UPC Cross Section Calculations NPG Meeting

Guillermo Breto Rangel

Department of Physics University of California, Davis Davis, CA 96515, USA

October 23, 2012

UPC Jpsi Analysis

- Mass fit for UPC cross section calculations
- Differential Cross Setion as a function of p_T and y
- From raw yields apply weights:
 - Acceptance maps (done!)
 - Efficiency maps from Tag and Probe (work in progress!) what are my tags and probes? Not clear here since there are no global muons only tracker muons.

Fit detalis

- Gaussian for the yields and Exponetial background
- Try Crystal Ball and exponetial background
- Try convolution of Gaussian and Breit- Wigner and Crystal Ball and Breit - Wigner
- Try convolution of Crystal Ball and Breit Wigner
 - Try non parametric fit
 - To do: Systematics, compare to Alice results.

Acceptance Maps for J/ψ

These are the efficincy maps we have so far:

Yields for integrated $p_T \leq 3.0 \, GeV/c$ and $-2.4 \leq y \leq 2.4$

Example (For rapidity and p_T integrated:)

$$p_T \leq 3.0 \, GeV/c$$
 and $-2.4 \leq y \leq 2.4$

Yields for different p_T and y bins

Example (For smaller rapidity and p_T bins:)

 $p_T \le 0.4 \, \text{GeV}/c$, $0.4 \le p_T \le 0.8 \, \text{GeV}/c$ and $-2.4 \le y \le 2.4$ Top row are the raw fits, bottom row are the weighhed fits after folding acceptance maps

Yields for different p_T and y bins

Example (For smaller rapidity and p_T bins:)

 $0.8 \le p_T \le 1.2 \, GeV/c$, $1.2 \le p_T \le 1.6 \, GeV/c$ and $-2.4 \le y \le 2.4$ Top row are the raw fits, bottom row are the weighted fits after folding acceptance maps

Conclusions

- Choosing the binning is not trivial
- Weighted yields imply the cross section's lower bound is $\sigma \geq 0.315~mb$
- Fold in the efficiency maps
 - Try to fix efficiency maps
 - To do: Systematics, compare to Alice results.