Professor Cebra

and Angular
Momentum

onservation

Rotational Motion

If the force is always perpendicular to the direction of the velocity, then only the direction changes.

Centripetal Acceleration

$$
v=2 \pi r / T
$$

$$
\frac{\Delta v}{v}=\frac{v \Delta t}{r}
$$

$$
a_{c}=\frac{\Delta v}{\Delta t}=\frac{v^{2}}{r}
$$

Centripetal Force

$$
F_{c}=m a_{c}=m v^{2} / r
$$

Angular Quantities

- There is an analogy between objects moving along a straight path and objects moving along a circular path.

Angular Displacement

By convention, θ is measured clockwise from the x-axis.

Angular Velocity

- Angular velocity is a vector:
- Right hand rule to determines direction of ω
- Velocity and radius determine magnitude of ω

$$
\omega=\frac{v_{t}}{r}
$$

Angular Velocity

- What's the angular velocity of a point particle?

$$
\omega=\frac{v}{r_{\perp}}=\frac{v}{r \sin \theta}
$$

Angular Acceleration

- Angular Acceleration: Rate of change in angular velocity

$$
\vec{\alpha}=\frac{d \vec{\omega}}{d t}=\frac{a_{t}}{r}
$$

- A stationary disk begins to rotate. After 3 seconds, it is rotating at $60 \mathrm{rad} / \mathrm{sec}$. What is the average angular acceleration?

$$
\alpha=\frac{\Delta \omega}{\Delta t}=\frac{60 \mathrm{rad} / \mathrm{s}-0 \mathrm{rad} / \mathrm{s}}{3 \mathrm{~s}}=20 \frac{\mathrm{rad}}{\mathrm{~s}^{2}}
$$

Rotational Kinematics

Rotational Motion
 ($\alpha=$ constant)

$\omega=\omega_{0}+\alpha t$
$\theta=(1 / 2)\left(\omega_{0}+\omega\right) t$
$\theta=\theta_{0}+\omega_{0} t+(1 / 2) \alpha t^{2} \quad x=x_{0}+v_{0} t+(1 / 2) a t^{2}$
$\omega^{2}=\omega_{0}{ }^{2}+2 \alpha \theta$

Linear Motion

($\mathrm{a}=$ constant)
$v=v_{0}+a t$
$x=(1 / 2)\left(v_{0}+v\right) t$
$v^{2}=v_{0}^{2}+2 a x$

Rotational Kinematics

A commercial jet airplane is idling at the end of the run way. At idle, the turbo fans are rotating with an angular velocity of $175 \mathrm{rad} / \mathrm{sec}$. The Tower gives the jetliner permission to takeoff. The pilot winds up the jet engines with an angular acceleration of $175 \mathrm{rad} / \mathrm{s}^{2}$. The engines wind up through an angular displacement of 2000 radians. What is the final angular velocity of the turbo-fan blades?

Solution:

$$
\begin{aligned}
\omega^{2}= & \omega_{0}{ }^{2}+2 \alpha \theta \\
& =(175 \mathrm{rad} / \mathrm{s})^{2}+2\left(175 \mathrm{rad} / \mathrm{s}^{2}\right)(2000 \mathrm{rad}) \\
& =7.00 \times 10^{5} \mathrm{rad}^{2} / \mathrm{s}^{2} \\
\omega & =837 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Angular Momentum

- What's the momentum of a rolling disk?

- Two types of motion:
- Translation:

$$
\vec{p}=m_{d i s k} \vec{v}
$$

- Rotation:

$$
\vec{L}=I_{d i s k} \vec{\omega}
$$

Angular Momentum

- Angular Momentum: Product of position vector and momentum vector

$$
\vec{L}=\vec{r} \times \vec{p}=|r p \sin \theta|
$$

- Why is angular momentum important? Like energy and momentum, angular momentum is conserved.
- Angular Impulse: Change in angular momentum vector

$$
\Delta \vec{L}=\vec{L}_{2}-\vec{L}_{1}
$$

Angular Momentum

- What's the angular momentum of a point particle?

$$
L=r_{\perp} p=r \sin \theta p
$$

Torque

- Which way will the scale tip?

- Rotation of scale is influenced by:
- Magnitude of forces
- Location of forces

Torque

- Which is more effective?

- Rotation of wrench is influenced by:
- Magnitude of forces
- Location of forces
- Direction of forces

Torque

- Torque: The cause or agent of angular acceleration $\vec{\tau}=\vec{r} \times \vec{F}=|r F \sin \theta|$
- The angular velocity of an object will not change unless acted upon by a torque

$$
\vec{\tau}_{\text {Net on object }}=0 \Rightarrow \Delta \vec{\omega}=0
$$

- The net torque on an object is equal to the rate of change of angular momentum

$$
\vec{\tau}_{\text {Net on object }}=\frac{d \vec{L}}{d t}
$$

Newton's Second Law - Rotation

$$
\vec{\tau}_{\text {Net on object }}=\frac{d \vec{L}}{d t}=\frac{d I \omega}{d t}=I \frac{d \omega}{d t}=I \alpha
$$

$$
\tau=/ \alpha
$$

Angular impulse $=\tau \Delta t=\Delta L$

Torque

- What's the torque on a point particle?

$$
\tau=r_{\perp} F=r \sin \theta F
$$

Rotational Kinetic Energy

- What's the kinetic energy of a rolling disk?

