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Abstract

Our current knowledge of the quark—gluon ptesin thermodynamical equilibrium is reviewed.
The phase diagram of strongly interacting matter is discussed, with emphasis on the quark—hadron
phase transition and the colour-superconducting phases of quark matter. Lattice quantum
chromodynamics results on the order of the phiasesition, the thermdynamical functions, the
heavy quark free energy, mesonic spectral functions, and recent results for nonzero quark chemical
potential are presented. Analytic attempts to compute the thermodynamical properties of strongly
interacting matter, such as perturbation theory, quasiparticle models, “hard-thermal-loop”-resummed
perturbation theory, the Polyakov-loop model, as well as linear sigma models are discussed. Finally,
colour-superconducting quark matter is considered in the limit of weak coupling. The gap equation
and the excitation spectrum are derived. The solution of the gap equation, gap parameters in various
colour-superconducting phases, and critical terapees for the transition to normal-conducting
guark matter are presented. A summary of gluon and photon properties in colour superconductors is
given.
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1. Introduction and summary

Quantum chromodynamics (QCD) is the fundamental theory of the strong interaction.
QCD is an asymptotically free theont][ i.e., interactions between quarks and gluons
become weaker as the mutual distance deeseasas the exchanged momentum increases.
Consequently, at very large temperatures and/or densities, the interactions which confine
quarks and gluons inside hadrons should become sufficiently weak to release2ihem [
The phase where quarks and gluons are deconfined is termepliginke—gluon plasma
(QGP). Lattice QCD calculations have estaindid the existence of such a phase of strongly
interacting matter at temperatures larger thatb0 MeV and zero net-baryon density.
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Depending on the number of quark flavours and the masses of the quarks, the transition
between ordinary hadronic matter and @&P could be a thermodynamic phase transition
of first order, of second order, or simply a crossover transition.

The QGP was certainly present in the evimn of the early universe. The early universe
was very hot, but close to net-baryon free. In the opposite limit of small temperature
and large baryon density, the QGP may exist even nowadays in the interior of compact
stellar objects such as neutron stars. The main effort in present-day nuclear physics is
to create the QGP under controlled conditionghie laboratory via collisions of heavy
nuclei at ultrarelativistic energie8][ The temperatures and net-baryon densities reached
in nuclear collisions depend on the bombarding energy. They interpolate between the
extreme onditions of the early universe on one side and compact stellar objects on the
other.

If at all, the QGP is only transiently createda nuclear collision; free quarks and gluons
will not be released. Therefore, deciding whether a QGP was formed or not is not easy.
Detectors in the laboratory can only measure hadrons, leptons, or photons. The bulk of the
paticles emerging from a nuclear collision are hadrons with transverse momenta of order
~1 GeV. They carry information about the finahge of the collision after hadronization
of the QGP. The fornt#on of the latter can only indirectly influence this final stage, for
instance by modifying the collective dynamics of the system through a softening of the
equation of state in the hadronization transitidh Mery few hadrons are emitted with
transverse momentd the order of several GeV. They arise from the fragmentation of
jets and may carry information also about trelier stages of the collision. Of particular
interest is the situation where the jet has to traverse hot and dense matter possibly formed
in the collision and is quenched by multiple rescattering in the medi]mFrom this
“jet-quenching” process one may indirectly learn about the properties of the hot and dense
environment. Finally, leptons and photons only interact electromagnetically. Once formed
in the early stage of the collision, they leave the system unimpededly and carry information
about this stage to the detect@}.[The difficuty is to disentangle the thermal radiation
from a hot, equilibrated QGP F] from the initial production of leptons and photons in
the very first, highly energetic partonic collisions and from the thermal radiation of hot
hadronic matterg].

In order to decide whether a QGP was formed, one has to have detailed knowledge
about its properties. Otherwise it is impossible to find an unambiguous signature for
QGP formation in nuclear collisions. In this review, | present an overview of the
thernpdynamical propertieof the QGP. Section 2contains a detailed discussion of
the phase diagram of strongly interacting matter. The present status of knowledge is
shown sckematically inFig. 1L Depending on the temperatur€, and thequark chemical
potertial, u, srongly interacting matter may occur in three distinct phases: the hadronic
phase, the QGP, and colour-superconducting quark matter. The ground state of (infinite)
nuclear méer is at(T, ©)o = (0, 308 MeV. There is a line of first-order phase transitions
emerging from this point and terminating in a critical endpoint at a temperature of order
~10MeV. At this point, the transition is of second order. This phase transition is the nuclear
liquid—gas transitionq]. To the left of the line nuclear matter is in the gaseous phase, and
tothe rightin the liquid phase. Above the critical endpoint, there is no distinction between
these two phases.
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Fig. 1. The phase diagram of stropghteracting matter (schematic).

