Physics 7B-1 (A/B) Professor Cebra

Winter 2010 Lecture 10

Announcements

- Final exam will be next Wednesday 3:30-5:30
 - A Formula sheet will be provided
 - Closed-notes & closed-books
 - One single-sided 8 ½ X 11 Formula Sheet allowed
 - Bring a calculator
 - Bring your UCD ID (picture and student number)
- Practice problems Online
- Formula sheet Online
- Review Sessions Online

Final Exam Room	Last Name Begins With:
198 Young	N - Z
1100 Social Sciences	C - M
55 Roessler	A - B

Extended Objects - Center of Gravity

Physics 7B Lecture 10

Center of Gravity

Parabolic trajectory of the center of mass

The center of gravity (or Center of mass) is the point about which an object will rotate. For a body under goes both linear projectile motion and rotational motion, the location of the center of mass will behave as a free projectile, while the extended body rotates around the c.o.m.

10-Mar-2010

Physics 7B Lecture 10

Slide 4 of 20

Center of Gravity

Linear Impulse and Angular Impulse

Rotating Off Axis vs On Axis

When can a body rotate about an arbitrary pivot point and when must it rotate about its center of gravity?

First, consider a *free* body (define *free* to mean no contact forces – i.e. Normal forces or frictions). For an object to rotate, there must be Centripetal forces – since these are all *internal* forces, they must add to zero. → The body **must** rotate about its center of gravity.

For a body with an *external* fixed pivot point, normal forces at the pivot can provide an *external* centripetal force.

Rotating Off Axis

Oscillating Off Axis

Oscillatory Motion

Oscillation: Periodic displacement of an object from an equilibrium point

Periodic or Oscillatory Motion

• Equilibrium Position: The position at which all forces acting on an object sum to zero.

• Restoring Force : Force driving the object towards equilibrium point

• if restoring force is proportional to displacement => S.H.M.

• i.e. Hooke's Law
$$\rightarrow$$
 $F_{\text{restore}} = -kx$

• Period (*T*) : Interval of time for each repetition or cycle of the motion. Frequency (f = 1/T)

•Amplitude (A) : Maximum displacement from equilibrium point

• Phase (ϕ): Describes where in the cycle you are at time t = 0.

Examples of Oscillating Systems

10-Mar-2010

Physics 7B Lecture 10

Slide 10 of 20

Horizontal Mass-Spring

Vertical Mass on Spring System

10-Mar-2010

Physics 7B Lecture 10

Slide 12 of 20

How to solve this differential equation?

Differential Equat for Simple Harmo Oscillation	cion onic $\begin{cases} -kx(t) = m \frac{d^2 x}{dt} \\ \frac{d^2 x(t)}{dt^2} = -\frac{k}{m} x \end{cases}$	$\frac{x(t)}{t^2}$
Do we know any function whose	$\frac{d}{dt}\sin bt = +b\cos bt$ $\frac{d}{dt}\cos bt = -b\sin bt$	→ Let $x(t) = \sin(\sqrt{\frac{k}{m}}t)$
second <	dt d^2	Period:
derivative	$\frac{a}{1+2}\sin bt = -b^2\sin bt$	sine function repeats when
is itself	dt^2	$bt = 2\pi$
times a	d^2 and b^2 and b^4	therefore, $T = 2\pi \sqrt{\frac{m}{k}}$
constant?	$\frac{1}{dt^2}\cos bt = -b \cos bt$	$I=2\pi/b$

General Solution: $x(t) = A \sin (2\pi t/T + \phi)$ or $x(t) = A \cos (2\pi t/T + \phi)$

Simple Harmonic Motion

• Simple Harmonic Motion: Oscillatory motion in which the restoring force is proportional to displacement

Restoring Force = Constant X Displacement

• Displacement vs. Time:

$$x(t) = A\sin(\frac{2\pi}{T}t + \phi) + B$$

Practice With SHM Equation

10-Mar-2010

Physics 7B Lecture 10

Slide 15 of 20

Practice With SHM Equation

Pendulum System

10-Mar-2010

Physics 7B Lecture 10

Slide 17 of 20

Pendulum System

SHM - Recap

How is the frequency *f* of the oscillations related to the period T?

$$T = \frac{1}{f} = \frac{1}{1/sec} = sec$$

Energy in SHM

Consider mass on a spring:

$$W = \int F \bullet dl = \int kx dx = \frac{1}{2}kx^2$$

 $PE = (1/2) k x^{2}$ $KE = (1/2) mv^{2} v = dx/dt$ $x(t) = A \sin(2\pi t/T + \phi)$

$$PE = (1/2) kA^{2} \sin^{2} (2\pi t/T + \phi)$$
$$KE = (1/2) m [(2\pi/T)A\cos(2\pi t/T + \phi)]^{2}$$

Topics (1/4)

- Fluids
 - Continuity Eq.
 - Energy Density Eq.
 - Steady-state Flow
 - Flow Line
 - Pressure
- Electrical Circuits
 - Batteries
 - Resistors

- Capacitors
- Power
- Voltage
- Current
- Equivalent Circuits
- Linear Transport Model
 - Linear Transport Eq.
 - Current Density
 - Exponentials

Topics (2/4)

- Vectors
 - Addition
 - Subtraction
 - Cartesian Coords.
 - Polar Coords.
- Position Vector
- Velocity Vector
- Acceleration Vector

- Momentum Vector
 - Conservation of
 Momentum
- Force Vector
 - Friction
 - Normal
 - Gravity
 - Spring

Topics (3/4)

- Newton's Laws
 - Force & Acceleration
 - Force & Momentum
- Collisions
 - Momentum Cons.
 - Elastic vs. Inelastic
- Rotational Motion
 Ang. Velocity

- Ang. Acceleration
- Ang. Momentum
- Torque
- Right Hand Rule
- Conservation of Ang. Momentum
- Moment of Inertia
 - Rotational Kin. Energy

- Oscillations
 - Period
 - Amplitude
 - Mass-spring system
 - Pendulum
 - Simple Harmonic
 Motion
 - Phase Constant

Evaluations

Practice With SHM Equation

