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1 Introduction

1.1 Data busses

Data busses are ubiquitous in systems which must communicate digital data. Examples are the
RS-232 bus, originated for teletype interconnection, the GPIB bus for interconnecting digital mea-
surement instruments and the PCI bus for connecting digital devices to computers. Additional
busses allow internal parts of a computer to communicate with each other.

The data bus is named after the regular commuter bus on the streets. The commuter bus will
transport many people at once and the same vehicle and roads are used for many origins and
destinations. Similarly, a data bus transports many bits of data simultaneously from one digital
circuit to another. To be considered a bus, several circuits must be able to send data along the same
wires (only one at a time, though), and several circuits must be able to receive data from those
wires. The data bus idea is also rather analogous to a group of people talking in a room. Only one
person at a time should talk, her voice (the data) fills the entire room (the bus), and many people at
a time can listen. For devices to communicate on a data bus, they must be able to ”shut up” and let
another device send data over the bus. Thus a bus will generally have three components:

1. data lines to carry the data

2. address lines to indicate the source or destination of the data

3. control lines to organize the transmission of the data so only one device can send data at a
time and the appropriate devices receive it.

The bus may contain additional control lines and some functions may be combined on a single
line. The bus may also provide power supply voltages.

1.2 Tri-state Outputs

Typical logic gates such as the 74LS00 quad NAND are not very polite listeners; they are always
outputting either a 1 or a 0. We need to give them a third state, a “shut up” state, if you will,
to allow others to have the floor. This third state is called the high impedance (high Z) state and
outputs with this capability are called tri-state outputs. They are often designated on a circuit
diagram by the symbol 5. The 74LS241 chip is an octal tristate buffer partitioned in two groups
of 4 lines each, as shown in Fig. 1. It allows normal logic outputs to access a shared line on a
data bus. The 1G and 2G inputs determine whether or not the corresponding group is in the high
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Z state. Each buffer element is a non-inverting Schmitt trigger with TTL logic levels. They have
high fan-out capability and can drive terminated transmission lines down to 133 Ω impedance. In
the first (short) part of this experiment, you will look at the output current of the 74LS241 tristate
buffer in each of its three states, 0, 1, and high Z.

Figure 1: Specifications for 74LS241 buffers and line drivers from Texas Instruments data sheets.

1.3 Memory

Recall that any sequential logic circuit must have some sort of memory. A circuit designed to do
nothing but store and recall data is called a memory circuit. In this experiment, you will use 4 bits
each of 16 8-bit data registers (“bytes”) contained in the 6264 memory chip, an 8192-word x 8-bit
High Speed CMOS Static RAM (SRAM) chip. Although RAM stands for “read only memory,”
it is understood to mean “read-and-write” memory, as opposed to ROM, or read-only memory.
Both types of memory have random access (as opposed to serial or sequential access, such as with
magnetic tape or a disk drive). An SRAM circuit contains very many basic memory cells, each
equivalent to a D flip-flop. In CMOS technology, each cell is made from 6 MOSFETs, 4 as two
cross-coupled inverters (the bistable memory element) and one each to control access to the read
and write lines.

As you might imagine, even 16 4-bit data registers would take very many pins on a chip if they
were all available at once. So, a memory chip allows you to access only one register at a time.
Each is assigned a number, called its address. To select a particular data register, its address is
applied to the address inputs of the memory chip. Then, data can be written to or read from that
register. Once a given address on a memory chip has been selected, either read or write operations
can be done on it using the same data pins.
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The basic organization of the 8192-byte SRAM is shown in Fig. 2. The memory cells are arranged
in a 256 × 256 array. Groups of 8 cells (a data “byte”) are selected using the 12 address lines
A0-A11 (12 address lines are needed to access 8192 = 212 bytes). The specific cells for a given
address are accessed for reading or writing by a system of multiplexers and address decoders and
are connected to the lines I/O1-I/O8 under the control of the lines CS1, CS2, WE and OE. It
may not be obvious how the same pins can be used as both input (writing) and output (reading),
but this can be done with suitable use of tristate outputs, as shown in the truth table shown in
Fig. 3. Question: if the memory array is 256 x 256 as shown, are all array elements occupied by
addressible memory cells?

Figure 2: Pinouts and block diagram of 8192-word x 8-bit High Speed CMOS Static RAM chip
from Hitachi HM6264A Series data sheets.

The symbol WE stands for “write enable,” CS for “chip select” and OE for “output enable.” CS
controls selection of the chip for reading or writing. CS1 must be low and CS2 high if a byte of
data is to written or read. WE must be low for writing and high for reading. OE provides an
independent control of the chip tri-state output. It must be low to read data from the chip onto the
data bus. Data may be written to the chip with OE either high or low.

1.3.1 Read Cycle

Fig. 4 shows the timing diagram for reading data from the memory chip. A key to the symbols
used in the timing waveforms is given in Fig. 5. Note: in this experiment, we will wire OE low,
CS2 high and use CS1 ≡ CS and WE to control access to the chip for reading and writing (Write
cycle 2 in the truth table). In this way, we can ignore OE and CS2 in the timing diagrams.