For tempertaures below~160 MeV and quark chemical potentials belev@50 MeV
(corresponding to net-baryon densities whigk a few times the ground state density of
nuclear matter), strongly interacting matter is in the hadronic phase. Quite similar to the
liquid—gas transition, there is a line of first-order phase transitions which separates the
hadronic phase from the QGP and terminates critical endpoint where the transition
is of second order. This endpoint is approximately(at u) ~ (160, 240) MeV, cf.
Section 3.6 For smaller quark chemical potentials (smaller net-baryon densities), the
transition becomes crossover, and there is no real distinction between hadronic matter
and the QGP. As will be discussed in detail $®ction 2 the postion of the critical
endpoint depends on the value of the quark masses. Finally, at large quark chemical
potential (large baryon density) and small temperature, quark matter becomes a colour
superconductor. There can be a multitude ofoco-superconductinghases, depending
on the symmetries of the order parameter for condensation of quark Cooper pairs.
The discussion inSection 2is qualitative and is meant to give an overview of the
phase structure of strongly interacting matter at nonzero temperature and quark chemical
potential. The discussion in the following sections is both more quantitative as well as
technical and focusses on the properties of the QGP and colour-superconducting quark
meétter.

The early universe evolved close to the temperature axis in the phase diagram of strongly
interacting matter. Matter in the core of compact stellar objects, like neutron stars, is
close to the quark chemical potential axis, at valueg affound 400-500 MeV. Nuclear
collisions at bombarding energies aroufid, ~ 1 AGeV explore a region of temperatures
and quark chemical potentials aroufid 1) ~ (70, 250) MeV. Collisions at current RHIC
energies of,/s = 200 AGeV are expected to excite matter in a region around and above
(T, ) ~ (170,10) MeV. Collision energies in between these two extremes cover the
intermediate region and, in particular, may probe the critical endpoint.
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Section 3presents a review of lattice QCD. After a brief introduction to the basic
principles, results on the order of theCQ phase transition, the equation of state of
strongly interacting matter, the heavy quark free energy, and mesonic spectral functions
are collected. For technical reasons, ma#iide QCD calculations have been done at zero
quark chemical potential. An extension to nonzero valueg ¢ difficult and has been
started only fairly recently. First results will also be discussed.

Lattice QCD is in principle an exact method to solve QCD. If one had sufficiently large
computer power, one could not only decrease the lattice spacing and increase the size of
the g/stem to come sufficiently close to the continuum and thermodynamic limit, one could
also sample a sufficiently large number of configurations to make the statistical errors
arbitrarily small. However, one still has to erpret the results in physical terms. In this
respect, analytic approaches to solve QCD have a certain advantage over lattice QCD. In
an analytic approach, one has complete control over the physical assumptions entering the
calculation.Section 4gives an overview of what is known about the QGP from analytic
calculations.

The most simple approach from a conceptual (albeit not technical) point of view is to
determine the thermodynamical properties of the QGP by a perturbative computation of the
QCD partition function in terms of a powerrses in the strong coupling constagt, This
can be done up to terms of ord®(g® In g). At orderO(g®), theperturbative series breaks
down [10, 11], and the remaining nonperturbative contribution has to be determined, for
instance, from a lattice QCD calculation. Those terms of the perturbative series, which are
analytically computable, are rapidly decrieasin magritude at high temperatures where
the strong coupling constant is smal 1. This gives rise to the hope that only the first
few terms of the perturbative series are actually necessary to obtain physically reasonable
values for the QCD partition function. For temperatures of ord@50 MeV, however,

g ~ 1 and the pedurbative series is obviously not weergent. Therefore, one has tried

other ways to compute the piilon function, either by expading around a nonperturbative
ground state or by resumming certain classes of diagrams to improve the convergence
properties of the perturbative series. In both approaches, quarks and gluons are considered
as quasiparticles with a dispersion relation which is modified as compared to the one in the
vacuum. Still another approach is to construct an effective theory for QCD which can be
sdved exactly or at least within a many-body approximation scheme. All these approaches
will be reviewed inSection 4

Section 5contains an introduction to colour superconductivity at large quark chemical
potentials. In this case, analytic calcutats are well under control, because corrections
can be systematically computed in terms of powersgofAfter a derivation of the
gap equation for the colour-superconducting gap function, the excitation spectrum in a
colour superconductor is presented. The solution of the gap equation is discussed and
the magnitude of the gap parameter is detered. As in ordinary superconductors, quark
Cooper pairs break up, if the thermal motion bexas too large. The critical temperature
for the transition between the normal- and shperconducting phase is computed. Finally,
the properties of gluons and photons in colour superconductors are disciSesethn 6
concludes this review with a brief summary of the material and an outlook towards future
directions of research in this area.
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A lot of the material in this review cansal be found in other places. The standard
review for properties of hot and dense, strongly interacting matter is the seminal work
of Gross et al. 2. The contents as well as more reteevelopments have found their
way into textbooks 10, 13]. For early reviews focussing on the properties of the QGP,
see [L4]. An introduction to lattice QCD adh recent results can be found idq. The
present status of lattice QCD is also reviewed 1] Resummation techniques which
attempt to compute the QCD patrtition function analytically are discussed in great detalil
in [17].

The present review tries to give a balanced overview of all subfields concerned with
the equilibrium properties of the QGP. Therefore, the presentation is not as detailed as in
a more pecialized review. On the other hand, | tried to explain the basics in somewhat
greater detail than usually found in the tiure. My hope is that in this way, this
review will become useful for early-stage researchers working in both theory as well as
experiment, and for all researchers who would like to get an overview of the theoretical
activity related to equilibrium properties of the QGP.

