Professor Cebra

Review of Exponential Change Model and

Forces

Exponential Growth

- the behavior of $N(t)$ is a rapidly increasing function of time:

$N(t)=N_{0} e^{k t}$
- N_{0} is the value of $N(t=0)$

Exponential decay

- equation is similar to growth case:

The half lie of carbon-14 is 5730 years. How old a sample that has only 10% of its original carbon-14?
$t_{1 / 2}=\frac{\ln (2)}{\lambda}=\tau \ln (2) \Rightarrow \tau=5730 / \ln (2)=8267$ years
$N(t)=N_{0} e^{-\lambda t}=N_{0} e^{-t / \tau} \Rightarrow \frac{-t}{\tau}=\ln \left[N(t) / N_{0}\right]$
$t=-\tau \ln (0.1)=-8256 \times 2.303=19,010$ years

Cosmic rays enter the earth's atmosphere and collide with an atom, creating an energetic neutron.

When the neutron collides with a nitrogen atom, a nitrogen-14 (seven protons, seven neutrons) atom furns into a carbon-14 atom.

The Parallel Plate Capacitor

Electrical Capacitance is similar to the cross sectional area of a fluid reservoir or standpipe. Electrical charge corresponds to amount (volume) of the stored fluid. And voltage corresponds to the height of the fluid column.

Exponential Change in Circuits: Capacitors - Charging

- we can write an equation, then, for the current:

$$
\begin{array}{ll}
\mathcal{E}-R \frac{d Q}{d t}=\frac{Q}{C} & \mathrm{v}=\mathrm{a} / \mathrm{C} \\
\frac{\mathcal{E}}{R}-\frac{Q}{R C}=\frac{d Q}{d t} & \mathrm{I}=\mathrm{d} \alpha / \mathrm{dt}
\end{array}
$$

Current I (A) = dQ/dt
ε / R

$$
R C=t i m e \text { const }
$$

Voltage $\mathrm{V}_{\mathrm{C}}(\mathrm{V})=(\mathrm{Q} / \mathrm{C})$

Exponential Change in Circuits: Capacitors - Discharging

$$
\begin{array}{ll}
\mathrm{V}=\mathrm{Q} / \mathrm{C} & V_{C}=-I R \\
\mathrm{I}=\mathrm{dQ} / \mathrm{dt} \\
& Q / C=-\frac{d Q}{d t} R \\
& \frac{d Q}{d t}=-\frac{1}{R C} Q(t) \\
& Q(t)=Q_{0} e^{-t / R C}
\end{array}
$$

Current I (A)
$\mathrm{V}_{0} / \mathrm{R}_{\mathrm{B}} I_{\text {discharging }}=\frac{V_{0}}{R_{B}} e^{\frac{-t}{R_{B} C}}$,
$R_{B} C=$ time const

Time t (s)

$\xrightarrow[\text { Timet }(\mathrm{s})]{\substack{\text { Voltage } \\ V_{C}(\mathrm{~V}) \\ R C=\text { time const } \\ V_{C \text { discharging }}=V_{\mathrm{o}} e \\ \mathrm{~V}_{0}}}$

The switch is closed at time $t=0$. Make a plot of current as a function of time in R1. Then make a plot of the voltage across the capacitor as a function of time.

Capacitors in Series and Parallel

- Circuit Diagrams: Capacitors

- Capacitors in parallel ($\sim 2 x A$)

$$
C_{\text {parallel }}=C_{1}+C_{2}+\ldots
$$

- Capacitors in series ($\sim 2 x d$)

- Resistors in parallel ($\sim 2 x A$)

Capacitors: Energy Stored in a capacitor

- Because resistors dissipate power, we wrote a an equation for the power dissipated in a Resistor:

$$
\begin{aligned}
& P=I V, \text { using } V=I R \\
& P=I^{2} R \text { or } P=\frac{V^{2}}{R}
\end{aligned}
$$

Note: Since I is same for resistors in series, identical resistors in series will have the same power loss. Since V is the same for resistors in parallel, identical resistors in parallel will have the same power loss

- Because capacitors are used to store charge and energy, we concentrate on the energy stored in a capacitor.
- We imagine the first and the last electrons to make the journey to the capacitor. What are their \triangle PE's?
$\Delta P E_{\text {first }}=q \Delta V, \Delta V=20 \quad \Delta \mathrm{PE}_{\text {last }}=q \Delta \mathrm{~V}, \Delta \mathrm{~V}=0$
Thus on average for the whole charge:

$$
V_{R}=\mathbb{R}
$$

$$
\mathrm{Q}=\mathrm{CV}_{\mathrm{c}}
$$

$$
\begin{aligned}
& P E=\frac{1}{2} Q V, \text { using } Q=C V \\
& P E=\frac{1}{2} C V^{2}
\end{aligned}
$$

