bosons under the same kinematic conditions, C2(0) = 2.
Because the emission is incoherent and there are no in-
teractions, the correlations arise only from the quantum
statistics obeyed by the particles. The scale of the corre-
lation is set by the source size. It is instructive to note
that for non-identical particles, where the wave function
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has no particular symmetry, C2 = 1 for all ~Q. A coher-
ent source of bosons (which is technically not accurately
represented by Eq. (2) but rather by Eq. (1) using the ap-
propriate density matrix generated from coherent states)
would give the same result.

Let’s examine a useful limit of Eq. (4) we will use later
for a series of gedanken experiments. Consider two point
sources of fermions separated by a distance ~R and mea-
sured by a pair of distant detectors separated by ~d. The
source and detector are a distance L from each other such
that L� R� d. That is, we have well-separated sources
far away from a relatively close pair of detectors. We also
assume a pair of single-mode fermions (p = |~pa| = |~pb|
but ~pa is not necessarily equal to ~pb). In this limit Eq. (4)
becomes

C2(d) = 1− ξ cos(∆θd/λ). (5)

This is similar to the original HBT experiment used to
measure the angular size of stars. The correlation func-
tion is measured at different detector separations, d, for
waves of known wavelength, λ. From the shape of C2(d),
the angular size, ∆θ, can be extracted. As before the
correlation strength depends on various factors including
how extra degrees of freedom, like spin, are handled.

For all the examples below, with no change in the fi-
nal conclusions, one can also use the femtoscopic limit
of Eq. (4) (L � d � R). In that limit, one might use
neutrinos and antineutrinos generated from muon or Z0

decays. Also, the method could be applied as a anti-
bunching counting experiment in the time domain per-
formed on a beam, similar to what is done in quantum
optics. For illustrative purposes we will proceed with the
macroscopic limit as described by Eq. (5).

We can imagine not knowing a priori the quantum na-
ture of the particles we are measuring, but instead know-
ing some other information such as the source geometry
(i.e. the angle subtended by the source from the de-
tectors). In that case, using Eq. (5), one would fix the
angular size and wavelength but then look for a correla-
tion (for bosons) or anticorrelation (for fermions) as the
distance between detectors approached zero to determine
the quantum statistics obeyed by the particles of interest.

Can two-particle interferometry, in one of its many in-
carnations, be applied to neutrinos to determine if they
are Dirac of Majorana particles? Let’s examine four vari-
ations, labeled A through D below, of a simple gedanken
experiment to answer this question. A summary of the
relevant formulae and the ability of the four cases to re-
solve the neutrino mass and nature are outlined in Table
I. For all cases we will only consider the macroscopic
limit for point sources as described by Eq. (5) using only
one neutrino flavor. However, the formalism can easily
be extended to include any source geometry, including
continuous ones. It should also be noted that, unlike

ββ(0ν), the formalism applies to all individual neutrino
flavors not just electron neutrinos.

It will be helpful to remember for the cases below that
although Majorana neutrinos are their own antiparticle,
that is, the field operators transform to themselves un-
der a charge conjugation operation, the left handed weak
source currents creating them will generate final state
particles with a handedness as if they were Dirac fermions
[8]. However, the extra lepton number label “anti” is
removed for Majorana particles because the handedness
represents different states of the same object. So a source
of what is normally called “right-handed Dirac antineu-
trinos” might instead generate right-handed Majorana
neutrinos. Similarly, a source current that normally
creates “left-handed Dirac neutrinos” could create left-
handed Majorana neutrinos.

TABLE I: The two-particle correlation function for Dirac,
CDir

2 (d), and Majorana, CMaj
2 (d), neutrinos are shown for var-

ious situations. Where ξ alone is quoted, use Eq. (5). The
helicity column indicates if detectors are filtering on same,
opposite, or averaged final state helicities. The final rows
provide an overview of the case-by-case physics capability to
determine the neutrino mass or discover the neutrino nature.
Case A: m = 0, identical sources; Case B: m = 0, distin-
guishable sources; Case C: m 6= 0, identical sources; Case D:
m 6= 0, distinguishable sources. See the text for a detailed
case-by-case discussion.