The only somewhat more specialized and thus more technical part is the section on
colour superconductivity. This field has seefot of activity only fairly recently, but there
are already a couple of excellent reviews][ These, however, focus mainly on the basics
of the phenomenon of colour superconduityiand its phenomenological implications.

In contrast,Section 5contains a very detailed discussion of how to compute properties
of the quasiparticle excitations in a colaauperconductor in the weak-coupling limit. By
clarifying some of the technical details, | hope to remove the obstacles that may prevent
other researchers to enter this rapidly ewodvand rather exciting new field of strongly
interacting matter physics.

Due to space restrictions this review is forced to omit many things that could (and
possibly, should) also have been said about strongly interacting matter at high temperature
and/or density. Fortunately, most of these have already been covered in review articles.
These are, for instance, nonequilibrium properties of the QTP d¢r the physics of
instantons in nonAbelian gauge theoried)] Another important topic which is not
mentioned in this work, but for which excellent reviews ext][ are the experimental
signatures for the QGP. Recent developmentshe field of colour superconductivity
are mainly focussed on deriving effective theories for quarks around the Fermi surface.
These greatly simplify calculations and alldo systemécally study effects of nonzero
quark masse for cetails, see4?]. Finally, the list of references is, necessarily, far from
complete. | would like to apologize to all authors whose work should have been (but was
not) mentioned.

The units areh = ¢ = kg = 1. | work in Euclidean space-time at nonzero
temperatureT, i.e., space-time integrals ay@( = Ol/T dr fv d®x, whereV is the
3-volume of the system. Energy-momentum integrals fare= T [ Bk/2m)% n
labels the Matsbara frequencie@ﬁ = 2nz T for bosons anduﬁ, = (2n + D= T for

fermions,n = 0, £1, &2, .. .. | denote 4-vectors with capital letters, but unless mentioned
otherwise, retain a notation familiar from Minkowski spacé* = (t, x), wheret = i,
andK# = (kg, k), wherekg = iwp, with the metric tensog”’ = diag(+, —, —, —).

3-vectorsk have lengttk = |k| and directiork = k/k.
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2. The QCD phase diagram
2.1. Basics

In order to understand the phase structure of strongly interacting matter, one has to know
its equation of state. In the grand canonical ensemble, the equation of state is determined
by the grand patrtition functiornlo, 13]

Z(T, V., p) = /D&DWDAQ epr L+ /u\/)] : 1)
X

whereu is the quark chemical potential assoeiwith (net) quark number conservation.
The QCD Lagrangian is given by

L= lﬁ(iy”Du —m)y — %Féw FEV + Egauge (2)

For N¢ colours andN;+ flavours, v is the AN:N¢-dimensional spinor of quark fields,

¥ = ¥ Ty is the Dirac conjugate spinor/* are the Dirac matrices amdis the quark mass
matrix. The covariant derivative is definedBg = 9,, —ig AﬁTa, with the strong coupling
constanty, thegluon fieldsA%, and the geeratorsT, of the local[SU(N¢)c] symmetry.
(Throughout this paper, | indicate local, i.e., gauged, symmetries by square brackets.) The
latter are usually taken &% = A5/2, wherei, are the Gell-Mann matrices. The gluonic
field strangth tensor is defined as

FLV = 0" AL — 8" AL + gfancAp AL, 3)

where fapc are the structure constants|{&U(Nc)c]. The termLgaugein Eq. ) will not be
specified further. It comprises gauge fixing terms and the contribution from Faddev—Popov
ghosts. The number density operator associated with the conserved (net) quark number is
N = ¥yoy.

For any firite volumeV and nonzero temperatuflg the partition function is defined
for a compact Euclidan space—time volumé x 1/T. For the sake ofimplicity (but
without loss of generality), assume that the spatial volimis a box, V = L3, with
L being the length of the box in one spatial dimension. All fields are then usually
taken to be periodic in spatial directions(z,0,y,2) = ¢(z, L,Y, 2), where¢ stands
generically foryr, v, andA; . Bosonic fields, such as gluons, are periodic also in temporal
direction, A% (0, x) = A4 (1/T, x), while fermionic fields, such as quarks, are antiperiodic
in temporaldirection,y (0, X) = =y (1/T, X).

From the grand péition function,one can derive other thepdynamic quatities, for
instance the pressure,

olinZ
T =T
p(T, w) IV

. %m Z(V = 00). (4)

In the thermodynamic limit, I£ is an extensive quantity~V) and the épendence of the
pressure oV drops out.

Phase transitions are determined by studying the derivatives of the pressure with respect
to T andu for a given poin{(T, w) in the phase diagram of the independent thermodynamic
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variables temperature and chemical potential. For a phase transition of first order, the first
derivatives

_op

i)
- n=2P
T

s , =
n o

(5)

T

are discontinuous while the pressupeis continuous at the poinfT, u). Here, s is

the entropydensity andn the (net) quark number density. For a phase transition of
second order, the second derivatives are discontinuous, whaad its first derivatives

are continuous. In this way, phase transitimisarbitrarily high order can be defined.
One geaks of a crossover transition, if thermodynamic properties change rapidly within a
narrow range of values andu, but the pressure and all its derivatives remain continuous.
Usually, he points(T, u) where a phase transition ogsuare continuously connected
and thus determine line of phase transitions in the phase diagram. These lines usually
start on either thel' or the u axis. They may terminate for nonzero valuesTofand

w. Two examples for this behaviour, the liquid—gas transition in nuclear matter and
the quark—hadron transition, have already been seen in the phase diagram of strongly
interacting matter-ig. 1, and wil be discussed in more detail in the following.

