Physics 7B-1 (A/B)

Professor Cebra

Winter 2010
Lecture 9

Kinematics

Newton's Laws of Motion

- $1^{\text {st }}$ Law: The velocity of an object will not change unless acted upon by a force

$$
\Sigma \vec{F}=0 \quad \Sigma \vec{\tau}=0
$$

- $2^{\text {nd }}$ Law: The net force on an object is equal to the rate of change of momentum

$$
\begin{array}{ll}
\vec{F}=\frac{d \vec{p}}{d t}=m \vec{a} & \vec{\tau}=\frac{d \vec{L}}{d t}=I \vec{\omega} \\
\int \vec{F} d t=\vec{J}=\Delta \vec{p} & \int \vec{\tau} d t=A n g \vec{J}=\Delta \vec{L}
\end{array}
$$

- $3^{\text {rd }}$ Law: For every force there is an equal but opposite force

Newton’s First Law -- Statics

$$
\Sigma \vec{F}=0
$$

Long Range Forces
Act on the center of gravity

1) Gravitational Force
2) Electrical Force

Contact Forces

Act the point of contact
Consider every point of Contact

1) Normal Forces (Perpendicular to Surface)

Can take any value needed
2) Frictional Forces (Parallel to surface)

Can take any value up to $\mu_{\mathrm{s}} N$
Dynamic friction $=\mu_{D} N$

$\Sigma \vec{\tau}=0$

No Motion
 or

Constant Motion

Do sample problems here

Newton’s First Law -- Statics

Newton's Second Law -- Dynamics

$$
\begin{array}{ll}
\Sigma \vec{F}=\frac{d \vec{p}}{d t}=m \vec{a} & \Sigma \vec{\tau}=\frac{d \vec{L}}{d t}=I \vec{\omega} \\
\int \Sigma \vec{F} d t=\vec{J}=\Delta \vec{p} & \int \Sigma \vec{\tau} d t=\text { Ang } \vec{J}=\Delta \vec{L}
\end{array}
$$

When do we use force/torque? When do we use impulse?

Constant Acceleration

Rotational Motion
 ($\alpha=$ constant)

$\omega=\omega_{0}+\alpha t$
$\theta=(1 / 2)\left(\omega_{0}+\omega\right) t$
$\theta=\theta_{0}+\omega_{0} t+(1 / 2) \alpha t^{2}$
$\omega^{2}=\omega_{0}{ }^{2}+2 \alpha \theta$
$y=(1 / 2)\left(v_{0}+v\right) t$

Linear Motion

($\mathrm{a}=$ constant)
$v=v_{0}+a t$
$y=y_{0}+v_{0} t+(1 / 2) a t^{2}$
$v^{2}=v_{0}{ }^{2}+2 a y$

Applying the Kinematics Equations

1) Make a drawing to represent the system being studied
2) Decide which directions will be called positive and which negative
3) In an organized way, write down the values for any of the kinematic variables (x, y, v, a, t and initial values). Be alert for the implied meaning in the phrasing of the problem. For example, the phrase "starts at rest" implies that $v_{0}=0$.
4) Determine which equation will provide the required answer using the information given.

Independence of Directions

The Monkey Hunter

The monkey drops from the tree the moment that the rifle is fired. Where should one aim to hit the monkey as it falls?

The Monkey Hunter

$$
\begin{aligned}
& y_{m}=\mathrm{h}+\hat{N}_{y 0} t+(1 / 2) g t^{2} \\
& y_{b}=0+v \sin \theta_{\mathrm{r}} t+(1 / 2) g t^{2} \\
& \mathrm{t}=\mathrm{x} /\left(\mathrm{v} \cos \theta_{\mathrm{r}}\right) \quad \mathrm{x} \quad \begin{array}{l}
\begin{array}{l}
\mathrm{y}_{\mathrm{b}}=\mathrm{y}_{\mathrm{m}} \rightarrow \mathrm{~h}=\mathrm{vt} \sin \theta_{\mathrm{r}} \\
\sin \theta_{\mathrm{r}}=(\mathrm{h} / \mathrm{vt})=(\mathrm{h} / \mathrm{x}) \cos \theta_{\mathrm{r}} \\
\tan \theta_{\mathrm{r}}=\mathrm{h} / \mathrm{x}
\end{array}
\end{array}
\end{aligned}
$$

Maximum Trajectory

A projectile will follow a parabolic trajectory. Which firing angle will travel the furthest?

Flight time:

$$
y=y_{0}+v_{y 0} t+(1 / 2) a_{y} t^{2} \rightarrow 0=0+v \sin \theta t-(1 / 2) g t^{2} \rightarrow t=(2 \mathrm{v} / \mathrm{g}) \sin \theta
$$

Distance traveled:

$$
\begin{aligned}
& x=x_{0}+v_{x 0} t+(1 / 2) a_{x} t^{2} \rightarrow \\
& x=0+v \cos \theta t+0 \\
& x=v^{2} 2 \sin \theta \cos \theta / g \\
& x=v^{2} \sin (2 \theta) / g
\end{aligned}
$$

Maximum range when $\theta=45$

Rolling Bodiess

Inclined Planes

Which will go higher? A hoop or a frictionless puck?

Linear motion: $\quad s=0+v_{0} t-(1 / 2)((m g \sin \theta-f) / m) t^{2}$

> Demo: Inclined Planes

Consider conservation of energy

Rotating Projectiles

A body can rotate about a fixed pivot point.

A free body rotates about it center of gravity

DEMO: Center of Gravity

Center of Gravity

Center of Gravity

Angular impulse

Rotating Off Axis

Pendulum System

$F_{\text {tension } X}=F_{\text {tension }} \sin \theta$ $F_{\text {tension } Y}=F_{\text {tension }} \cos \theta$

$F_{\text {gravit } T}=F_{\text {gravity }} \sin \theta=m g \sin \theta$ $F_{\text {gravitivR }}=F_{\text {gravit }} \cos \theta=m g \cos \theta$

Announcements

The final exam will be Wednesday March $17^{\text {th }} 3: 30-5: 30$

Bring a student ID with picture

Final Exam Room	Last Name Begins With:
198 Young	N - Z
1100 Social Sciences	C - M
55 Roessler	A - B

DL Sections

Winter 2010 7B-1 (A/B) D/L Assignments \& Job Responsibilities

1	WF	$10: 30-12: 50$	2317 EPS	Marcus Afshar
2	MW	$2: 10-4: 30$	2317 EPS	Aaron Hernley
3	MW	$4: 40-7: 00$	2317 EPS	Rylan Conway
4	MW	$7: 10-9: 30$	2317 EPS	Rylan Conway
5	MR	$8: 00-10: 20$	2317 EPS	Robert Lynch
6	TR	$10: 30-12: 50$	2317 EPS	Aaron Hernley
7	R	$2: 10-4: 30$	2317 EPS	Justin Dhooghe
7	M	$10: 30-12: 50$	2317 EPS	Justin Dhooghe
8	TR	$4: 40-7: 00$	2317 EPS	Britney Rutherford
9	TR	$7: 10-9: 30$	2317 EPS	Britney Rutherford
10	TF	$8: 00-10: 20$	2317 EPS	Emily Ricks
11	TF	$2: 10-4: 30$	2317 EPS	Justin Dhooghe

OH GOOD, A TRUE OR

[Foxtrot
 B I L L A M E N D

Date: Not as often as Idd like to, sadly.

