Interactions involving one or two photons, either in photon-photon or photon-hadron collision or photons emitted from lepton beams. Includes both direct and resolved contributions and also soft QCD and MPIs for events with resolved photons. Only (quasi-)real photons are considered so virtuality of the photons is restricted. The PDF set for resolved photons is selected in the PDF selection. This page describes some of the special features related to these collisions and introduces the relevant parameters.
Photons can be either resolved or act as point-like particles (direct).
Therefore for a photon-photon interaction there are four different
contributions, resolved-resolved, resolved-direct, direct-resolved and
direct-direct. In case of photon-hadron collisions there are two
contributions. With the default value of the parameter below, a mix of
relevant contributions is generated but each process type can also be
generated individually. Note that for photon-hadron collisions the code
for direct contribution depends on which of the beams is photon.
The sample main program main69.cc
demonstrates different
possibilities.
mode
Photon:ProcessType
(default = 0
; minimum = 0
; maximum = 4
)option
0 : Mix of relevant contributions below.
option
1 : Resolved-Resolved: Both colliding photons are
resolved and the partonic content is given by the PDFs. Hard processes
and non-diffractive events can be generated.
option
2 : Resolved-Direct: Photon A is resolved and photon B
unresolved, i.e. act as an initiator for the hard process. Hard processes
with a parton and a photon in the initial state can be generated.
In case of photon-hadron collision this provides the direct contribution
when hadron is beam A and photon beam B.
option
3 : Direct-Resolved: As above but now photon A is unresolved
and photon B resolved. Direct contribution of photon-hadron when photon
beam A.
option
4 : Direct-Direct: Both photons are unresolved. Hard
processes with two photon initiators can be generated.
The type of the generated process can be obtained from
Info class with method
int Info::photonMode()
which follows the conventions above.
Photons can either interact directly as an unresolved particle or as a hadronic state ("Vector Meson Dominance"). In the latter case the hard process can be simulated using PDFs to describe the partonic structure of the resolved photon. The evolution equations for photons include an additional term that corresponds to gamma → q qbar splittings. Due to this, the PDFs are somewhat different for photons than for hadrons and some parts of event generation need special attention.
Due to the additional term in the evolution equations the quarks in a resolved photon may carry a very large fraction (x~1) of the photon momentum. In these cases it may happen that, after the hard process, there is no energy left to construct the beam remnants. This is true especially if a heavy quark is taken out from the beam and a corresponding massive antiquark needs to be added to the remnant system to conserve flavour. Even though these events are allowed based on the PDFs alone, they are not physical and should be rejected. Therefore some amount of errors can be expected when generating events close to the edge of phase space, e.g. when collision energy is low.
The parton showers are generated according to the DGLAP evolution equations. Due to the gamma → q qbar splitting in the photon evolution, a few modifications are needed for the ISR algorithm.
Multiparton interactions with resolved photon beams are generated as with hadron beams. The only difference follows again from the additional gamma → q qbar splittings where the beam photon becomes unresolved. If this splitting happens during the interleaved evolution for either of the photon beams no further MPIs below the branching scale pT are allowed since the photon is not resolved anymore.
If there have been multiple interactions and a gamma → q qbar splitting occur, the kinematics of this branching are not constructed in the spacelike shower. Instead the pT scale of the branching is stored and the relevant momenta are then fixed in the beam remnant handling. Therefore the status codes for the partons related to this splitting actually refer to beam remnants.
If there are no MPIs before the gamma → q qbar splitting, this splitting is constructed in the spacelike shower in the usual way, but the mother beam photon is not added to the event record, since a copy of it already exists at the top of the event record. This is unlike the documentation of other ISR splittings, where the mother of the branching is shown, but consistent with the photon not being added (a second time) for events that contain several MPIs. Optionally the photon can be shown, using the following flag.
flag
Photon:showUnres
(default = off
)Currently the default values for the parameters related to multiparton interactions are the same as in hadronic collision so no tuning for the MPIs in photon-photon or photon-hadron has been done. This holds also for the parameters related to the impact-parameter dependence. Preliminary studies indicate that a larger value of pT0Ref would be preferred for photon-photon case: The inclusive hadron pT spectra in LEP is well reproduced with pT0Ref = 3.30 GeV.
The total cross section for photon-photon collisions is paramerized as in [Sch97]. Since the total cross section includes contribution also from elastic and diffractive events, a multiplicative factor is introduced to control the non-diffractive component.
parm
Photon:sigmaNDfrac
(default = 0.7
; minimum = 0.5
; maximum = 1.0
)To construct the beam remnants, one should know whether the parton taken from the beam is a valence parton or not. The valence partons of a photon includes the partons that originate from gamma → q qbar splittings of the original beam photon and the valence partons from the hadron-like part of the PDF. In either case, the flavour of the valence quarks can fluctuate. Unfortunately the decomposition to the different components are typically not provided in the PDF sets and some further assumptions are needed to decide the valence content.
When ISR is applied for photon beams it is possible to end up to the original beam photon during the evolution. Therefore there are three possibilities for the remnants:
Since the primordial kT increases the invariant mass of the remnants and the scattered system, it may again happen that there is no room for the remnant partons after kT is added, so the kinematics can not be constructed. In this case new values for kT are sampled. If this does not work, a new shower is generated and in some rare cases the parton-level generation fails and the hard process is rejected. The inclusion of additional MPIs increases the invariant mass of the remnants and takes more momentum from the beam particles. Even though the MPIs that would not leave enough room for the remnants are rejected, these can still lead to a situation where the kinematics cannot be constructed due to the added primordial kT. This may cause some amount of errors especially when the invariant mass of gamma-gamma system is small.
Interaction of photons from leptons including photon-photon interactions in
lepton-lepton collisions and photon-hadron lepton-hadron collisions can be
set up as described in
PDF selection. Since the current
framework can handle only (quasi-)real photons, a upper limit for the
photon virtuality needs to be set. This can be done with the parameter
Photon:Q2max
. The upper limit for virtuality will set also
the upper limit for the k_T of the photon, which in turn will
be the same as the k_T of the scattered lepton. Also some other
cuts can be imposed.
parm
Photon:Q2max
(default = 1.0
; minimum = 0.01
; maximum = 2.0
)parm
Photon:Wmin
(default = 10.0
; minimum = 5.0
)parm
Photon:Wmax
(default = -1.0
)Photon:Wmin
means that the invariant mass of
the original l+l- (lepton-hadron) system is used as an
upper limit.
parm
Photon:thetaAMax
(default = -1.0
; maximum = 3.141593
)Photon:Q2max
cut is usually more
restrictive unless a very small angle is used.
parm
Photon:thetaBMax
(default = -1.0
; maximum = 3.141593
)
The invariant mass of gamma-gamma or gamma-hadron system
from lepton beams will vary. Therefore, to generate MPIs and non-diffractive
events in gamma-gamma and gamma-hadron
collisions from lepton beams, the MPI framework is initialized with five
values of W from Photon:Wmin
to
Photon:Wmax
. The parameter values are then interpolated
for the sampled W.