- Two types of motion:
- Translation: $\quad K E_{\text {ran }}=\frac{1}{2} m_{d i s k} k^{2}$
- Rotation:

$$
K E_{\text {rot }}=\frac{1}{2} I_{\text {disk }} \omega^{2}
$$

Rolling Bodieds

Angular Acceleration $\tau=/ \alpha$
$\tau=f R$

Linear Acceleration
$F_{\text {tot }}=m a$
$F_{\text {tot }}=m g \sin \theta-f$
$\alpha=a / R$

Moment of Inertia

$$
m a=m g \sin \theta-f
$$

$$
\begin{aligned}
& I_{\text {disk }}=\frac{1}{2} m R^{2} \\
& I_{\text {hoop }}=m R^{2}
\end{aligned}
$$

$$
f R=I \alpha=\frac{I a}{R} \Rightarrow f=\frac{I a}{R^{2}}
$$

$$
m a=m g \sin \theta-\frac{I a}{R^{2}}
$$

$$
m a+\frac{I a}{R^{2}}=m g \sin \theta
$$

$$
\left(m R^{2}+I\right) a=m R^{2} g \sin \theta
$$

Demo: Crazy Rollers

$$
a=\frac{m R^{2} g \sin \theta}{m R^{2}+I}
$$

Moment of Inertia

Let's use conservation of energy

$$
\begin{aligned}
& m g h=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}=\frac{1}{2} m v^{2}+\frac{1}{2} I \frac{v^{2}}{R^{2}} \quad I_{d i s k}=\frac{1}{2} m R^{2} \\
& v^{2}=\frac{2 m R^{2} g h}{m R^{2}+I} \\
& v_{\text {hoop }}=.707 \sqrt{2 g h} \\
& v_{\text {disk }}=.817 \sqrt{2 g h}
\end{aligned}
$$

Moment of Inertia

- Which will have the greater acceleration?

- Which will have the greater angular

$$
F=m a
$$ acceleration?

Moment of Inertia

- What's the moment of inertia of an extended object?
$I=I_{1}+I_{2}+I_{3}+\cdots=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2}+\cdots=\sum m_{i} r_{i}^{2}=\int r^{2} d m$

$$
I=\frac{1}{2} M R^{2}
$$

$$
I=\frac{1}{12} M L^{2}
$$

$$
I=\frac{1}{3} M L^{2}
$$

Moment of Inertia

$$
I=\frac{1}{12} M L^{2}
$$

Long thin rod with rotation axis through end

$$
l=\frac{1}{3} M L^{2}
$$

Hoop or cylindrical shell

$I=M R^{2}$

Hollow cylinder

$I=\frac{1}{2} M\left(R_{1}^{2}+R_{2}^{2}\right)$

Thin spherical shell

Solid cylinder

Conservation of Angular Momentum

(Orban/Corbis/Sygma)

Conservation of Angular Momentum

Conservation of Angular Momentum

The total angular momentum vector must be conserved. If you flip the spinning wheel, then something else must create an angular momentum vector.

> DEMO: Spinning Wheel and rotation chair

Center of Gravity

Center of Gravity

Angular impulse

Summary of Angular Equations

Announcements

DL Sections

Winter 2010 7B-1 (A/B) D/L Assignments \& Job Responsibilities

1	WF	$10: 30-12: 50$	2317 EPS	Marcus Afshar
2	MW	$2: 10-4: 30$	2317 EPS	Aaron Hernley
3	MW	$4: 40-7: 00$	2317 EPS	Rylan Conway
4	MW	$7: 10-9: 30$	2317 EPS	Rylan Conway
5	MR	$8: 00-10: 20$	2317 EPS	Robert Lynch
6	TR	$10: 30-12: 50$	2317 EPS	Aaron Hernley
7	R	$2: 10-4: 30$	2317 EPS	Justin Dhooghe
7	M	$10: 30-12: 50$	2317 EPS	Justin Dhooghe
8	TR	$4: 40-7: 00$	2317 EPS	Britney Rutherford
9	TR	$7: 10-9: 30$	2317 EPS	Britney Rutherford
10	TF	$8: 00-10: 20$	2317 EPS	Emily Ricks
11	TF	$2: 10-4: 30$	2317 EPS	Justin Dhooghe

Conservation of Angular Momentum

[^0]
Torque

[^0]: Copyright © Addison Wesley

