Z⁰ studies in CMS:Status &Workplan

Dipanwita Dutta NPD, BARC, Mumbai

Outline

Physics Motivation

Simulation for Z⁰

Background Study

Results of background study

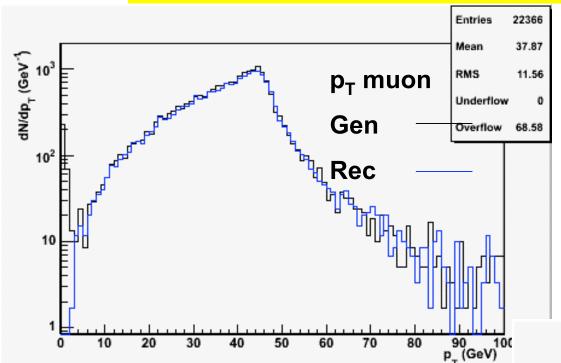
Future plan

Z⁰: Physics Motivation

- Z⁰ produced in large cross section at LHC (Pb+Pb@5.5TeV)
- Nuclear shadowing: Modification of PDF's in Nucleus
 - Novel Bjorken-x range (10⁻²-10⁻³) at Large Q²
- Dominant Production : qq->Z⁰ Shadowing of Quark PD

Expected Yield of $Z^0 \rightarrow \mu^+ \mu^-$

Expected No. for one month LHC run, L_{int}=0.5 nb⁻¹


Processes	Cross- section σ _{pp} (Z ⁰) Pythia6.409 CTEQ5M	Cross-section $\sigma_{PbPb}(Z^0)=$ $T_{AA} \times \sigma_{pp}(Z^0)$ 0-10% cent. (MB)	No. of Z^0 for 0-10% cent. (MB) collisions $N_{PbPb}=L_{int}\times \sigma_{PbPb}(Z^0)$ $\times Acc. (=0.51)$
Z ⁰ ,Z ⁰ +jet (MSUB=1,15,30)	1.59 nb	25.6 (69)μb	6.53×10 ³ (1.76×10 ⁴)

Signal Inclusive Z0: Z0, Z0+jet PYTHIA 6.409 at √s=5.5 TeV

PYTHIA parameters

MSEL=0, qq(bar) \rightarrow Z0, MSUB=1 qq(bar) \rightarrow Z0+jet, MSUB=15 q(qbar)+g \rightarrow Z0+jet, MSUB=30 MSTP(43)=2 (only Z0 , no γ *)

Simulation Results of Z⁰: Single muon

CMSSW_1_8_0_pre7

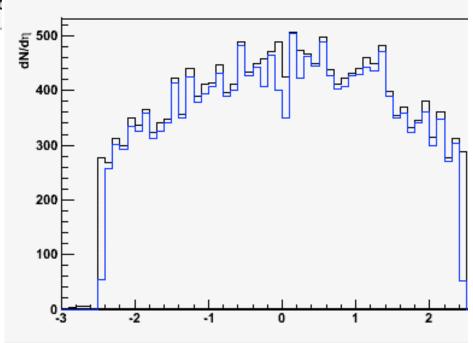
 dN_{μ}/dp_{T} and $dN_{\mu}/d\eta$

for Integrated Luminosity

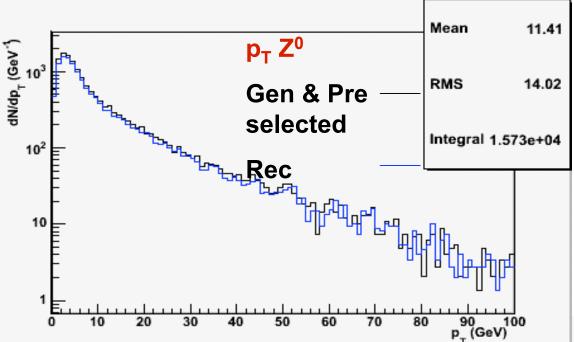
 $L_{int} = 0.5 \text{ nb}^{-1}$

(1 month PbPb run at LHC)