Galilean Space-time; Galilean Relativity
Vectors - Vector Addition and Subtraction - r, v, a
Forces
Newton's $3^{\text {rd }}$ law - Equal and opposite forces
Net Force - SF
Force Diagrams - center of mass
Long range vs. contact forces
Balanced forces - Inertia, Newton's $1^{\text {st }}$ Law
Two Fundamental Forces Fe and Fg

$$
\begin{aligned}
& \mathrm{Fe}=\mathrm{kq} 1 \mathrm{q} 2 / \mathrm{r} 2 \\
& \mathrm{ke}=9 \times 109 \mathrm{Nm} 2 / \mathrm{C} 2 \\
& \mathrm{qe}=1.602 \times 10-19 \mathrm{C}
\end{aligned}
$$

Forces we feel - gravity of the earth
Contact forces - electromagnetic
Little $\mathrm{g} \rightarrow \mathrm{g}=\mathrm{GME} / \mathrm{rE2}$
Orbits - Big Gravity
Springs - Hooke's Law F=-kx
Normal Force - Perpendicular contact force - Parallel contact force, friction
Drag forces

Galilean Space-time and Galilean Relativity

The motion of uniformly accelerated objects was studied by Galileo as the subject of kinematics.

Galileo's Principle of Inertia stated: "A body moving on a level surface will continue in the same direction at constant speed unless disturbed." This principle was incorporated into Newton's laws of motion (first law).

Galileo's concept of inertia refuted the generally accepted Aristotelian hypothesis that objects generally slow down.

Galileo 1564-1642

$$
\left.\begin{array}{rl}
x^{\prime} & =x-v t \\
y^{\prime} & =y
\end{array}\right\} \text { Galilean Transformation Equations }
$$

Galileo introduced space-time and the concept of an inertial reference frame.

Galilean Inverse Transformation Equations

Vector - Definition

- Merriam-Webster defines vector as:

1. a quantity that has magnitude and direction and that is commonly represented by a directed line segment whose length represents the magnitude and whose orientation in space represents the direction
2. an organism (as an insect) that transmits a pathogen
3. an agent (as a plasmid or virus) that contains or carries modified genetic material (as recombinant DNA) and can be used to introduce exogenous genes into the genome of an organism

Vectors will either be written in bold (v) or with an overstrike (\vec{v})

Vector - Applications

- Vectors are used to represent:
- Position of an object
- Velocity of an object
- Acceleration of an object
- Force on an object
- Two representations of vectors:
- Cartesian Coordinates
- Polar Coordinates

Cartesian Coordinates

Rene Descartes

Polar Coordinates

Vector Addition and Subtraction

Vectors are added head to tail
Note: $a+b=b+a$

Vectors are subtracted by added -b to vector a Note: $a-b$ does not equal $b-a$ $(a-b)=-(b-a)$

Consider two vectors; the first vector (A) has a magnitude of 10 and a direction 60 degrees counter clockwise form the x-axis. The second vector (\mathbf{B}) has magnitude 5 and is directed in the positive x direction.

What is the magnitude and direction of $\mathbf{A}-\mathbf{B}$?

Draw the resulting vectors.

Magnitude of $A-B$ is $5 \sqrt{3}$ direction is in the y direction. Magnitude is 8.66 .

The Vectors of Kinematics

- Position:

\vec{r}

- Velocity:

$$
\vec{v}_{i n s}=\frac{d \vec{r}}{d t}
$$

- Acceleration: $\vec{a}_{i n s}=\frac{d \vec{v}}{d t}$
- Momentum: $\vec{p}=m \vec{v}$
- Force:

$$
\vec{F}_{A \text { on } B}
$$

The Four Fundamental Forces

The Four Fundamental Forces of Nature

Gravitathem

Newton's Laws of Motion

- $1^{\text {st }}$ Law: The velocity of an object will not change unless acted upon by a force
- $\mathbf{2}^{\text {nd }}$ Law: The net force on an object is equal to the rate of change of momentum
- $3^{\text {rd }}$ Law: For every force there is an equal but opposite force

Newton's First Law of Motion

- $1^{\text {st }}$ Law: The velocity of an object will not change unless acted upon by a net force

$$
\vec{F}_{\text {Net on Object }}=0 \Rightarrow \Delta \vec{v}=0
$$

- When $F_{\text {Net on Object }}=0$,
- an object at rest continues to stay at rest
- an object in motion continues to move at constant speed along a straight path
- a.k.a. The Law of Inertia

