
Lab 16: Introduction to MC68000 and the Mas Assembler

Revised 5/16/00

Introduction

In this lab, you will work with the MAS Assembler to learn about computer operation
and how to work with assembly language programs. You should familiarize yourself
with the Macintosh Assembly System manual, particularly Ch. 12, and bring this manual
to lab. You should also bring the excerpts from the Programmer's Reference Manual by
Motorola.

1. Tutorial

The MAS Assembler has a tutorial and extensive help. You should spend some time
working through the tutorial (Ch. 2,3, and 4). The amount of time depends on how
familiar you are with the Macintosh user interface and computer programming. The MAS
“help” facility has a full list of assembler commands and the built in MAS subroutines.
You may want to look at this, but the information is also in the manuals. Be sure to learn
how to use the debugger since this allows you to observe all aspects of the computer in
operation.

2. Counting Program

In the tutorial, you looked at a program, 'Countdown.a,' that counted down from a
number that you entered:

; Fasten your seat belts. The countdown begins. Get ready
; to blast off into the friendly world of MAS.

xref strout, decin, decout, newline, stop

start: lea msg1,a0
move.w #34,d0
jsr strout
jsr decin ; enter the count

loop: jsr decout ; the countdown loop
jsr newline
dbra d0,loop
lea msg2,a0
move.w #17,d0
jsr strout
jsr newline
jsr stop

data
msg1: dc.b 'Enter the time for the countdown: '
msg2: dc.b 'Welcome to MAS!!!'

even

end

David Pellett
Lab 17 in Winter 2003

Run this program using the debugger and observe the contents of registers A0 and D0 as
you single-step through the instructions. Also observe the branch operation in action.
Look at the memory locations containing msg1 and msg2. Do you recognize how the
ASCII characters are stored as numbers? Do you see how register A0 keeps track of the
location of the beginning of the message strings?

See if you can modify this program so it will count up to the number that you entered
instead of down. Thereare several ways to do this. Some of the commands that one can
use are: add, compare, and branch. The specific instructions that a previous TA used
were: addi, cmp, and bpl, respectively. In your lab notebook, include your program with
full comments. Comment every line, yes every line, and make special note of the lines
that you added or removed.

3. Program to Read and Store ASCII Characters

Examine the operation of the program to read and store 20 ASCII characters in the
attached note (and repeated below). Use the debugger to observe how indirect addressing
works to store characters in successive memory locations “automatically” (i.e., in the
move.b instruction in the loop).

; Program to read and store 20 ASCII characters

 xref getchar, stop ;indicates that these are external

start: lea msg,a1 ; put address of msg in a1
 move.w nchar,d1 ; number of bytes to read
 jmp enter ; enter loop at end
loop: jsr getchar ; getchar puts the character in d0
 move.b d0,(a1)+ ; move the character to memory
enter: dbra d1,loop ; subtract 1 from d1
 ; and see if done
 jsr stop ; goes here when d1 equals -1
 data
msg: ds.b 100 ; set aside 100 bytes of storage
nchar: dc.w 20 ; number of characters to read

 end

How could you modify this program to change any upper case alphabetic character to
lower case before storing it? To begin with, assume that all the charecters are alphabetic
so you don’t have to check that this is the case. Hint: look at the bit pattern of an upper
case character compared with its lower-case equivalent.

As a further challenge if time permits, try to figure out how you could test that you were
dealing with an upper case alphabetic character so the input could be any ASCII
character. There is an example of a test for numerical characters in the final program in
the attached note (you could use appropriately modified code “in-line” rather than
worrying about the subroutine used in the last example).

