Hadronic Freeze-outs

Roppon Picha UC Davis Nuclear Physics Group 20 Aug 2004

Stages of a nuclear collision

- deconfined quarks and gluons. (RHIC collisions are believed to provide conditions for QGP, early universe)
- chemical freeze-out: end of inelastic collisions. quark flavor composition is fixed. "system is cooked"
- kinetic freeze-out: after this, particles no longer interact. "system is served (as spectra)"

quark-gluon plasma

µ.

hadron gas

 $\begin{array}{c} \text{confined}, \\ \chi\text{-SB} \end{array}$

deconfined,

 γ -symmetric

color

few times nuclear μ

matter density

superconductor

~170 MeV

Chemical freeze-out

- chemical equilibrium = particle compositions are fixed
- based on the grand canonical (GC) ensemble: large system, number of particles can fluctuate until freezeout, conservation laws make use of chemical potential.
- as opposed to canonical ensemble, where system is small (low energy HIC, e+e-, peripheral HIC), N is fixed, and conservation laws must be obeyed within each event.

Braun-Munzinger et al, nucl-th/0311005 Braun-Munzinger et al, nucl-th/0304013 Cleymans et al, J. Phys. G25, 281 (1999)

Statistical model

- to describe the particle yield, the model uses the chemical freeze-out temperature (T_{ch}), the chemical potentials (μ), and the strangeness saturation factor (γ_s) $\gamma_s = \frac{s \text{ density}}{equilibrium \text{ density}}$
- The number density of particle *i* can be described by

$$\rho_{i} = \gamma_{s}^{\langle s+\bar{s}\rangle_{i}} \frac{g_{i}}{2\pi^{2}} T_{ch}^{3} \left(\frac{m_{i}}{T_{ch}}\right)^{2} K_{2} \left(\frac{m_{i}}{T_{ch}}\right) \lambda_{q}^{Q_{i}} \lambda_{s}^{s_{i}}$$

$$\lambda_{q} \equiv e^{\mu_{q}/T_{ch}} \qquad Q_{i} = \langle u+d-\bar{u}-\bar{d}\rangle_{i}$$

$$\lambda_{s} \equiv e^{\mu_{s}/T_{ch}} \qquad s_{i} = \langle s-\bar{s}\rangle_{i}$$

Rafelski, Phys. Lett. B262, 333 (1991) Sollfrank, J. Phys. G23, 1903 (1997) Sollfrank et al, Phys. Rev. C59, 1637 (1992)

Kinetic freeze-out

 density & temperature of the particle system are low enough that particles no longer scatter

mean free path $(\lambda) \approx$ system size (R) scattering rate $(\langle \beta \rangle / \lambda) \approx$ expansion rate $(\partial_{\mu} u^{\mu})$ time between collisions \approx Hubble time (1/H)

- momentum distribution "frozen"
- spectra shape gives:
 - temperature at freeze-out (inverse slope in high- m_T region)
 - collective expansion velocity (flattening in low- m_T region)

Schnedermann and Heinz, PRC50, 1675 (1994) Kolb, nucl-th/0304036

Blast-wave model

- source is boosted by scattering of produced particles
- any partonic flow would also result in final spectra
- kinetic freeze-out temperature (T_{kin}), collective flow velocity (β), and flow profile parameter (n) are used to describe transverse mass spectra

Schnedermann et al, PRC48, 2462 (1993)

Chem. FO Results

Chem. FO results

 20 GeV results as functions of centrality

Chem. FO results

 chemical freezeout curve, from heavy ion experiments

Karsch, hep-lat/0401031 Cleymans and Redlich, PRL81, 5284 (1998) 9

Kin. FO results

- blast wave parameters vs centrality
- opposite trends observed
- can't tell apart 20 and 200 GeV

STAR, PRL92, 112301 (2004)

Kin. FO results

 kinetic freeze-out temperature seems to saturate around SPS energy

 flow velocity increases with energy

	200 GeV	20 GeV [***]
Tkin (MeV)	89+/-10 [**]	100+/-1
β	0.59+/-0.05 [**]	0.50+/-0.02

(for most central collisions) ** : Barannikova, nucl-ex/0403014 ***: only include stat. err.

Summary

- it's called freeze-out but it's not that cold. water freezes at 273 K (0.024 eV). quarks and gluons freeze at 170 MeV (2,000,000,000,000 K).
- Tch very close to predicted Tc, not much centrality-dependent.
- baryon chemical potential decreases with energy, but nonzero (= not baryon free yet).
- Tkin < Tch, varies slightly with centrality
- collective expansion is evident, larger in more central collisions
- 20 GeV system: different initial conditions (determined by centrality) led to a similar chemical freeze-out temperature, approximately 10 MeV colder than the critical temperature at the phase transition predicted by lattice QCD; then the temperature of the π, K, p, dropped about 65 MeV before they froze out kinetically.