Newton's Second Law of Motion

- $2^{\text {nd }}$ Law: The net force on an object is equal to the rate of change of momentum

$$
\vec{F}_{\text {Net on Object }}=\frac{d \vec{p}}{d t}
$$

- Force is proportional to acceleration:

$$
\vec{F}_{\text {Net on Object }}=\frac{d \vec{p}}{d t}=\frac{d(m \vec{v})}{d t}=m \frac{d \vec{v}}{d t}=m \vec{a}
$$

- a.k.a. The Law of Resultant Force

Newton's Third Law of Motion

- $3^{\text {rd }}$ Law: For every force there is an equal but opposite force

$$
\vec{F}_{A \text { on } B}=-\vec{F}_{B \text { on } A}
$$

- $F_{A \text { on } B}$ and $F_{B \text { on } A}$ are referred to as an actionreaction pair.
- They act on different objects
- a.k.a. The Law of Reciprocal Actions

Net Force - $\Sigma \boldsymbol{F}$

In the previous few slides, we have discussed $F_{\text {net }}$ but what is the "net force"?

The net force is a vector sum of all the different forces that are acting upon the object of interest.

$$
\vec{F}_{\text {Net on Object }}=\sum \vec{F}
$$

Although each force acts independently, that final results is just the sum of the various contributions.

Types of Force

- Contact forces: Require physical contact between two objects (action and reaction)
- Friction force: Acts parallel to contact surface
- Normal force: Acts perpendicular to contact surface
- Long-range forces: Require presence of a field between two objects (action at a distance)
- Gravitational force: Exerted by one massive object on another massive object
- Electrostatic force: Exerted by one charged object on another charged object

Contact forces - Normal Force (electromagnetic)

The downward gravitational force causes the bowling ball to compress the surface of the table. A very small compression will result in a very large repulsive force

Contact forces - Friction (electromagnetic)

When you try to slide one object parallel to another the microscopic surface features will get compressed (Lennard-Jones) and will generate a frictional force to oppose any motion

Long Range Force -- $F_{g}=G m_{1} m_{2} / r^{2}-$ Gravitational

$$
\vec{F}_{G}=-G \frac{m M}{r^{2}} \hat{r}
$$

Note: Gravity is always attractive
$G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ "universal gravitational constant"
$M=$ mass of the object which creates the field
$m=$ mass of the object which experiences the field
$r=$ distance between m and M (pointing from M to m)

Long Range Force -- $F_{e}=k q_{1} q_{2} / r^{2}$-- Electromagnetic

$$
\vec{F}_{E}=k \frac{q Q}{r^{2}} \hat{r}
$$

Note: Opposites attract, like signs repel
$k=9.0 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$ "universal gravitational constant"
$Q=$ charge of the object which creates the field
$q=$ charge of the object which experiences the field
$r=$ distance between q and Q

Forces we feel - gravity of the earth

At the fundamental level, the electric force is 10^{36} times stronger than the gravitational force!

In our everyday lives, we are aware of the long range force of gravity. If you try to jump up, gravity will pull you back down.
We are aware of friction, especially when you are sliding something across a floor.
We do not really appreciate the normal force; we tend to think of ourselves pushing down on the chair, rather than the chair pushing up.
And we almost never experience the long range electric force - because it is SO strong, that electric charges always want to move to neutralize any local excess.

Force Diagram

- What are the forces on Alice?
- What are the forces on Bob?

Little $g \rightarrow g=G M_{E} / r_{E}^{2}$

We know that: $\quad \vec{F}_{G}=-G \frac{m M}{r^{2}} \hat{r}$
we also know that: $\quad \vec{F}=m \vec{a}$

Therefore, we can define the acceleration due to gravity at the surface of the earth as g :

$$
\begin{aligned}
& g=G M_{\oplus} / r_{\oplus}^{2} \\
& g=\left(6.672 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right) \frac{5.98 \times 10^{24} \mathrm{~kg}}{(6378 \mathrm{~km})^{2}} \\
& g=9.808 \mathrm{kgm} / \mathrm{s}^{2}
\end{aligned}
$$

Orbits - Big Gravity

It is only on the astronomical scale that we experience the $1 / \mathrm{r}^{2}$ dependence of gravity (on the surface of the earth, the acceleration due to gravity is always g).

