Review of Linear
 Momentum

And
Rotational Motion

The Definition of Impulse

Recall that work was resulted in a change in energy, where work is

$$
W=\int_{x_{i}}^{x_{f}} \vec{F}(x) \bullet d \vec{x}=E_{f}-E_{i}=\Delta E
$$

We can similarly define a quantity called the impulse, which is the time integral of the applied force

$$
\vec{J}=\int_{t_{i}}^{t_{f}} \vec{F}(t) d t=\vec{p}_{f}-\vec{p}_{i}=\Delta \vec{p}
$$

\boldsymbol{J} is a vector quantity, which is applied to the vector \boldsymbol{p}.

Conservation of Momentum

$$
N e t \vec{J}_{\text {ext }}=\Sigma \vec{J}_{\text {ext }}=\int \Sigma \vec{F}_{\text {ext }}(t) d t=\vec{p}_{f}-\vec{p}_{i}=\Delta \vec{p}_{\text {system }}
$$

If the net external impulse in a given direction acting on the system is zero, then there is no change in the linear momentum of the system in that direction; Otherwise there is a change in the momentum equal to the net external impulse.

Conservation of Momentum!

Rockets

Consider a model rocket. How high will a 0.2 kg model rocket fly if your install a class "C" Estes rocket engine? An Estes "C" engine provide 8.0 Newtonseconds of impulse.
$\vec{J}=\Delta \vec{p}=m \Delta \vec{v}=(0.2 \mathrm{~kg})(v)$

$v=(8 N s) /(0.2 \mathrm{~kg})=40 \mathrm{~m} / \mathrm{s}$
$\Delta P E=\Delta K E$
$m g h=(1 / 2) m v^{2}$
$h=(1 / 2) v^{2} / g=(0.5)\left(1600 m^{2} / s^{2}\right) /\left(10 m / s^{2}\right)=80 m$

Collisions

A collision occurs when two free bodies make contact. The contact results in a repulsive normal force. The magnitude of the force and the duration of the contact will determine the resulting impulse. Newton's $3^{\text {rd }}$ law indicates that each of the two participating bodies will experience an equal but opposite impulse.

All collisions conserve both energy and momentum, however we classify collisions as being either elastic on inelastic based upon whether kinetic energy is conserved.

Elastic collisions conserve both momentum and kinetic energy.
In an inelastic collision some of the energy of the collisions is dissipated as internal energy within the bodies.

In a completely inelastic collision, the two bodies stick together and there is only center of mass motion remaining after the collision

1D Elastic Collisions

Elastic Collisions:

$$
\begin{aligned}
& K E_{i}=K E_{f} \\
& \vec{p}_{\text {tot }, i}=\vec{p}_{\text {tot } f}
\end{aligned}
$$

Try cases of:

- m1=m2
- $\mathrm{M} 1=2 \mathrm{~m} 2$
- m1=(1/2)M2
- v1>v2
- v1<v2

Demo: collision table

1D Inelastic Collisions

Inelastic Collisions:

$$
\begin{aligned}
& K E_{i} \neq K E_{f} \\
& \vec{p}_{\text {tot }, i}=\vec{p}_{\text {tot }, f}
\end{aligned}
$$

Try cases of:
Equal masses

- m1=m2
- $\mathrm{M} 1=2 \mathrm{~m} 2$
- $\mathrm{m} 1=(1 / 2) \mathrm{M} 2$
- v1>v2
- v1<v2

> Demo: collision table

A Particle Physics Collision

Is this an elastic on inelastic collision?

Inelastic Collisions

Why do cars have crumple zones?

Consider an older model car with a 5 cm bumper and a rigid frame.

Compare to a more model car with a 25 cm crumple zone.

2D Collisions

Must conserve P_{x} and P_{y}
Elastic collisions conserve kinetic energy

When $m_{1}=m_{2}$, then the angle between \boldsymbol{p}_{1} and \boldsymbol{p}_{2} will be 90 degree.

Demo: Air puck

2D Collisions

Where will the cue ball end up?

Where do you aim the 1
(yellow) with respect to the 9 (yellow stripe)?

2D Collisions

Can the American Curling team knock out both the yellow stones?

Where should they aim their stone?

Rotational Motion

Can an object be continually accelerating without gaining any speed?
If the force is always perpendicular to the direction of the velocity, then only the direction changes.

Rotational Motion

Centripetal Force
 $F_{c}=m a_{c}=m v^{2} / r$

Spin the ball, then let it go.
Due to conservation of momentum, it must go in the straight line

Centripetal Force

How fast must the roller coaster be going so that the riders still feel a 0.5 g force even at the top of the 10 meter radius loop-the-loop?

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{c}}=(3 / 2) \mathrm{mg}=\mathrm{mv}^{2} / \mathrm{r} \\
& \mathrm{v}^{2}=(3 / 2) \mathrm{rg}=(3 / 2)(10)(10) \\
& \mathrm{v}=12.2 \mathrm{~m} / \mathrm{s}=27.5 \mathrm{mph}
\end{aligned}
$$

What provides the centripetal force?