No. of events gen.: 20,000


Pre selection: $p_T(\mu) > 3.5 \text{ GeV}$

$$|\eta (\mu)| < 2.5$$


Pre selection Eff. : ε_{pre} =0.58

Reco. Eff. of single muon: ε_{rec} =0.94

Pre Sel Eff *Rec. Eff =0.58*0.94=0.54

Simulation of Z^0 : $p_T(\mu) > 20 \text{ GeV}$

 dN_z^0/dp_T and $dN_z^0/d\eta$

for Integrated Luminosity

 $L_{int} = 0.5 \text{ nb}^{-1}$

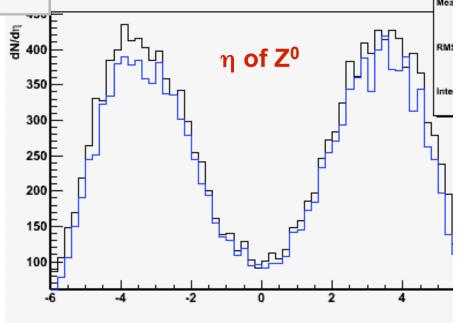
(1 month PbPb run at LHC)

Dimuons in the inv. mass windc

 M_z -10GeV $< M_{\mu\mu} < M_z$ +10GeV

No. of Z⁰ gen.: 50,000

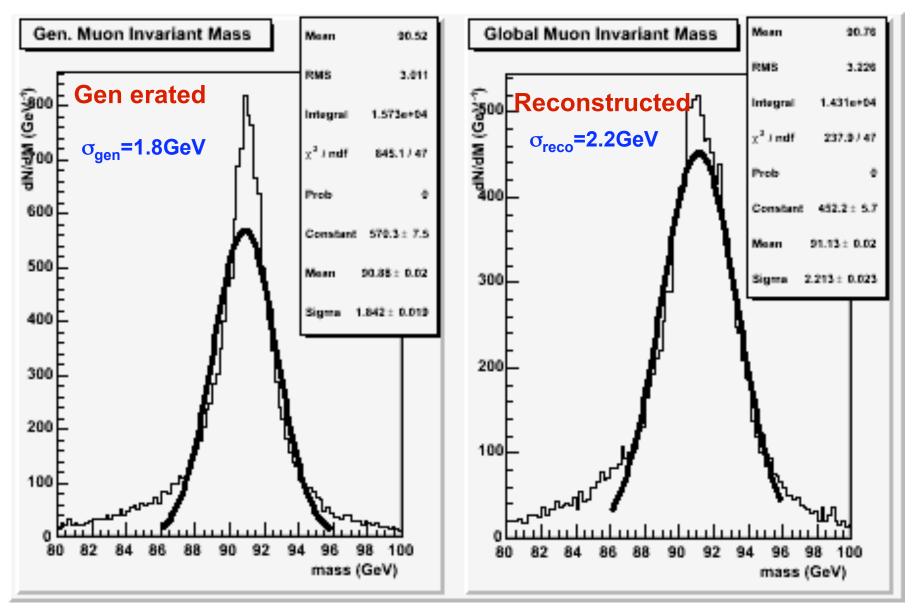
Pre selection: $p_T(\mu) > 20 \text{ GeV}$


$$|\eta (\mu)| < 2.5$$

atleast two opp. sign muon

Pre selection Eff. : ϵ_{pre} =0.46

Reco. Eff. of single muon: ε_{rec} =0.91


Pre Sel Eff *Rec. Eff =0.46*0.91=0.41

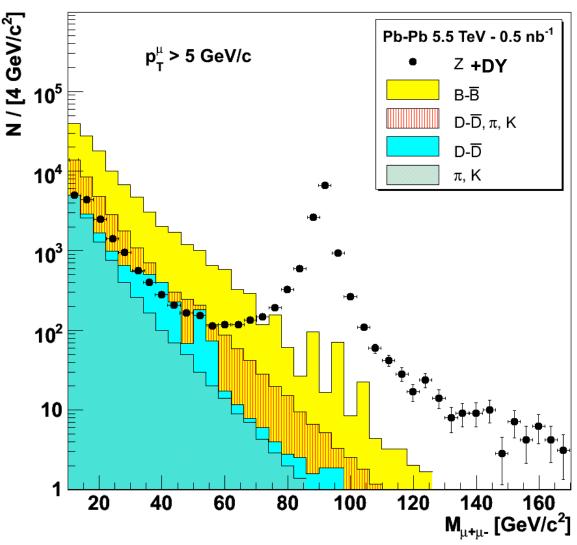
Simulation Results of Z^0 : Inv Mass ($P_T(\mu) > 20 \text{GeV}$)