Let's you what we know about the moon to determine the weight of the Earth.

$$
\begin{aligned}
& F=G \frac{m M}{r^{2}}=m \frac{v^{2}}{r} \Rightarrow M=\frac{v^{2} r}{G}=\frac{(2 \pi r / \text { Period })^{2} r}{G} \\
& M=\frac{(2 \pi \times 384403 \mathrm{~km} / 27.15 \mathrm{days})^{2} \times 384403 \mathrm{~km}}{6.672 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}} \\
& M_{\oplus}=5.974 \times 10^{24} \mathrm{~kg}
\end{aligned}
$$

Springs - Hooke's Law F=-kx

There are other forces that we have talked about in physics 7A, for example the force of an extended or compressed spring (given by Hooke’s Law).

Fundamentally, like friction, this is an electric force coming from the microscopic compressions or stretches of the inter-atomic spacing in the metallic lattice of the spring steel.

Drag Forces

In fluid dynamics, drag (sometimes called air resistance or fluid resistance) refers to forces that oppose the relative motion of an object through a fluid (a liquid or gas).

Drag forces act in a direction opposite to the oncoming flow velocity.

Unlike other resistive forces such as dry friction, which is nearly independent of velocity, drag forces depend on velocity.

Announcements

DL Sections

Winter 2010 7B-1 (A/B) D/L Assignments \& Job Responsibilities

1	WF	$10: 30-12: 50$	2317 EPS	Marcus Afshar
2	MW	$2: 10-4: 30$	2317 EPS	Aaron Hernley
3	MW	$4: 40-7: 00$	2317 EPS	Rylan Conway
4	MW	$7: 10-9: 30$	2317 EPS	Rylan Conway
5	MR	$8: 00-10: 20$	2317 EPS	Robert Lynch
6	TR	$10: 30-12: 50$	2317 EPS	Aaron Hernley
7	R	$2: 10-4: 30$	2317 EPS	Justin Dhooghe
7	M	$10: 30-12: 50$	2317 EPS	Justin Dhooghe
8	TR	$4: 40-7: 00$	2317 EPS	Britney Rutherford
9	TR	$7: 10-9: 30$	2317 EPS	Britney Rutherford
10	TF	$8: 00-10: 20$	2317 EPS	Emily Ricks
11	TF	$2: 10-4: 30$	2317 EPS	Justin Dhooghe

Vector Addition - Geometric Method

1. Place tail of w on tip of ν.

2. Connect tail of v to tip of w.

Vector Subtraction - Geometric Method

1. Place tail of w on

 tail of ν.2. Connect tip of w to tip of ν.

Addition \& Subtraction - Algebraic Method

$$
\begin{aligned}
\vec{v}+\vec{w} & =(5,3)+(-3,4) \\
& =(2,7)
\end{aligned}
$$

$$
\begin{aligned}
\vec{v}-\vec{w} & =(5,3)-(-3,4) \\
& =(8,-1)
\end{aligned}
$$

Vector Multiplication

- Multiplying a vector by a scalar:
- Multiplying a vector by another vector:
- Dot product (a.k.a. scalar product)
- Cross product (a.k.a. vector product)

Position

- Position Vector: Indicates location of an object with respect to an origin
- Important: Position vector depends on origin
- Displacement: Change in position vector

$$
\Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1}
$$

- Units: $[r]=m$

Velocity

- Velocity: Rate of change in position vector
- Includes both speed of motion (magnitude of \boldsymbol{v}) and direction of motion (direction of \boldsymbol{v})
- Two types of velocity:

$$
\vec{v}_{a v g}=\frac{\Delta r}{\Delta t} \quad \vec{v}_{i n s}=\frac{d \vec{r}}{d t}
$$

- Units: $[v]=m / s$

Acceleration

- Acceleration: Rate of change in velocity vector
- Two types of acceleration:

$$
\vec{a}_{a v g}=\frac{\Delta \vec{v}}{\Delta t} \quad \vec{a}_{i n s}=\frac{d \vec{v}}{d t}
$$

- Units: $[a]=m / s^{2}$

Momentum

- Momentum: Product of mass and velocity vector

$$
\vec{p}=m \vec{v}
$$

- Why is momentum important? Like energy, momentum is conserved.
- Impulse: Change in momentum vector

$$
\Delta \vec{p}=\vec{p}_{2}-\vec{p}_{1}
$$

- Units: $[p]=k g m / s$

Force

- Force: The cause or agent of acceleration resulting from the interaction of two objects
- A force always involves two objects:

$$
\vec{F}_{A \text { on } B}
$$

- Units: $[F]=k g m / s^{2}=N$

Friction and Normal Forces

- Friction force:
- Normal force:

Force Diagram

- What are the forces acting on the block?