2.2. The liquid—gas phase transition

The liquid—gas transition in nuclear matter is a consequence of the fact that nuclear
matter assumes its ground state at a nonvanishing baryon depgityr 0.17 fm=3 at
zero temperaturé = 0. The underlying microscopic mechanism for this phenomenon is
a competition between attractive and repulsive forces among nucleons, with the attraction
winning at this particular value of the hyam density. (This is good, because otherwise
there would be no stable atomic nucleigpluding the existence of our universe as we
know it.) In infinite, isospin-symmetric nuclear matter, nucleons in the ground state are
bound by—16 MeV (if one neglects the Coulomb repulsion), i.e., the energy per baryon
is (E/NB)o = (¢/ng)o = mn — 16 MeV >~ 924 MeV,wheree is the energy densityig
the bayon density, anany ~ 939 MeV is the rest mass of the nucleon. Nuclear matter
is mechanically stable in the ground state, such that the pressure vamske®, From
the fundamental relation of thermodynamies= Ts+ un — p, one then concludes that
the baryon chemical potential in the ground state is identical to the energy per baryon,
uB.o = (e/ng)o =~ 924 MeV. Since a baryon consists of three quarks,= n/3 and
up = 3u. Hence, the ground state of nuclear matter is the pdint)o ~ (0, 308) MeV
in the nuclear matter phase diagram.

Obviously, it costs energy to compress nuclear matter to baryon demsities ng o.
Such an increase in energy leads to an in@éapressure. At zev temperatte, this can
be immediately seen from the identity = néd(E/NB)/dnB. Sincethe presste is a
monotonous function of the thermodynamic variables, and since it vanishes in the ground
state, there are only two possibilities for the behavioup &dr densitiesng < ng o: either
the pressure remains zero as the density decrepse$), or the pressure further decreases
suchthat p < 0. The latter possibility implies that the system becomes mechanically
unstable. This can be prevented by fragmenting nuclear matter into droplets. These droplets
are mechanically stable, i.e., therity inside each droplet is equal g o and the
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pressure vanishes. The total baryon density in the system can be further reduced by
simply decreasing the droplet density. The pressure in such a system remains zero down
to arbitrarily small densities, because cawgsion just results in a decrease of the space
between droplets. Thug,= 0 fromng = 0 tong = ng,g, and thenp > 0 forng > ngo.

At small, but nonzero temperatures, this picture remains valid, with the additional
possibility to thermally evaporate single nucleons from the surface of the droplets. At
small temperatures and densities below threund state density, one thus has a mixed
phase of nucleons and droplets of nuclear matter. This is reminiscent of water which, at
room temperature and normal pressure, consists of a mixed phase of water molecules and
water doplets. Changing the density one can rattee reldive fraction of molecules and
droplets. Beyond the density where droplets fill the entire volume one enters the liquid
phase, while below the density where the last droplet fragments into molecules one enters
the gas phase. This behaviour is typical for a first-order phase transition. In this case, this
is the so-called liquid—gas transition in water.

Nuclear matter shows a similar behaviptgaturing a “gaseous” phase of nucleons
at small chemical potentials (densities) and a “liquid” phase of nuclear matter at large
chemical potentials (densities), €fig. 1. At smdl temperatures the transition between the
two phases is of first order. Thus, in ti€, 1) phase diagram there is a line of first-order
phase transitions extending from the nuclear ground $ta&08 MeV up towards larger
values of T and smaller values qi. As for water,this line terminates at a critical point
where the transition becomes of second order. The critical temperature is of the order of
10 MeV. As for water, one cannot distinguish between the gaseous and the liquid phase
for temperatures above this critical temperature. The existence of the liquid—gas phase
transition has been confirmed in heavy-ion collision experiments at BEVALAC and GSI
energies ELap ~ 1 AGeV), although the precise value fitie critical temperature and the
critical exponents remain a matter of deb& |

The liquid—gas transition is also a feature of phenomenological models for the nuclear
interaction, for instance, the Walecka mod28][ In the following section another phase
transition in strongly interacting matter igsdussed, which very much resembles the
liquid—gas transition in that it (most likely) is of first order for small temperatures and
terminates in a critical point where the transition becomes of second order. This transition
is the so-called quark—hadron transition.

2.3. The quark—hadn phase tansition

2.3.1. Qualitative arguments

For a noninteracting, translationally invariant system the convenient basis of states
are the single-particle momentum eigenstates. Due to the Pauli principle, the density
in a fermionic system can only be increased by successively filling states with higher
momentum. The highest filled state defines the Fermi surface of the system, and the
corresponding momentum is the Fermi momentigg For noninteracting systems at zero
temperature, the single-particle densitis given in tems of the Fermi momentum as

d

n=—Kk3, 6
o2 (6)
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whered counts the internal degrees of freedom of the fermion (like spin, colour, flavour,
etc.). Thus, at large densities the Fermi momentum becomes large.