No. of Reco. Z^0 : 1.4×10⁴ for one month LHC run L_{int} =0.5 nb⁻¹

Reco. Eff×Acc.=0.41

Background for Z⁰

Background Dimuons:


- Decays from open c and b
- Decays from W

PYTHIA-HARD HYDJET

- •Decays from π , K
 - Heavy Ion Background--HYDJET

Mixed muon pairs

Background of $Z^0 \rightarrow \mu^+ \mu^-$: Gen. Level Study

CMS Physics TDR: Addendum to High Density QCD with Heavy Ions, J. Phys. G, Nucl. Part. Phys. 34 (2007) 2304

Dimuons:

- bb(bar) fragmentation
- ~ dominant contribution
- Combinatorial backgroι
 b and π,K ~16%
- •π,K and charm decay: 5
- •Signal from Z⁰: Clear pe ~11,000 events in M_Z±10 GeV/c², Less than 5% background

Plan: Background Study for Z⁰

- Signal + High p_T background generated with HYDJET
 - with changing p_T min (CKIN(3)) in HYDJET
 - HYDRO off
- Soft + minijet background with normal HYDJET
 - Important for reconstruction
- Tracking code to be used for Reconstruction (signal+backgrd)
 - Modified version of pp algorithm suitable for high p_T muons + suitable vertex fit