To read from the chip, WE must be high and the address must be established on the address lines.
Then setting CS1 ≡ CS low will cause output data to be asserted on the I/O lines. After the data
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Figure 3: Truth table for control lines for 8192-word x 8-bit High Speed CMOS Static RAM chip
from Hitachi HM6264A Series data sheets. Note: in this experiment, we will wire OE low, CS2
high and use CS1 ≡ CS and WE to control access to the chip for reading and writing (Write cycle
2 in the truth table). In this way, we can ignore OE and CS2 in the timing diagrams. We will be
limited to Row 1 (High Z), Row 4 (Read cycle) and Row 6 (Write cycle 2).

are entered in the receiving device(s), CS is set high which returns the I/O lines to their high Z
state and ends the cycle, after which a new address may be asserted on the address lines.

1.3.2 Write Cycle

The timing of waveforms for the write cycle is given in Fig. 6. Recall that OE is wired low, CS2 is
wired high and that we are using CS1 ≡ CS and WE to control access to the chip for reading and
writing (Write cycle 2). The desired write address must first be established on the address lines.
Then, as specified in Note 1 of Fig. 6, a write occurs during the overlap of a low CS1 and a low
WE. The write cycle ends at the earliest transition of either CS1 or WE going high. Note that
write mode is “dangerous” in that data will be written to memory in write mode (WE = CS1 =
low), even if it is not the intended data or the intended address. One must end the cycle before
allowing the address or input data to change.

4



Figure 4: Read cycle timing waveforms for 8192-word x 8-bit High Speed CMOS Static RAM
chip from Hitachi HM6264A Series data sheets. Details of the timing specifications are given in
the complete Hitachi data sheets posted on the Physics 116 web site. In this experiment, we will
wire OE low, CS2 high and use CS1 ≡ CS and WE to control access to the chip.

Figure 5: Explanation of symbols used in the timing waveforms (from MOSEL MS6264 data
sheets).
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Figure 6: Write cycle timing waveforms for 8192-word x 8-bit High Speed CMOS Static RAM
chip from Hitachi HM6264A Series data sheets. Details of the timing specifications are given in
the complete Hitachi data sheets posted on the Physics 116 web site. In this experiment, we will
wire OE low, CS2 high and use CS1 ≡ CS and WE to control access to the chip for reading and
writing (Write cycle 2).
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2 Experiment

In this lab, you will build a fairly large circuit that will allow the user to write data to any address
in a RAM and read that data out sequentially or using a DIP switch to specify the address. Once
again, this is a large circuit. Give some thought to how you want to lay out the components on
the breadboard and be sure to use good circuit-building technique. That is, build and debug each
section of the circuit separately and then connect them all together.

2.1 Tri-state output current

First, we will measure the output current of a tristate device, one buffer of a 74LS241 circuit. Use
the circuit in Fig. 7 to do this. For your lab report, make a table of the current readings for all
combinations of switch settings. Also, answer these two questions: What property of a tristate
output makes it useful for a bus? Which switch causes zero output current (the high Z state)?

Figure 7: Circuit to measure tristate buffer output current. Use a 1 kΩ resistor.

2.2 The data bus

The goal of this section is to be able to write data to some addresses in RAM and to read it back.
The block diagram in Fig. 8 shows in general how to do this. For the RAM chip, recall that we will
use only the 4 low order address lines and 4 of the 8 I/O lines. Also, we will wire OE low, CS2
high and use CS1 ≡ CS and WE to control access to the chip for reading and writing (Write cycle
2). Wire the unused address inputs to ground. Connect the 4 unused I/O lines to 10 kΩ resistors
connected to ground. This way they will not “float” on write cycles and have reasonable loads on
read cycles.

Use logic switches on the breadboard for the address and data inputs. In some cases the switch
data was enabled too soon relative to WE by the ’LS241 buffer during the write cycle. To remedy
this, two inverters were inserted in the path between the WE input of the RAM chip and the G
input of the ’LS241 in Fig. 8. The “display” in the diagram is just an array of 4 LED’s.

First (and for your lab report), draw a detailed circuit diagram for this circuit and write a description
of how you will test it by writing data to several memory addresses and then by reading it back.
Then, build the circuit and test it. In your lab report, note whether your circuit passed all your tests
or whether any of the tests had to be altered.
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Figure 8: Block diagram for the circuit to read and write to RAM.

2.3 The address bus

Next, you will alter the circuit so that you can either give the address by hand or allow a counter to
sequence through all of the 16 low order memory addresses. The block diagram for this modified
circuit is shown in Fig. 9. As before, draw a detailed circuit diagram before you build the circuit.
Write a test procedure which includes writing several 4-bit words to RAM and then reading all 16
using the counter. Then build and test the circuit, noting any difficulties during testing.

Figure 9: Block diagram for the complete memory circuit.

2.4 Digital waveform synthesizer

Now use your memory circuit to generate a voltage pattern. Add the DAC08 to the data bus as
shown in Fig. 10. (That is, connect the 4 bit data bus to the DAC’s 4 more significant input bits
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and the other input bits to ground.) The DAC08 circuit from Lab 15 is shown in Fig. 11. Using
the procedure you wrote above, enter 16 numbers into memory then read them out sequentially
into the DAC at a clock speed of about 10 kHz. Look at the output on the oscilloscope. If you are
ambitious, try hooking this up to a speaker. Try to enter numbers that make the output look like a
sine wave, a triangle wave, and any other shape you’d like to see. If you used the speaker, try to
get a particular sound (a violin, trumpet, human voice, etc.). For your lab report, describe what is
happening in your own words and include your favorite wave shape and the 16 numbers that made
it.

Figure 10: Block diagram for the digital waveform synthesizer.

Figure 11: DAC08 wiring diagram from Lab 15.
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