In a cold, dense fermionic system partictes only scatter elastically if their momenta
lie on the Fermi surface, as states below the Fermi surface are not accessible due to the
Pauli principle (the so-called “Pauli-blocking” phenomenon), and states above the Fermi
suface are not accessible due to energy conservation. If the Fermi momentum exceeds
the QCD scale parametdiocp ~ 200 MeV, scattering events between nucleons start to
probe distances of the order 1 fm or less, i.e., the nucleonic substructure of quarks and
gluons becomes visible. The Fermi momentum in the ground state of nuclear matter can
be inferred from Eq. &) to bekr o ~ 250 MeV. This is already of the order afgcp.
Nevertheless, a description of nuclearttaain terms ofnucleonic degrees of freedom
is certainly feasible around the ground staf¢.which densities does a description in
terms ofquark and gluon degrees of freedom become more appropriate? The “volume”
occupied by a single nucleon can be estimated from its charge radius~tc2bien®. On
the aher hand, the specific volume of the system in the ground statg}js» 6 fmS. In
this sense, nuclear matter in the ground state is dilute. However, increasing the density to
about 31 o, the system becomes densely packed with nucleons. At larger densities, they
will even start to overlap. Therefore, around densities of a few times nuclear matter ground
state density, one expects that a description of the system in terms of quarks and gluons is
more appropriate.

Similar arguments also apply to a systatmnonzero temperature, even when the net-
baryon number density is small. At nonzero farature, nuclear matter consists not only
of nucleons but also of other, thermally excited hadrons. For a noninteracting system
in thermodynamical equilibrium and neglediguantum statistics, the hadron number
densities are proportional tg ~ miZT Ko(mi/T)e"/T wherei labels the hadron species,
m; is their massy; is their chemical potential, anid>(x) is a nodified Bessel function
of the second kind. For nonzero temperature and small net-baryon number density, the
lightest hadrons, the pions, are most abundant. At nonzero temperature and small baryon
chemical potential, the typical momentum scale for scattering events between hadrons
is set by the temperaturk. If the tempeature is on the order of or larger thattcp,
scattering betweemadrons starts to probe their quark—gluon substructure. Moreover, since
the particle density increases with the temperature, the hadronic wavefunctions will start
to overlap for large temperatures. Consedlyeabove a certain temperature one expects
a desription of nuclear matter in terms of quark and gluon degrees of freedom to be more
appropriate.

The picture which emerges from these considerations is the following: for quark
chemical potentialg which are on the ordeaf 350 MeV or smaller, and for temperatures
T < Agcp ~ 200 MeV, nuclear matter is a gas of hadrons. (At very small temperatures
T < 10 MeV, there is a gaseous and a liquid nucleonic phas&attion 2.2 On the
other hand, fofT, u > Agcp, nuclear matter consists of quarks and gluons. The natural
question which emerges is, whether the “hadron phase” and the “quark—gluon phase” (the
QGP) are separated by a phase transitioménthermodynamic sense. The rigorous way
to decide this question is bgéntifying an order parameter which is nonzero in one phase
and zero in the other. This will be discussed in more detail in the following.
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2.3.2. Pure gauge theory

Let us first study the puresSU(N¢)] gauge theory, i.e., QCD without dynamical quarks
(sometimes also termed tiNg = O case). In this theory, there is a phase transition between
a low-tempeature and a high-temperature phaseSefction 3.2 Theorder parameter for
this transition is the expectation valiie(x)) of the Polyakov loop (or Wilson line)

C

1 oyt
LX) = N—Tr { P exp ﬂg /0 dr Ad(z, x)Ta” , 7)

where P stands for path-ordering. The expectation value of an oper@tam the grand
canonical ensemble is defined as

(0) = % / DYDYDALO exp[ f L+ u/\/)] 8)
X

The expectation valug. (X)) vanishes irthe low-temperature phase. If one interprets this
expectation value as-exp(—Fq/T), whereFq is the free energy of an infinitely heavy
quark 4], then (L(x)) = 0 implies that the free energy is infinite, corresponding to
confinement of colour charges. In the high-temperature ptiage)) # 0, which implies

that the free energy of an infinitely heavy quark is finite. This indicates the liberation of
coloured degrees of freedom, i.e., deconfinement. The expectation value of the Polyakov
loop is thereforelte order parameter for the deconfinement transition.

