The geometric series:
sumn=1oo[rn-1]
the general partial sum of the series
sn=1+r+r2...rn-1
rsn=r+r2+r3...rn
subtracting gives
sn-rsn=1-rn
rearanging gives
sn=(1-rn)/(1-r)=1/(1-r)-rn/(1-r)
so the sum of the series for |r|<1
limn~oo[sn]=1/(1-r)-limn~oo[rn/(1-r)]=1/(1-r)
sumn=1oo[rn-1]=1/(1-r)