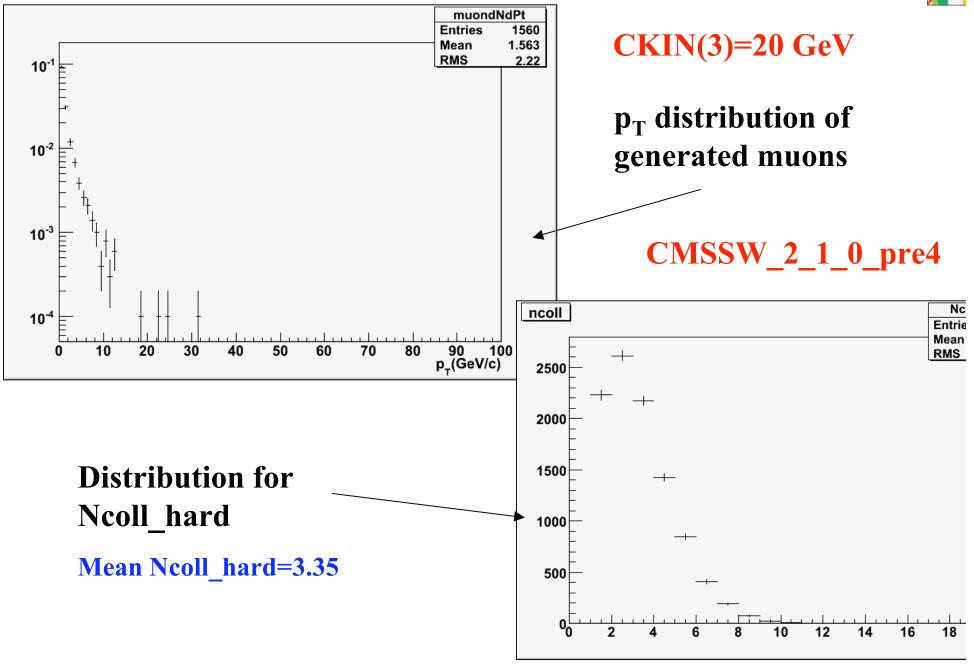
Results: Background Study with HYDJET

Case I: bool allowEmptyEvents = false

Case II: bool allow Empty Events = true

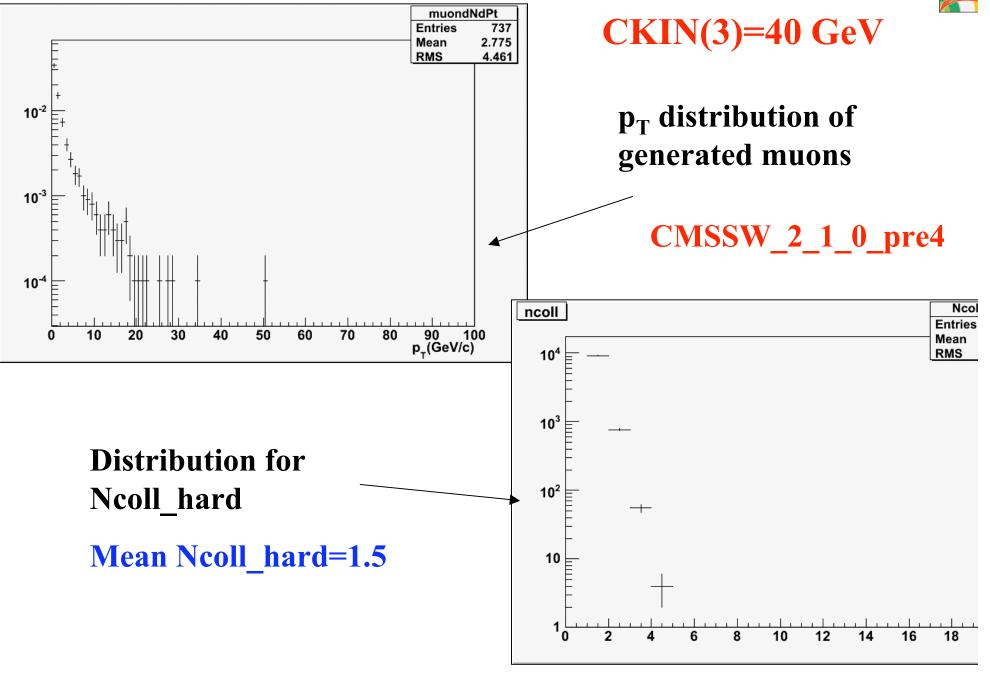
10000 event (**10** min)

Study for 10.000 HYDJET events,


(10% cent, **MSEL=1**)

CMSSW_2_1_0_pre

CKIN(3)	Av. No. of hard coll	Total No. of muons	No. of muons $(p_T>20 \text{ GeV}, \eta $ <2.4)	
p _T min. GeV	Ncoll hard	or maone		
	_		,	
20	3.37 (3.26)	1560 (1470)	3 (1)	
30	1.83 (1.01)	826 (363)	3 (1)	
35	1.67 (0.8)	760 (186)	3 (0)	
40	1.58 (0.7)	737 (116)	8 (1)	
45	1.56	703	5	


Results: Background Study with HYDJET

Results: Background Study with HYDJET

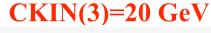
Study with PYTHIA

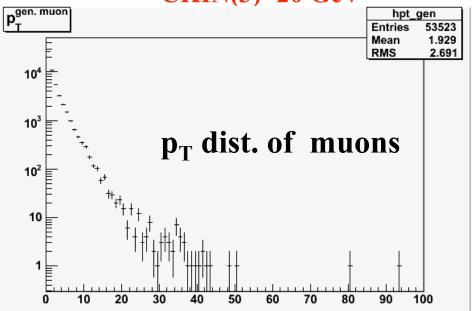
PYTHIA (ccbar, bbbar, Z⁰ and W) with CKIN(3)=20

- Cross-section for hard proc. = 1.93×10⁻¹ mb
- N_{PbPb} (hard-coll.)/per PbPb event = 4.4 (10% cent.)
- Study of 10⁶ PYHTIA events

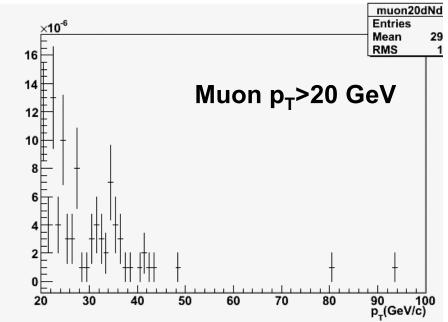
```
. Total No. of muons: 107,046 . No. of muons from ccbar : 36,650 . No. of muons from bbbar 10,300 . No. of Z^0 generated: 79 . No. of muons from Z^0 4 (79\times0.03=2.3) . No. of muons from W 31 . No of Muons (p_T>20~\text{GeV}, |\eta|<2.4) 95 . No. of dimuon in (80~\text{Gev}<\text{M}\mu\mu<90~\text{GeV}) 3
```

