(soft) physics from particle spectra

outline: 1. heavy ion collsion 2. chemical freeze-out 3. statistical model 4. kinetic freeze-out 5. blast wave model 6. conclusions

Roppon Picha UCD Nuclear Physics Group 9 Feb 2005

heavy ion collisions

- * ultimate goal of HIC = study properties of hot and dense quark-gluon plasma
- * QGP = thermalized system of free quarks and gluons
- * elementary collisions -> dilute
- * HIC -> lots of particles -> final-state thermalization
- * thermalization -> collectivity

2

 τ_0 = formation/thermalization time (Bjorken, Phys. Rev. D27, 140 (1983))

freeze-out evolution

3

 chemical and kinetic freezeouts are based on similar idea: expansion rate > collision rate
both chem. and kin. equilibria require thermalization, but at different degrees

T_{crit} -> around 175 MeV LQCD critical chemical kinetic temperature freeze-out freeze-out T_{kin} -> elastic collisions stop T_{ch} -> inelastic collisions stop -> chemical equilibrium

particle spectra

- * what do they tell us?
 - * momentum and energy distribution
- * hadron multiplicities -> production at chemical freeze-out
- * shape contributions:
 - a thermal source with temperature T -> statistical, Boltzmann-like, e^{-E/T}, same slopes for all particles
 - * boosted -> different shapes for different masses

statistical model of chemical equilibrium

* a tool to tell where the system is on the phase diagram

* basic ideas:

- * thermally equilibrated (constant temp.)
- chemically equilibrated (constant densities (n))
- * grand canonical ensemble

$$Z = \sum_{i} \exp\left(-\frac{E_i - \mu N_i}{T}\right)$$

Braun-Munzinger et al, nucl-th/0311005 Braun-Munzinger et al, nucl-th/0304013 Cleymans et al, J. Phys. G25, 281 (1999)

 $\overrightarrow{\mu_{baryon}}$

statistical model

 models parameters: chemical freeze-out temperature (T_{ch}), chemical potentials (μ), and strangeness saturation factor (γ_s)

* number density of particle i:

$$\rho_{i} = \frac{g_{i}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{\exp((E_{i} - \mu)/T) \pm 1}$$

$$\rho_i = \gamma_s^{\langle s+\bar{s}\rangle_i} \frac{g_i}{2\pi^2} m_i^2 T_{ch} K_2 \left(\frac{m_i}{T_{ch}}\right) \lambda_q^{Q_i} \lambda_s^{s_i}$$

Rafelski, Phys. Lett. B262, 333 (1991) Sollfrank, J. Phys. G23, 1903 (1997) Sollfrank et al, Phys. Rev. C59, 1637 (1999) $\lambda_{q} \equiv \exp(\mu_{q}/T_{ch})$ $\lambda_{s} \equiv \exp(\mu_{s}/T_{ch})$ $Q_{i} = \langle u + d - \bar{u} - \bar{d} \rangle_{i}$ $s_{i} = \langle s - \bar{s} \rangle_{i}$ $\gamma_{s} \equiv \frac{s \text{ density}}{\text{equilibrium density}}$

particle ratios

statistical model fits

chemical freeze-out

result is surprisingly consistent with other heavy ion experiments

9

inelastic collisions
stop when energy
per hadron is about
1 GeV

Karsch, hep-lat/0401031 Cleymans and Redlich, PRL81, 5284 (1998)

spectra shape

 system of particles freezes out kinetically when density and temperature drop at a point where the particles no longer scatter

> mean free path \approx system size time between collisions \approx Hubble time (1/H)

* natural observable to study transverse flow -> p₁ or m₁ spectra

 $m_T \equiv \sqrt{p_T^2 + m_0^2}$

10

Schnedermann and Heinz, PRC50, 1675 (1994) Kolb, nucl-th/0304036

previously (SPS): obtain T for each particle, plot T vs m, then -> $T_{slope} = \begin{cases} T_{kin} + m\langle \beta_T \rangle^2 & \text{for } p_T \leq m \\ T_{kin} \sqrt{\frac{1 + \langle \beta_T \rangle}{1 - \langle \beta_T \rangle}} & \text{for } p_T \gg m \text{ (blueshift)} \end{cases}$

problem: the value of T depends on fit range

* current: hydrodynamics-based blast wave model

* simultaneous fit to all particles

relativistic hydrodynamics

* energy momentum tensor for a fluid cell:

energy density velocity $T^{\mu\nu}(x) = (e(x) + p(x))u^{\mu}(x)u^{\nu}(x) - g^{\mu\nu}p(x)$ pressure

* "charge" current at x: $j_i^{\mu}(x) = n_i(x)u^{\mu}(x)$

charges" = net barγon, net strangeness, net electric charge, ... etc $T^{\mu\nu} \equiv$ flow of p^{μ} in the ν -direction the tensor tells us about energy and momentum at every point in 4-d space-time

12

 $x = (t, \vec{x})$

Kolb and Heinz nucl-th/0305084

motion

- * fluid motion is determined from
 - * conservation of energy and momentum: $\partial_{\mu}T^{\mu\nu} = 0$
 - * conservation of "charges": $\partial_{\mu} j^{\mu} = 0$ <- continuity equation
 - * equation of state (EoS) = pressure as a function of energy, and charge densities: $p(\varepsilon, n_i)$

$$\mu = 0, 1, 2, 3 = t, x, y, z$$

more on eqn of state

Kolb and Heinz, nucl-th/0305084

intro to blast wave

- * hydro model: difficult to use, need to know initial states
- * blast wave is a parametrization of hydro
- * describes final freeze-out condition, but not how the system evolves

* basic ideas:

- rescattering of produced particles -> fluid-like flow
- assume boost invariant (true for small region at midrapidity)

blast-wave model

Schnedermann et al, PRC48, 2462 (1993)

 parameters: kinetic freeze-out temperature (T_{kin}), flow velocity
(β), and flow profile parameter (n)

(integrated over Φ)

 $\beta_r = \beta_{surf} \left(\frac{\prime}{R}\right)^n$ $\rho(r) = \tanh^{-1}\beta_r$

(n = 2 best matches hydro, but isńt important)

transverse rapidity

flow profile - 'Hubble-like'

blast wave fits

* global (Γ, β) to fit 6 particles all at once.

kinetic freeze-out and collective flow

- * saturation of temperature around SPS, or even AGS, energies
- * strong collective flow
 - * indicates dense system
 - ★ increases with energy, RHIC flow about 3 times AGS flow
 - necessary condition for QGP (thermalization), but not direct evidence

conclusions

- * particle spectra provide a mean to uncover rich information about the heavy ion collisions
- * chemical freeze-out: ratios consistent with statistical model
 - * vanishing baryon density at increasing energy
- * kinetic freeze-out: blast wave model globally explain light particles well
 - * stronger collective flow with increasing energy
 - * saturated Tkin < Tch
- * the results support thermalization, but are not direct evidences
- * to do next: understand the theories/models involved better

parton saturation

* basic ideas:

- * number of gluons is \propto 1/{\alpha_s}. at small coupling (large mom. transfer) -> lots of gluons
- * overlap leads to all kinds of interactions (scattering, annihilation, recombination)

* this will affect final hadron multiplicity

Mueller and Qiu, Nucl. Phys. B268, 427 Kharzeev and Levin, nucl-th/0108006

pseudorapidity density

Kharzeev et al, hep-ph/0111315

more on hydrodynamics

* 1 eqn missing to solve eqn of motion

* equation of state (eos) = pressure as a function of energy, and charge densities