Gedanken Cases

helicity A B C D

CDir
2 (d)

same ξ = 1 n/a ξ = 1 C2 = 1

opp n/a C2 = 1 C2 = 1 C2 = 1

ave ξ = 1 C2 = 1 ξ = 1−m2/E2 C2 = 1

CMaj
2 (d)

same ξ = 1 n/a ξ = 1 ξ = 1

opp n/a C2 = 1 C2 = 1 C2 = 1

ave ξ = 1 C2 = 1 ξ = 1−m2/E2 ξ = m2/E2

Mass? no no yes yes

Nature? no no no yes

First, in case A, we consider a massless neutrino and
a geometric setup like that describing Eq. (5): well-
separated sources far away from close detectors. Imagine
two reactors acting as incoherent point sources of distin-
guishable particles we would normally call Dirac antineu-
trinos (this case will work equally well for a pair of point
Dirac neutrino sources, like two small suns). Far away we
place two ideal detectors separated by a distance d filter-
ing on low energy monoenergetic antineutrinos. Relative
to the detectors, the reactor pair subtends a known angle
∆θ. By measuring C2(d) can we distinguish between two
scenarios: one where we have identical sources of right-
handed massless Dirac antineutrinos and another where
we have sources of right-handed massless Majorana neu-
trinos? In this case, the answer is no. The measured



4

correlation function will be equal to that in Eq. (5) with
ξ = 1 and will give the same result for both the Dirac
and Majorana cases. This is because quantum indistin-
guishability applies equally well for the two situations
and the two-particle wave function will be identical in
both cases. Indeed, this is a sanity check because in the
massless limit we do not expect to be able to distinguish
between Dirac and Majorana particles based on the Prac-
tical Dirac-Majorana Confusion Theorem [25].

Next, for case B we have massless neutrinos with a
similar geometric source-detector setup as above except
with one of the reactor sources being replaced by a “small
sun”. That is, we have two sources of distinguishable
objects: one an incoherent point source of what we would
normally call Dirac neutrinos (a small sun) and another
that would again be of Dirac antineutrinos (a reactor).
We ask the question: do we have one source of Dirac
neutrinos and another of Dirac antineutrinos or do we
have a pair of sources spitting out Majorana neutrinos of
opposite handedness? Again, in this case, we have no way
of knowing. The correlation function C2(d) = 1 for both
situations. This is because the two-particle wave function
for either situation has no special symmetry. That is,
it factorizes and the particles are not entangled at the
detector. From Eq. (2) if the normalized wave function
factorizes the correlation function becomes unity.

For cases C and D let’s consider the above two situa-
tions again but this time give the neutrino a mass that is
small compared to its energy. The presence of mass com-
plicates the situation because chirality (“handedness”),
is no longer the same as helicity. Left-handed (in the chi-
ral sense) weak source currents can now create massive
neutrinos and antineutrinos of the “wrong” helicity with
an amplitude that goes like m/E when m� E.

With this in mind, consider case C where the source-
detector geometry with two reactors is the same as case
A. However, this time each reactor is the source of either
Dirac antineutrinos of mixed helicity or Majorana parti-
cles of mixed helicity. The mixed helicity is because the
handedness of the source current and the helicity of the
emitted neutrino are now somewhat decoupled, as dis-
cussed above. For m � E, the helicity mixture will be
mostly Λ = +1 with some Λ = −1 in both the Dirac and
Majorana cases. With this configuration, can C2 distin-
guish between Dirac and Majorana particles? For this
exercise, we will consider ideal detectors that are capa-
ble of filtering on the neutrino helicity. If the detectors
filter on identical helicities in the final state, C2 will be
Eq. (5), the same as case A. Particles of opposite helicity
are quantum mechanically distinguishable so if the detec-
tors filter on opposite helicities then C2 = 1, as in case B.
However, if the detectors helicity-average particles in the
final state, the mixed helicty of the source has the effect
of introducting a helicity “contamination” at the detector
and there will only be quantum distinguishably for a frac-
tion of the measurements. This contamination will have

