VCI 2001 conference 19-23/2/2001

The CMS Muon Detector

Paolo Giacomelli

INFN Sezione di Bologna Univ. of California, Riverside

- General Overview
- Drift Tubes
- Cathode Strip Chambers
- Resistive Plate Chambers
- Global Muon Trigger
- Conclusions

The CMS Muon Detector

The CMS Muon detector is made of 3 different sub-detectors to ensure redundancy and robustness:

- Drift Tubes (DT) in the barrel region
- Cathod Strip Chambers (CSC) in the endcap region and
- Resistive Plate Chambers (RPC) as dedicated trigger detectors in both the barrel and the endcap

The CMS Muon Detector

Z = -2, -1, 0, 1, 2 according to the Barrel wheel concerned

4 layers of Muon chambers covering up to |η|=2.4, providing ≥3 track segments along a muon track

P. Giacomelli - INFN Bologna, UCR

Muon Detector Requirements

- Muon ID with at least 16 λ down to $|\eta|=2.4$
- Standalone transverse momentum res. 8-15% $\delta p_t/p_t$ (at 10 GeV), 20-40% $\delta p_t/p_t$ (at 1 TeV)
- Global momentum resolution 1.0-1.5 % $\delta p_t/p_t$
- Unambiguous BX identification
- Single and di-muon first level trigger with variable p_t thresholds down to $|\eta|=2.1$
- Correct charge assignment up to p=7 TeV
- Ability to withstand the highest radiation and interaction background foreseen at the LHC

Drift Tubes layout

DT basic cell design

New design:

DT time resolution

Drift Time

DT test beam results

Q4: Single wire resolution (test beam 1999)

DT magnetic field effects

$$B_{perp} = B \cos (\phi)$$
$$B_{par} = B \sin (\phi)$$

DT Local Trigger

CSC layout

540 Chambers 400,000 readout channels

Sensitive area 6,000 m² (all planes) Offline spatial resolution ~100 µm Trigger spatial precision ~1-2 mm Trigger bunch-tagging efficiency ~99%

Endcap Muon System

CSC conceptual design

cSCs will satisfy the performance requirements, while operating in the CMS/LHC environment induced charge cathode with strips avalanche wires

Conceptual design of a CMS EMU CSC

Wires

trapezoidal chambers length up to 3.4 m width up to 1.5 m 6 planes per chamber 9.5 mm gas gap (per plane)

6.7 to 16.0 mm strip width
strips run radially to measure
φ-coordinate with ~100 μm precision

50 µm wires spaced by 3.2 mm 5 to 16 wires ganged in groups wires measure r-coordinate

gas Ar(40%)+CO₂(50%)+CF₄(10%) HV~3.6 kV (Q_{cathode}~110 fC, Q_{anode}~140 fC)

CSC time and space resolution

 Bunch tagging ID efficiency ~99% at maximum LHC rates

- Spatial resolution <100 μm even for very wide strips:
 - 🛾 strip width = 16 mm
 - O strip width = 12 mm

P. Giacomelli - INFN Bologna, UCR

Time spread per plane is broad: drift, noise, fluctuations in cluster formations

A pattern of anode hits, or LCT for Local Charged Track, consistent with a muon track (i.e., pointing back to IP) is searched for (to ensure time overlap, signals are shaped to last 150 ns)

2nd (or 3rd) earliest hit in LCT has a much narrower distribution and can be used for reliable bunch crossing tagging

CSC Cathode trigger

RPC layout

RPC efficiency and cluster size

RPC Trigger algorithm

Pattern of hit strips is compared to predefined patterns corresponding to various p_T PAttern Comparator (PAC) ASIC

4752 ASICs in Counting Room

Muon Trigger geometry

Global Muon Trigger

Global Muon Trigger Efficiency

Muon trigger rates turn-on curves

- The CMS Muon detector will provide good muon identification with 4 independent measurements down to |η|=2.4
- The Muon detector will provide unambiguous BX identification and single and di-muon first level triggers with very high efficiency
- Test-beam results have proven that the CMS Muon detector will be able to meet the requirements even at the highest LHC luminosities
- The production of DTs, CSCs and RPCs has started and the detectors will be operational for the first physics runs of LHC, foreseen in the summer of 2006