Physics 7B-1 (A/B)

Professor Cebra

Winter 2010
Lecture 10

Announcements

- Final exam will be next Wednesday 3:30-5:30
- A Formula sheet will be provided
- Closed-notes \& closed-books
- One single-sided $81 / 2 \times 11$ Formula Sheet allowed
- Bring a calculator
- Bring your UCD ID (picture and student number)
- Practice problems - Online
- Formula sheet - Online
- Review Sessions - Online

Final Exam Room	Last Name Begins With:
198 Young	$\mathrm{N}-\mathrm{Z}$
1100 Social Sciences	$\mathrm{C}-\mathrm{M}$
55 Roessler	A - B

Extended Objects - Center of Gravity

Balance forces and Torques

$$
x_{c m}=x_{f}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

$$
x_{c m}=\frac{\Sigma m_{i} \vec{r}_{i}}{\sum m_{i}}
$$

$$
x_{c m}=\frac{1}{M} \int \rho(\vec{r}) \vec{r} d V
$$

Center of Gravity

Center of Gravity

Rotating Off Axis vs On Axis

When can a body rotate about an arbitrary pivot point and when must it rotate about its center of gravity?

First, consider a free body (define free to mean no contact forces - i.e. Normal forces or frictions). For an object to rotate, there must be Centripetal forces - since these are all internal forces, they must add to zero.
\rightarrow The body must rotate about its center of gravity.

For a body with an external fixed pivot point, normal forces at the pivot can provide an external centripetal force.

Demo: Center of Gravity

Rotating Off Axis

When rotating off axis, in a uniform gravitational field:

Is the motion circular? \rightarrow Yes
Is the angular velocity uniform? $\boldsymbol{\rightarrow}$ No Is there a net torque? \rightarrow Yes Is the angular acceleration uniform? \rightarrow No Is the torque uniform? \rightarrow No Is there a net linear motion? $\boldsymbol{\rightarrow}$ Yes Is there a net force? \rightarrow Yes

Is it uniform? \rightarrow No

Demo: Center of Gravity

Oscillating Off Axis

There is an oscillation between kinetic energy ($1 / 2 m v^{2}$ and $1 / 2 / \omega^{2}$) and potential energy ($m g h$).

Where it KE maximum? $\boldsymbol{\rightarrow}$ The bottom
Where is PE maximum? \rightarrow The top
What happens is $K E_{\max }<\triangle P E$? \rightarrow The motion is no longer circular! Instead, the body will oscillate.

Can we describe oscillatory motion?

Demo: Center of Gravity

Oscillatory Motion

Oscillation: Periodic displacement of an object from an equilibrium point

Periodic or Oscillatory Motion

- Equilibrium Position: The position at which all forces acting on an object sum to zero.
-Restoring Force : Force driving the object towards equilibrium point
- if restoring force is proportional to displacement => S.H.M.
- i.e. Hooke's Law $\rightarrow F_{\text {restore }}=-k x$
-Period (T) : Interval of time for each repetition or cycle of the motion. Frequency $(f=1 / T)$
-Amplitude (A) : Maximum displacement from equilibrium point
- Phase (ϕ) : Describes where in the cycle you are at time $t=0$.

Examples of Oscillating Systems

Vertical Mass-Spring

Pendulum

Horizontal Mass-Spring

Spring
Extended:

Spring in
Equilibrium:

$$
F_{g r a v i t y}=-m g
$$

$$
F_{n o r m a l}=m g
$$

Spring
Compressed:

$$
F_{\operatorname{spring}}=-k X
$$

$$
F_{N e t}=-k x
$$

Vertical Mass on Spring System

How to solve this differential equation?

Differential Equation
for Simple Harmonic
Oscillation $\left\{\begin{aligned}-k x(t) & =m \frac{d^{2} x(t)}{d t^{2}} \\ \frac{d^{2} x(t)}{d t^{2}} & =-\frac{k}{m} x(t)\end{aligned}\right.$
Do we know any function whose second derivative is itself times a constant?

$$
\begin{aligned}
& \frac{d}{d t} \sin b t=+b \cos b t \\
& \frac{d}{d t} \cos b t=-b \sin b t \\
& \frac{d^{2}}{d t^{2}} \sin b t=-b^{2} \sin b t \\
& \frac{d^{2}}{d t^{2}} \cos b t=-b^{2} \cos b t
\end{aligned}
$$

\rightarrow Let $x(t)=\sin \left(\sqrt{\frac{k}{m}} t\right)$

$$
\begin{aligned}
& \begin{array}{l}
\text { Period: } \\
\text { sine function repeats when } \\
\quad b t=2 \pi \\
\text { therefore, } \\
T=2 \pi / b
\end{array} \\
& \hline T=2 \pi \sqrt{m / k}
\end{aligned}
$$

General Solution: $x(t)=A \sin (2 \pi t / T+\phi) \quad$ or $\quad x(t)=A \cos (2 \pi t / T+\phi)$

Simple Harmonic Motion

- Simple Harmonic Motion: Oscillatory motion in which the restoring force is proportional to displacement