the effect of diluting the correlation function by a factor
ϑ(m2/E2) so we use Eq. (2) but with ξ ∼ (1 −m2/E2)
for both Dirac and Majorana particles. Again, we cannot
distinguish between Dirac and Majorana neutrinos, but
a careful helicity-averaged measurement of C2(d) could
in principle extract the mass by measuring the strength
of the anticorrelation.

Finally, in case D, we revisit the non-identical sources
of sun-reactor geometry of case B extending it to the
massive neutrino case. The essential quantum distin-
guishability arguments are the same as B, however, there
are more combinatorics for the Dirac particles because of
the extra lepton quantum number. Nevertheless, like the
sun-reactor case in the massless case, the Dirac particles
are always distinguishable at the detector either by he-
licity or by lepton number. No matter how one filters on
the final state, the Dirac particles are distinguishable so
C2 = 1.

If the neutrino is a Majorana particle, however, case
D will be different. The reactor source will be emitting
primarily Majorana neutrinos with Λ = +1 with a small
component of Λ = −1. The sun source will be emitting
Majorana neutrinos of the opposite degree of contami-
nation. That is, mostly Λ = −1 with a small Λ = +1
mixture. Because these particles have no lepton quan-
tum number, with a judicious choice of filtering at the
detector, one can detect a distinct signal from the Dirac
case. For example, if the detectors filter on opposite fi-
nal state helicity, C2(d) = 1 because the particles are
distinguishable. But if the detectors filter on the same
helicity use Eq. (5) with ξ = 1. If one performs a helicty-
average in the final state, this introduces contamination
(more severe than case C) that will reduce the correla-
tion strength. The probability of measuring two equal
helicity states with open final state helicity filters scales
like m2/E2 so we use Eq. (2) with ξ ∼ m2/E2.

Let us entertain some experimental considerations.
The primary concern is data rate, detector efficiency,
and energy resolution. The above discussion assumed
infinite energy resolution to resolve neutrinos of an ar-
bitrary wavelength with no loss of fidelity or smearing.
This assumption, using Heisenberg’s Uncertainty Princi-
ple, permits infinitely slow counting statistics, allowing
quantum mechanically coherent data to arrive over in-
finitely long time scales. This is an unrealistic assump-
tion since the neutrino production rate roughly sets the
quantum coherence time scale. The data rates for current
experiments such as KamLAND and SNO are about one
event per day. Even ignoring production rate limits, to
perform the measurements (perhaps using the neutrino
pair vertex distribution in their fiducial volume, rather
than multiple detectors, as a distance variable), even as-
suming copious statistics, the ability to measure neutri-
nos of arbitrary energy, and very fine vertex resolution,
these experiments would require an otherworldly energy
resolution to see the effect as described. But what are
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the numbers required? Using ∆E∆t ∼ (eV)(fs) as our
guide, we can see that with extremely good, but still
physical, energy resolutions on the order of eV or keV an
experiment needs to measure neutrino pairs separated by
times on the order of femto- to attoseconds – a rate ap-
proaching weak-charge micro-Amperes of neutrinos. One
can also consider the femtoscopic limit where there are
very small sources like those generated in a high energy
physics collision. To measure this effect in that context,
an experiment needs to be able to measure two or more
identified inclusive neutrinos per event (exclusive mea-
surements usually have severe phase space constraints
such as energy-momentum conservation that mask any
other correlations) with an energy resolution of roughly
MeV.

Based on the above discussion and reviewing Table I
we see the rather promising result that, with the right
sources and filters, two-particle interferometry can the-
oretically obtain both the mass and the nature of the
neutrino of any flavor using a single physical-observable
C2. However, experimental requirements currently ren-
der the method prohibitive.
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