Centripetal Force

What is the centripetal force needed to keep the NASCAR 1000 kg cars on the track when taking an $R=200 \mathrm{~m}$ curve at 200 mph (320 km/hour)?

$$
\begin{aligned}
F & =m v^{2} / r \\
& =(1000)(88.9)^{2} / 200 \\
& =3.95 \times 10^{4} \mathrm{~N}
\end{aligned}
$$

What provides this centripetal force?

$\tan \theta=v^{2} / r g$

Centripetal Force

How far above the surface of the earth must one launch a communications satellite to achieve an geosynchronous orbit?
$r=42,164 \mathrm{~km}$

Note $R_{E}=6378 \mathrm{~km}$
=> Launch altitude above 36000 km

Note also, low earth orbit is anything less than 200 km above the surface of the earth

What provides the centripetal force?

$$
F_{c}=G \frac{m M}{r^{2}}=m v^{2} / r
$$

$v=\sqrt{\frac{G M}{r}}=\frac{2 \pi r}{T}$
$T=\frac{2 \pi r^{3 / 2}}{\sqrt{G M}}$

Angular Quantities

- There is an analogy between objects moving along a straight path and objects moving along a circular path.

Position	\leftrightarrow	Angle
Velocity	\leftrightarrow	Angular Velocity
Acceleration	\leftrightarrow	Angular Acceleration
Momentum	\leftrightarrow	Angular Momentum
Force	\leftrightarrow	Torque

Angular Velocity

- How do we represent the motion of a rotating disk?

Demo: Accelerometer

Angular Velocity

- Angular velocity is a vector:
- Right hand rule to determines direction of ω
- Velocity and radius determine magnitude of ω

$$
\omega=\frac{v}{r}
$$

Angular Velocity

- What's the angular velocity of a point particle?

$$
\omega=\frac{v}{r_{\perp}}=\frac{v}{r \sin \theta}
$$

Angular Acceleration

- Angular Acceleration: Rate of change in angular velocity

$$
\vec{\alpha}=\frac{d \vec{\omega}}{d t}
$$

- A stationary disk begins to rotate. After 3 seconds, it is rotating at $60 \mathrm{rad} / \mathrm{sec}$. What is the average angular acceleration?

$$
\alpha=\frac{\Delta \omega}{\Delta t}=\frac{60 \mathrm{rad} / \mathrm{s}-0 \mathrm{rad} / \mathrm{s}}{3 \mathrm{~s}}=20 \frac{\mathrm{rad}}{\mathrm{~s}^{2}}
$$

Angular Momentum

- Angular Momentum: Product of position vector and momentum vector

$$
\vec{L}=\vec{r} \times \vec{p}
$$

- Why is angular momentum important? Like energy and momentum, angular momentum is conserved.
- Angular Impulse: Change in angular momentum vector

$$
\Delta \vec{L}=\vec{L}_{2}-\vec{L}_{1}
$$

Angular Momentum

- What's the angular momentum of a point particle?

$$
L=r_{\perp} p=r \sin \theta p
$$

Torque

- Which way will the scale tip?

- Rotation of scale is influenced by:
- Magnitude of forces
- Location of forces

Torque

- Which is more effective?

- Rotation of wrench is influenced by:
- Magnitude of forces
- Location of forces
- Direction of forces

Torque

- Torque: The cause or agent of angular acceleration

$$
\vec{\tau}=\vec{r} \times \vec{F}
$$

- The angular velocity of an object will not change unless acted upon by a torque

$$
\vec{\tau}_{\text {Net on Object }}=0 \Rightarrow \Delta \vec{\omega}=0
$$

- The net torque on an object is equal to the rate of change of angular momentum

$$
\vec{\tau}_{\text {Net on Object }}=\frac{d \vec{L}}{d t}
$$

Torque

- What's the torque on a point particle?

$$
\tau=r_{\perp} F=r \sin \theta F
$$

Announcements

DL Sections

Winter 2010 7B-1 (A/B) D/L Assignments \& Job Responsibilities

1	WF	$10: 30-12: 50$	2317 EPS	Marcus Afshar
2	MW	$2: 10-4: 30$	2317 EPS	Aaron Hernley
3	MW	$4: 40-7: 00$	2317 EPS	Rylan Conway
4	MW	$7: 10-9: 30$	2317 EPS	Rylan Conway
5	MR	$8: 00-10: 20$	2317 EPS	Robert Lynch
6	TR	$10: 30-12: 50$	2317 EPS	Aaron Hernley
7	R	$2: 10-4: 30$	2317 EPS	Justin Dhooghe
7	M	$10: 30-12: 50$	2317 EPS	Justin Dhooghe
8	TR	$4: 40-7: 00$	2317 EPS	Britney Rutherford
9	TR	$7: 10-9: 30$	2317 EPS	Britney Rutherford
10	TF	$8: 00-10: 20$	2317 EPS	Emily Ricks
11	TF	$2: 10-4: 30$	2317 EPS	Justin Dhooghe