Restoring Force $=$ Constant \mathbf{X} Displacement

- Displacement vs. Time:

$$
x(t)=A \sin \left(\frac{2 \pi}{T} t+\phi\right)+B
$$

Practice With SHM Equation

$\sin (t), \sin (0.5 t)$	$\sin (t), \sin (t+0.5 \pi)$	$\sin (t), \sin (t-0.5 \pi)$

Practice With SHM Equation

$\sin (t), \sin (2 t), \sin (2 t+0.5 \pi) \quad \sin (t), \sin (2 t), \sin (2 t-0.5 \pi)$

$\sin (t), \sin (0.5 t), \sin (0.5 t+0.5 \pi) \quad \sin (t), \sin (0.5 t), \sin (0.5 t-0.5 \pi)$

Pendulum System

$F_{\text {tension } X}=F_{\text {tension }} \sin \theta$ $F_{\text {tension } Y}=F_{\text {tension }} \cos \theta$

$F_{\text {gravityT }}=F_{\text {gravity }} \sin \theta=m g \sin \theta$ $F_{g r a v i t y R}=F_{\text {gravity }} \cos \theta=m g \cos \theta$

Pendulum System

Really a rotational problem...

$$
\begin{aligned}
& \tau=F_{\tan } L=m g \sin \theta L \\
& \tau=I \alpha=m R^{2} \alpha \\
& -m g L \sin \theta=m L^{2} \mathrm{~d}^{2} \theta / \mathrm{dt}^{2}
\end{aligned}
$$

For small $\theta, \boldsymbol{\operatorname { s i n }} \theta=\theta$ (good to about 10 degrees)

$$
\begin{gathered}
-m g L \theta(\mathrm{t})=m L^{2} \mathrm{~d}^{2} \theta / \mathrm{dt}^{2} \\
-(g / L) \theta(\mathrm{t})=\mathrm{d}^{2} \theta / \mathrm{dt}^{2} \\
T=2 \pi \sqrt{L / g}
\end{gathered}
$$

SHM - Recap

How is the frequency f
of the oscillations related
to the period T?
Period: $\quad \mathrm{T}=1 / f=1 / 1 / \sec =\sec$

Energy in SHM

Consider mass on a spring:

$$
W=\int F \bullet d l=\int k x d x=\frac{1}{2} k x^{2}
$$

$$
\begin{aligned}
& P E=(1 / 2) k x^{2} \\
& K E=(1 / 2) m v^{2} v=\mathrm{d} x / \mathrm{d} t \quad x(t) \\
& P E=(1 / 2) k A^{2} \sin ^{2}(2 \pi t / T+\phi) \\
& K E=(1 / 2) m[(2 \pi / T) A \cos (2 \pi t / T+\phi)]^{2}
\end{aligned}
$$

$$
x(t)=A \sin (2 \pi t / T+\phi)
$$

remember... $(2 \pi / T)=\operatorname{sqrt}(k / m) \Rightarrow(2 \pi / T)^{2}=k / m$

$$
\begin{aligned}
& \Rightarrow K E=(1 / 2) A^{2} k \cos ^{2}(2 \pi t / T+\phi) \\
& E_{\text {total }}=P E+K E=(1 / 2) k A^{2}\left[\sin ^{2}(2 \pi t / T+\phi)+\cos ^{2}(2 \pi t / T+\phi)\right]
\end{aligned}
$$

\rightarrow Energy is conserved with time!
And Energy is proportional to A^{2}

Topics (1/4)

- Fluids
- Continuity Eq.
- Energy Density Eq.
- Steady-state Flow
- Flow Line
- Pressure
- Electrical Circuits
- Batteries
- Resistors
- Capacitors
- Power
- Voltage
- Current
- Equivalent Circuits
- Linear Transport Model
- Linear Transport Eq.
- Current Density
- Exponentials

Topics (2/4)

- Vectors
- Addition
- Subtraction
- Cartesian Coords.
- Polar Coords.
- Position Vector
- Velocity Vector
- Acceleration Vector
- Momentum Vector
- Conservation of Momentum
- Force Vector
- Friction
- Normal
- Gravity
- Spring

Topics (3/4)

- Newton's Laws
- Force \& Acceleration
- Force \& Momentum
- Collisions
- Momentum Cons.
- Elastic vs. Inelastic
- Rotational Motion
- Ang. Velocity
- Ang. Acceleration
- Ang. Momentum
- Torque
- Right Hand Rule
- Conservation of Ang. Momentum
- Moment of Inertia
- Rotational Kin. Energy

Topics (4/4)

- Oscillations
- Period
- Amplitude
- Mass-spring system
- Pendulum
- Simple Harmonic Motion
- Phase Constant

Evaluations

Practice With SHM Equation

$$
\begin{aligned}
& =-=-\sin (t) \\
& =-=-=\sin \left(t-\frac{\pi}{2}\right) \\
& \sin \left(\frac{1}{2} t-\frac{\pi}{2}\right) \\
& =-=-\sin \left(\frac{1}{2} t\right)
\end{aligned}
$$

