Review of Linear Transport Model and Exponential Change Model
Linear Transport Model

Starting with Ohm’s Law ($\Delta V = -IR$), which we had derived from the Energy Density Model, we can rewrite this to solve for current ($I = -(1/R)\Delta V$)

Using our definition of R from the previous slide [$R = \rho(L/A)$ or $(1/R) = k (A/L)$], We get

$$I = -k \left(\frac{A}{L} \right) \Delta V$$

If we let $\Delta V \rightarrow \Delta \phi$, then we get

$$I = -k \left(\frac{A}{L} \right) \Delta \phi$$

Divide through by area A,

$$j = -k \left(\frac{1}{L} \right) \Delta \phi$$

Let L become an infinitesimal

$$j = -kd\phi/dx$$

\rightarrow Transport Equation
Linear Transport

Which statement is not true about linear transport systems?

a) If you double the driving potential (voltage, temperature difference,...), the current doubles.

b) If you double the resistance, the current is halved.

c) In linear transport systems, the driving potential varies linearly with the spatial dimension.

d) For both fluid flow and electrical circuits, the continuity equation requires that the current density is independent of position.

e) All of the other statements are true.
Application of Linear Transport Model

• Fluid Flow
 – \(\phi = \text{Head} \) and \(j = \text{mass current density} \)

• Electric Current (Ohm’s Law)
 – \(\phi = \text{Voltage} \) and \(j = \text{charge current density} \)

• Heat Conduction
 – \(\phi = \text{Temperature} \) and \(j = \text{heat current density} \)

• Diffusion (Fick’s Law)
 – \(\phi = \text{Concentration} \) and \(j = \text{mass current density} \)
Fluid Flow and Transport

\[j = -kd\phi/dx \]

Which curve best describes the pressure in the above pipe as a function of position along the direction of laminar flow?

The correct answer is “c”
Heat Conduction – Fourier’s Law

Suppose you lived in a 10’ x 10’ x 10’ cube, and that the wall were made of insulation 1’ thick. How much more insulation would you have to buy if you decided to expand your house to 20’ x 20’ x 20’, but you did want your heating bill to go up?

a) Twice as much
b) Four times as much
c) Eight times as much
d) Sixteen times as much

Answer:

d) The area went up by a factor of four, therefore you will need four times as much thickness => sixteen times the total volume of insulation

\[j_Q = \frac{dQ/dt}{A} = -kdT/dx \]
$j = -D \frac{dC(x,t)}{dx}$

Where j is the particle flux and C in the concentration, and D is the diffusion constant.
Exponential Growth

• suppose rate of growth of a population is proportional to the size of the population:

\[\frac{d}{dt} N(t) = kN(t) \]

• \(N(t) \) = number in population as a function of time

• \(k \) = rate of growth (units: 1/time)
Exponential Growth

- want to solve equation for \(N(t) \)
- need function whose derivative w.r.t. time is that function multiplied by a constant:
 \[
 N(t) = Ce^{kt}
 \]
 \[
 \frac{d}{dt} N(t) = Cke^{kt} = kN(t)
 \]
- exactly what we want!
Exponential Growth

- The behavior of $N(t)$ is a rapidly increasing function of time:

$$N(t) = N_0 e^{kt}$$

- N_0 is the value of $N(t=0)$
Examples

- bacteria colony
- interest-bearing fund (APR versus int.)
- global human population?
- Google stock price
Exponential Decay

• suppose the rate of disappearance of members of a population is proportional to the number remaining

• this is true, for example, if any member has a random chance k of disappearing in a certain time interval

• the constant k here is the decay rate

• units of k: probability/time
Exponential decay

- equation is similar to growth case:

\[
\frac{d}{dt} N(t) = -k N(t)
\]

\[
N(t) = N_0 e^{-kt}
\]

- k > 0, but slope of N(t) is always negative!

- N never gets to zero!
Examples

- radioactive nuclei in atoms
- water leaking from a tank
- charging/discharging capacitor
- approach to terminal velocity
The Parallel Plate Capacitor

- $C = \kappa \varepsilon_0 \frac{A}{d}$
- $C = \frac{Q}{V}$

Electrical Capacitance is similar to the cross sectional area of a fluid reservoir or standpipe. Electrical charge corresponds to amount (volume) of the stored fluid. And voltage corresponds to the height of the fluid column.

$\varepsilon_0 = 8.85 \times 10^{-12} \left[\frac{\text{As}}{\text{Vm}} \right]$

$\kappa = 1$ for air or vacuum
Non-Linear Phenomenon – Dependence on source

- Note, for a realistic tank, the v_B depends on the height of the fluid in the tank. Thus the flow rate changes with time!
- More specifically we can say that the current depends upon the volume of fluid in the tank. \(\text{Current} = \Delta \text{Vol} / \Delta t \)
 \[I = \frac{d\text{Vol}}{dt} \]
 \[\frac{dV}{dt} = -aV \]

- What function is it’s own derivative?

\[
\begin{align*}
 v_A &= 0 \quad v_B = ? \\
 \frac{1}{2} \rho (v_B^2 - v_A^2) + \rho g (y_B - y_A) &= 0 \\
 v_B &= \sqrt{2gh}
\end{align*}
\]

\[
y(t) = y_0 e^{-at} \\
\frac{dy}{dt} = -ay_0 e^{-at} = -ay(t)
\]
Fluid Reservoir

\[h = h_0 e^{-\frac{t}{\tau}}, \]

\[\tau = \text{time const} \]

What will increase the time constant?