For an[SU(N.)] gauge theory the ¢ion has a globalZ (N;) symmetry: the action
does not change when multiplying all time-like links at a given spatial positioby an
elementz = exp(i2zn/Nc) of the centreZ(N¢) of the gauge groupSU(N¢)]. In the
high-temperature phase, the nonzero expectation value of the Polyakov loop breaks this
symmetry spontaneously. In the low-temperature phéls€)) = 0, and this symmetry
is restored. Br two colours,N. = 2, the effective theory in the critical region around the
phase transition is given by &(2) spin model, i.e., it is in the same universality class as
the Isingmodel R4]. This model has a second-order phase transition.Ncoe= 3, the
effective theory is that of &(3) spin nodel 25, i.e., it is in the universality class of the
3-state Potts model which has a first-order phase transRignThe transition temperature
was conputed to bel; ~ 270 MeV [15, 16], see als®Gection 3.2

2.3.3. Dynamical quarks

In the presence of dynamical quarkés > O, the picture becomes somewhat more
complicated. The fermionietm in the QCD Lagrangiar2) breaks theZ(N;) symmetry
explicitly, and thus there is strictly speaking no order parameter for deconfinement.
Nevertheless, the QCD transition in the presence of massless dynamical quarks has
an order parameter, which is related teetchiral symmetry ©QCD. While the QCD
Lagrangian 2) is chirdly symmetric whenm = 0, the ground state of QCD is not, i.e.,
chiral symmetry is spontaneously broken. It is instructive to review these arguments in
more déail.
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In the chirallimit, where the quark mass matrix is zero = 0, the QCD Lagrangiar2]
is invariant under global chirdll (Nt); x U (Nt ), rotations of the quark fields. To see this,
decompose the quark spinors into right- and left-handed spinors,

1+
V=t Yre=Poh.  Pry= T’”S ©)

where Py, are chirality projectors. Then perform @(N¢), transformation on the
right/left-handed quark spinors,

NZ-1
Yre — UreYre, Ure =exp|i Z OlﬁgTa e U(N+)re, (10)

a=0

Whereaﬁg are the parameters arid the generators of) (N)r¢. The Lagrangian 2)
remains invariant under this transformatia®(y, v¢) = LU, ¥y, Ugype). The chiral
groupU(Nsf)r x U(N¢), is isomophic to the groupd (N¢)y x U(Njs)a of unitary
vector and axial transformations, wheéfe=r + ¢, A=r — ¢, i.e,ay = (o + ar)/2,
aa = (ar — ag)/2. Any unitary group is the direct product of a special unitary group and
a conplex phaselU (Nf) = SU(Nf) x U(1). Thus,U(N¢); x U(N¢)¢ = SU(N¢)r x
SU(Nf)exU (D) xU (1) = SU(N¢)r x SU(N¢)¢xU (D)v xU (D) a. The vector subgroup
U 1)y of this symmetry group corresponds to quark number conservation. As physical
states trivially conserve quark number, this subgroup does not affect the chiral dynamics
and can be omitted from the further symmetry consideration. This leavB&JéN+ ), x
SU(N+t)¢xU (1) o symmetry. The axiall (1) o symmetry is broken explicitly by instantons
(the so-calledJ (1) o anomaly é QCD) [27], leaving anSU(N+), x SU(N¢), symmetry
which determines the chiral dynamics. Since instantons are screened in a hot and/or dense
medium [L2], the U (1) o sSymmetry may become effectively restored in matter. Then, the
chiral symmetry is again enlarged 8J(N)r x SU(N¢)y x U(D)a.

Nonzero quark masses break the chiral symmetry of the QCD Lagrangian explicitly.
The quark mass term in ER)(is

vimig ! = gimi )+ gymi vl (11)

where flawur indices, j = 1, ..., Nt are explicitly written, a sum over repeated indices
is implied, and he propertiesPr ¢yo = yoPer, PrPe = PePr = 0 of the chirality
projectors were used. Now suppose all quark masses were aguat, msjj . Paforming
chiral SU(N+t)r x SU(N¢), x U(1)a rotations of the quark fields, one observes that the
mass term 11) preseves anSU(N¢)y symmetry. All axial symmetries are explicitly
broken. If less tharNs quark masses are equal, siy < Nj, the preserved vector
symmetry isSU(M)y. In natue, wheremy >~ mg < ms <€ me < Mp K My, one
only has the well-known (approximat&U(2)y isopin symmetry. Consequently, exotic
hadrons with strange, charm, bottom, or t@gees of freedom are not degenerate in mass
with their nonstrange counterparts.

The mass termy' mjj v} in the QCD Lagragian is of the same form as the tekin- S
in spn models, which couples the sp8ito an external magnetic field. Obviously, the
operaton)' 1 corresponds to the sp#) while the quark mass matrixijj assumes the role
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of the external magnetic field. Thus, he expectation valugy' /) is the analogue of the
expectation value of the spin, the magnetizatMn= (S). While the mass term explicitly
breaks the chiral symmetr$U(N+t); x SU(Nf), x U(1)a of the QCD Lagrangian to
an (approximatepU(2)y symmetry, the external magnetic field in spin models explicitly
breaks the rotational symmet@(3) to O(2).