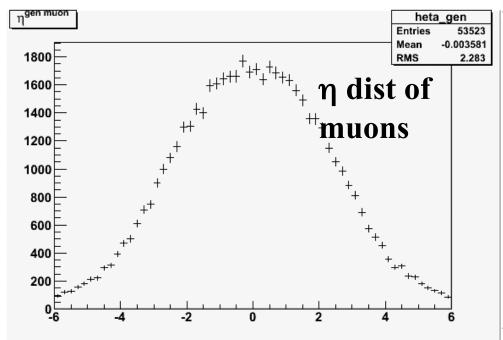
Study with PYTHIA

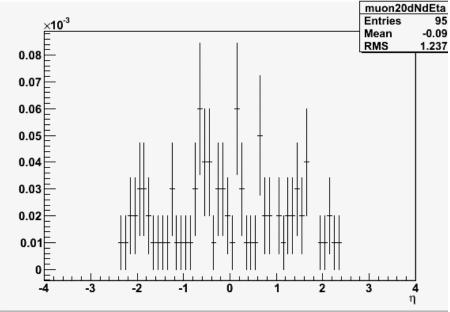



I	I:o Type	I	Generated	Tried I I	:
I	O All included subprocesses	I	1000000	7018657 I	1.951E-01
I	1 f + fbar -> gamma*/20 2 f + fbar' -> W+/-	I	64 191		1.260E-05
I	11 f + f' -> f + f' (QCD) 12 f + fbar -> f' + fbar'	I	48098 692		9.378E-03 1.358E-04
I	13 f + fbar -> g + g 15 f + fbar -> g + gamma*/20	I	650 7		1.232E-04 1.132E-06
I		I	12 395038		2.936E-06 7.686E-02
I	30 f + g -> f + gamma*/20 31 f + g -> f' + W+/-	I	7 39		2.199E-06 7.500E-06
I	53 g + g -> f + fbar 68 g + g -> g + g	I	19091 536111		3.678E-03 1.048E-01
I		I		I	

Cross-section of Inclusive $Z^0 \sim 16$ nb (??)


Results: Background Study with PYTHIA





Summary: PYTHIA

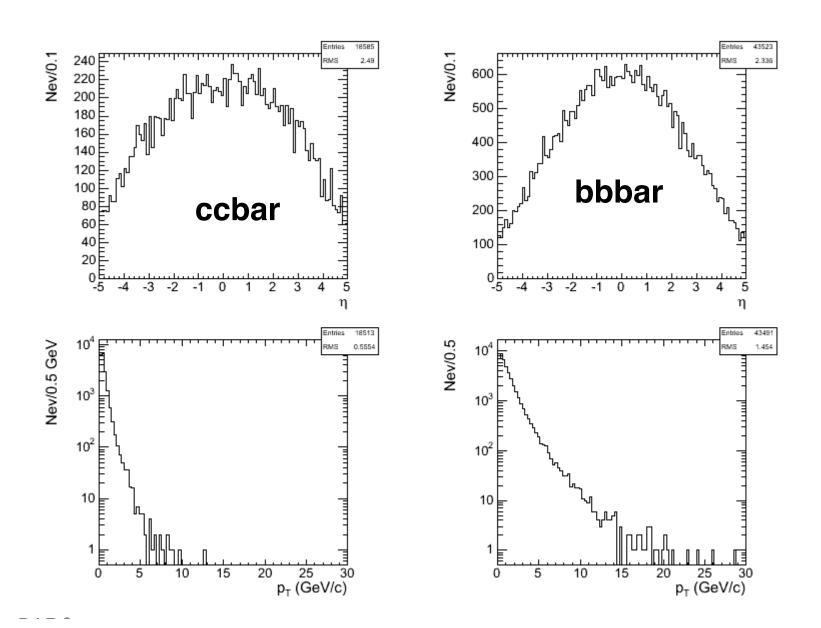
- 2 $\mathbb{Z}^0 \rightarrow \mu^+ \mu^-$ in 10⁶ events from PYTHIA study
- •10³(10⁴) Z^0 expected for 0-10% (MB) for L_{int} =0.5 nb⁻¹
- No. of HYDJET events required $\sim 10^9 (10^{10})$
- No. of muon ($p_T > 20$ GeV, $|\eta| < 2.4$) $\sim 10^5$
- No. of Triggered HYDJET event : 10^5 (at least one muon pT>20 GeV, $|\eta|$ <2.4)
- 10⁵ Triggered HYDJET events should have 10³ Z⁰ +background muons
- •To be confirmed using HYDJET