- Cross section area of the reservoir
- Resistance of the outlet
Exponential Change in Circuits: Capacitors - Charging

- we can write an equation, then, for the current:

\[
\mathcal{E} - R \frac{dQ}{dt} = \frac{Q}{C} \\
\mathcal{E} \frac{1}{R} - \frac{Q}{RC} = \frac{dQ}{dt}
\]

- solution:

\[
Q(t) = \mathcal{E}C(1 - e^{-t/RC})
\]

- Current \(I \) (A) = \(\frac{dQ}{dt} \)
- Voltage \(V_C \) (V) = \(\frac{Q}{C} \)

\[
V_R = IR \\
\mathcal{E} = 20V \\
Q = CV_C
\]

\[
I_{\text{charging}} = \frac{\mathcal{E}}{R} e^{\frac{-t}{RC}}, \quad RC = \text{time const}
\]

\[
V_{C:\text{charging}} = \mathcal{E} \left(1 - e^{\frac{-t}{RC}}\right), \quad RC = \text{time const}
\]
Charging a Capacitor

\[Q(t) = \varepsilon C \left(1 - e^{-t/RC}\right) \]

\[I(t) = \frac{dQ}{dt} = \frac{\varepsilon}{R} e^{-t/RC} \]
Exponential Change in Circuits: Capacitors - Discharging

- Now we use the charge stored up in the battery to light a bulb.
- Q: As the Capacitor discharges, what is the direction of the current? What happens after some time?
- Q: Initially what is the voltage in the capacitor V_0? What is the voltage in the bulb? What is the current in the circuit?
- Q: At the end, what is the voltage in the capacitor? What is the current in the circuit? What is the voltage of the resistor?

\[I_{\text{discharging}} = \frac{V_0}{R_B} e^{\frac{-t}{R_BC}}, \]

\[R_BC=\text{time const} \]

\[V_{C:\text{discharging}} = V_0 e^{\frac{-t}{RC}}, \]

\[RC=\text{time const} \]
Discharging a Capacitor

\[Q(t) = Q_0 e^{-t/RC} \]

\[I(t) = I_0 e^{-t/RC} \]
Capacitors in Series and Parallel

- Circuit Diagrams: Capacitors

- Capacitors in parallel (~2xA)

\[C_{\text{parallel}} = C_1 + C_2 + \ldots \]

- Capacitors in series (~2xd)

\[\frac{1}{C_{\text{series}}} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots \]

- Circuit Diagrams: Resistors

- Resistors in Series (~2xL)

\[R_{\text{series}} = R_1 + R_2 + \ldots \]

- Resistors in parallel (~2xA)

\[\frac{1}{R_{\text{parallel}}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots \]
Capacitors: Energy Stored in a capacitor

- Because resistors dissipate power, we wrote an equation for the power dissipated in a Resistor:

\[P = IV, \quad \text{using} \quad V = IR : \]

\[P = I^2R \quad \text{or} \quad P = \frac{V^2}{R} \]

Note: Since \(I \) is same for resistors in series, identical resistors in series will have the same power loss. Since \(V \) is the same for resistors in parallel, identical resistors in parallel will have the same power loss.

- Because capacitors are used to store charge and energy, we concentrate on the energy stored in a capacitor.

- We imagine the first and the last electrons to make the journey to the capacitor. What are their \(\Delta PE \)'s?

\[\Delta PE_{\text{first}} = q\Delta V , \Delta V = 20 \quad \Delta PE_{\text{last}} = q\Delta V , \Delta V = 0 \]

Thus on average for the whole charge: \(V_R = IR \)

\[PE = \frac{1}{2} QV, \quad \text{using} \quad Q = CV \]

\[PE = \frac{1}{2} CV^2 \]
Announcements
DL Sections

Winter 2010 7B-1 (A/B) D/L Assignments & Job Responsibilities

<table>
<thead>
<tr>
<th></th>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WF</td>
<td>10:30-12:50</td>
<td>2317 EPS</td>
<td>Marcus Afshar</td>
</tr>
<tr>
<td>2</td>
<td>MW</td>
<td>2:10-4:30</td>
<td>2317 EPS</td>
<td>Aaron Hernley</td>
</tr>
<tr>
<td>3</td>
<td>MW</td>
<td>4:40-7:00</td>
<td>2317 EPS</td>
<td>Rylan Conway</td>
</tr>
<tr>
<td>4</td>
<td>MW</td>
<td>7:10-9:30</td>
<td>2317 EPS</td>
<td>Rylan Conway</td>
</tr>
<tr>
<td>5</td>
<td>MR</td>
<td>8:00-10:20</td>
<td>2317 EPS</td>
<td>Robert Lynch</td>
</tr>
<tr>
<td>6</td>
<td>TR</td>
<td>10:30-12:50</td>
<td>2317 EPS</td>
<td>Aaron Hernley</td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td>2:10-4:30</td>
<td>2317 EPS</td>
<td>Justin Dhooghe</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>10:30-12:50</td>
<td>2317 EPS</td>
<td>Justin Dhooghe</td>
</tr>
<tr>
<td>8</td>
<td>TR</td>
<td>4:40-7:00</td>
<td>2317 EPS</td>
<td>Britney Rutherford</td>
</tr>
<tr>
<td>9</td>
<td>TR</td>
<td>7:10-9:30</td>
<td>2317 EPS</td>
<td>Britney Rutherford</td>
</tr>
<tr>
<td>10</td>
<td>TF</td>
<td>8:00-10:20</td>
<td>2317 EPS</td>
<td>Emily Ricks</td>
</tr>
<tr>
<td>11</td>
<td>TF</td>
<td>2:10-4:30</td>
<td>2317 EPS</td>
<td>Justin Dhooghe</td>
</tr>
</tbody>
</table>