The geometric series:

sumn=1oo[rn-1]

the general partial sum of the series

sn=1+r+r2...rn-1

rsn=r+r2+r3...rn

subtracting gives

sn-rsn=1-rn

rearanging gives

sn=(1-rn)/(1-r)=1/(1-r)-rn/(1-r)

so the sum of the series for |r|<1

limn~oo[sn]=1/(1-r)-limn~oo[rn/(1-r)]=1/(1-r)

sumn=1oo[rn-1]=1/(1-r)