Reconstruction of High p_T muons

Started with

RecoPixelVertexing/PixelLowPtUtilities/test/reconstruct_PbPb.cfg

- Put the Muon reco modules and changed the generalTracks to globalPrimTracks
 (Thanks to Camelia for providing all the codes)
- High p_T muon reco working with signal events (study with more statistics has to be done)
- Mixing of two signal events and GlobalMuon rec tested with small sample
- Signal+Background (HYDJET) +muon reco-
- to be done at MIT Cluster


Future Plan

- Feasibility study HYDJET with the high pt muon paramters used in PYTHIA
- Generate background sample for Z⁰ with HYDJET
- Consideration of Proper Impact parameter in HYDJE
- Generator level mixing with HYDJET soft background
- L1, L2, L3 Trigger level study
- Reconstruction with background : Efficiency, Purity

Back Up Slides

Heavy quark pairs production: kinematical spectra

 $p_{\scriptscriptstyle T}$ and η according to Yellow Report, CERN-2004-009, hep-ph/03110

J/ψ and Y trigger strategy

L1 Trigger: single muon trigger with no momentum cuts optimized for HI run conditions

L2 and L3: run on online farm

L2 trigger condition:

either opposite(like) sign dimuon candidate at L1 trigger copposite(like) sign dimuon candidate at L2 trigger

L3 includes regional track finder starting from the muon statio primary vertex finder with pixel detectors and dimuon verte constraints

Dimuon Sources at LHC: Signal and Backgrou

- Light mesons decays: π, K,...
 - $\pi^+ \stackrel{99.9\%}{\longrightarrow} \mu^+ \nu_{\mu}$; ...
 - $K^+ \stackrel{63.4\%}{\longrightarrow} \mu^+ \nu_{\mu}$; ...
- Charm decays: D, cc̄ mesons

Signal Dimuon Resonances:

- Quarkonia: J/Ψ (BR: 5.9%), Y (BF 2.5%)
- Z⁰: (BR: 3.4%)
- $D^0 \xrightarrow{6.5\%} \mu^+$ anything; $D^\pm \xrightarrow{17\%} I^\pm$ anything; $D_s^\pm \xrightarrow{8\%} I^\pm$ anything;
- $J/\psi \xrightarrow{5.9\%} \mu^+ \mu^-$; ... Eur.Phys.J.C8, 573('99) : $c \xrightarrow{9.0\%} \mu$ anything
- Beauty decays: B, bb mesons
 - $B^{0\pm} \xrightarrow{10.7\%} I \nu_I$ anything; $B^{0\pm} \xrightarrow{24\%} D^{\pm}$ anything; $B^{0\pm} \xrightarrow{64\%} D^0/\bar{D}^0$ anything; $B^{0\pm} \xrightarrow{1.1\%} J/\psi$ anything; ...
 - $\bullet \Upsilon \stackrel{2.5\%}{\longrightarrow} \mu^+ \mu^- ; \dots$
- W / Z decays
 - $W^+ \xrightarrow{10.6\%} \mu^+ \nu_{\mu}$; $W^- \xrightarrow{10.6\%} \mu^- \bar{\nu_{\mu}}$;
 - $Z^0 \xrightarrow{3.4\%} \mu^+ \mu^-$; ...

PDG: b $\stackrel{10.7\%}{\longrightarrow}$ 1 anything

Background Dimuons:

- Decays from open c and b
- Decays from π , K
- Decays from W
- Mixed muon naire