The analogy between QCD and spin models, however, extends further than this. Even
in the absence of external magnetic fields, in spin models with ferromagnetic interactions
rotational symmetry is spontaneously broken due to a nonvanishing magnetization
M = 0 in the ferromagnetic phase. Analogously,tihe QCD vacuum, chiral symmetry
is spontaneously broken by a nonvanishing expectation vajue/i)yac # 0. Let us
introduce the so-called chiral condensété and its complex conjugat@! T, via

ol ~ gyldy, o~ iy, (12)
A nonvanishing expectation valug' 1) # 0 is then equivalent todl + ¢l T =£ 0. Just

like the mass term in the QCD Lagrangian, a nonvanishing chiral condensate breaks the
chiral symmetry. In the chiral limity; = 0, nothing distinguishes one quark flavour from

another and, consequentiac = ¢08' . (In principle, there is another possibility how

a dhiral condensate could break the chiral symmetry, for a more detailed discussion see
below and P§].) This chiral condensate breaks the chithIN¢); x U(Nyf), synmetry
spontaneously tdJ (N¢)y. To e this, note that the chiral condensate is still invariant
under vector transformation®, — U; @ug = ¢, if U, = U, = Uy, but not under axial
transfomations,® — U, @ug # @,if Uy, = Ug = Ua.

According to Gotistone’s theorem, the breaking of the global chiral symmetry leads
to the occurrence of massless modes, thaled Goldstone bosons. The number of
Goldstone bosons is identical tbe number of broken generators. In the QCD vacuum,
where theU (1) o anomaly is present, the breaking patterrSid(N¢); x SU(N¢), —
SU(N+)v, i.e., inthis case there arel% — 1 broken generators, corresponding to the
generators of the broken axial symme®J(N¢)a. For Ny = 1, there is no global
chiral symmetry that could be broken, and thus no Goldstone bosorNFoe 2, the
Goldsbne bosons are the three pions, the lightest hadronic species. In nature, the pions are
notcompletely massless, because the chiral symmetry is explicitly broken by the small, but
nonzero quark mass termin the QCD Lagrangian. This turns the Goldstone bosons into so-
called pseudo-Goldstone bosons. For = 3, the pseudo-Goldstone bosons correspond
to the pseudoscalar meson octet, comprising pions, kaons, and the eta meson. Since chiral
symmetry is more strongly broken by the larger strange quark mass, the pseudo-Goldstone
bosons carrying strangeness are heavier than the pionbliFer4, the exficit symmetry
breaking by the heavy exotic quark flavours is so strong that the would-be Goldstone
bosons are actually heavier than the ordjr{@e., nonGoldstone) nonstrange bosons.

In spin models, rotational symmetry is teed above some critical temperature and
the magnetization vanishes. The magnetizat®theorder parameter for this so-called
ferromagnet—diamagnet phase transition. By analogy, one expects a similar mechanism to
occur in QCD, i.e.,# to vanish above some critical temperature. The symmetry of the
ground state is then restored to the original chiral symmetry,36(N), x SU(N+)g,
if the U (1) o anomaly is still present, U(Nf), x SU(Nt), x U(1)a4, if instantons are
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sufficiently screened at the transition in order to effectively restoréttio o symmetry.
Lattice QCD calculations show that this expectation is indeed fulfilled: there is a phase
transition between the low-temperature phase where chiral symmetry is broken and the
high-temperature phase where it is restored, for detailsSmtion 3 Justlike the
magnetization in spin models, the chiral condensglfeis the order parameter for this
so-called chiral phase transition.

In the case of massless quarksg; = 0, based on universality arguments one can
analyse the order of the chiral transition in the framework of a linear sigma model for the
order parameter field" [29]. Thislinear sigma model is an effecévheory, i.e., dl terms
allowed by the original chiral symmetry must in principle appear,

Leii = Tr(9p®78°®) — v2Tr(V o' - V &) — Veri (D), (13)
where the effective potential

Vet (®) = MPTr(®T @) + A1 [Tr(dT @))% + Ao Tr(d' )2
—c(detd + detd’) + - .. (14)

determines the ground state of the theory. In B®) {t was assumed that the first term

is canonically normalized. However, sincereatz symmetry is explicitly broken in a
medium at nonzero temperature, the coeffici€nin Eq. (13) may in geeral be different

from one. In Eq. {4), . . . denote higher-dimensional op&ves which arerirelevant for the
discussion of the order of the phase transition. &e£ 0, the chiral symmetry ofef is
SU(N¢)r x SU(N¢)g, while forc = 0, itis SU(Nt); x SU(N¢t)¢ x U(1)a. Thus, the

U (1) anomaly is present far £ 0, and absent far = 0. While these chiral symmetries

are manifest in the Lagrangiah3), the ground state of the theory respects them only for

¢ = 0 andm? > 0. Forc = 0 andm? < 0 the chiral symmetry is spontaneously broken

by a nonvanishing vacuum expectation value for the order parameter. Consequently, if
the linear sigma model is to describe the chiral transition in QCD, one has to ensure that
m? < 0 for c = 0. There are still two possibilities how the order parameter can break the
symmetry. As shown inZg], if 1> > 0 the ground state is given biihc = ¢o8", while

for > < 0 the ground state is given bfiac = ¢o8' 1811, (The doice of the idiredion

in right- and left-handed flavour space is arbitrary.) Nature realizes the first possibility. For
the cases # 0, no general arguments can be made; whether the ground state of the theory
breaks chiral symmetry spontaneously depends on the particular values for the coupling
constante, A1, A2 and the number of flavound+.

For Nt = 1, there is no difference betweéme two quartic invariants in Eq14), and
one may sek1 + A2 = A. In thepresence of th&J (1) o anomalyc # 0, there § also no
chiral symmetry, and the transition is crossover, due to the lineartarmvhich tilts the
effective potential such that the (thermal) ground st&tgr # 0. If the U (1) o anomaly
is absentc = 0, the effective theory for the order parameter falls in the same universality
class as that of th®(2) Heisenberg magnet, and thus the transition is of second order.

For Ny = 2 and inthe presace of theU (1) anomaly, the chiral symmetry is
SU2); x SU(2)¢, which is isonorphic to O(4). The efective theory for the order
paameter is in the universality class of th@(4) Heisenberg magnet. Consequently, the
transition is of second ordeR9]. If the U (1)a symmetry is effectively restored at the
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phase transition temperature, the symmetry group is lai§ex2), x SU(2); x U(1)a,
which is isanorphic to O(4) x O(2), and the transition is of first order. Lattice QCD
calculations determine the transition temperature tddoe 172 MeV [15, 16].

For Nt = 3, the chiral transition is of first order, both when tbig1) o synmetry is
explicitly broken by instantons or when it is effectively restored at the transition. In the
first case, the effective theory features a cubiariantin the order parameter field (the
term ~ detd + detd"), which drives the chiral transition first orde2q]. In the second
case, the transition is fluctuation-induced of first ordj.[ This also holds folN; > 4,
irrespective of whether tHa (1) o symmetry is explicitly broken or not. Fot; = 3, lattice
QCD calculations find the transition temperature tdpe- 155 MeV [16), cf. Section 3.2
Note that nonvanishing quark masses can also be accounted for by adding a term

Ln =TrH(®+ oM (15)

to the right-hand side of Eq1B). As discussed above, this term is the analogue of the term
H - Sin spin models. Consequently, the external “magnetic fiélg"is proportional to the
quark mass matririjj .

2.3.4. The quark-mass diagram

Nonvanishing quark masses lead to the terib)in the efective theory for the order
parameter field. Tis term is linear in®, such that theeffective potential is tilted. This may
render a first or second-order phase transition a crossover transition (similar to the case
N = 1 with U(1)a anomaly discussed iSection 2.3.3where atilt in the potential is
induced by the linear termyc). For instance, the second-order transition for QCD with
N: = 2 massless flavourssirendered crossover by a nonvanishing quark mass. The first-
orde phase transition for QCD wittN+ = 3 massless flavoursan also become crossover,
if the quark masses are sufficiently large. In the real world, the up and down quark are
approximately of the same mass, while the strange quark is much heavier. It is customary
to putmg = my >~ mg and identify first-order regions, second-order lines, and crossover
regions in anmg, ms) diagram, se&ig. 2 To simgify the following discussionpnly the
case where the (1) o anomaly is present will be considered.

The origin inFig. 2 corresponds to the massless 3-flavour case, and the transition is
of first order. The upper left corner corresponds to the massless 2-flavour case, since the
strange quark is infinitely heavy. Here, the transition is of second order. The lower right
corner is the case of one massless flavour. The transition is crossover. The upper right
corner, where all quark flavours are infinitely heavy, corresponds to the pure gauge theory.
At this point the transition is of first order.

The first-order regions around the origin and the upper right corner extend somewhat
into the(mq, ms) plane and are bounded by critical lines where the transition is of second
order. Along these critical lines, the second-order phase transitions are in the universality
class of the Ising model/(2). In between the critical lines, the transition is crossover.
There is also a second-order phase fiteors line (with a phase transition in th®(4)
universality class) extending downwarftom the upper left corner along thes axis.

There is a tricritical point where this line @ets the second-order phase transition line
bordering the first-order region around the origdf][ It is an interesting question whether
the real world, whereng ~ 5 MeV « ms ~ 100MeV, is still inside the first-order phase
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Fig. 2. The quark-mass diagram (frod#]) .

transition region or already in the crossovegon. There are ongoing lattice QCD studies
to decide this question, which at present favour the latter possitiily $ee alsdection
3.2for more details.

2.3.5. Nonzero quark chemical potential

So far, the quark—hadron phase transition was studied-at0. Let us finally discuss
the case of nonzero quark chemical potential. For many years, lattice QCD studies at
nonzero chemical potential were hampergdrtumerical problems related to the so-
called sign problem of the fermion deterraimt. Only recetly there have been attempts
to compute the order of the phase transition, as well as thermodynamical properties, at
nonzero quark chemical potential; for details, S=etion 3.6 So far, thesesalculations
have been done on fairly small lattices with rather heavy quarks. Consequently, they
show a crossover transition at = 0. This crossover transition extends to the point
(T, wer = (160+ 3.5, 242+ 12) MeV, see alsd-ig. 10.

This pointis a critical point where the transition is of second order. It is in the unversality
class of the Ising model, i.eZ(2). For sméler temperatures and larger chemical potentials,
the transition becomes of first order. The critical point will move towardStlagis when
the quark masses are decredisFrom the discussion Bection 2.3.4ne cannot exclude
the possibility that, for realistic quark masses, the first-order phase transition line emerges
directly from theT axis.

Finally, the question arises whether the line of first-order phase transitions extends all
the way down tol' = 0, and if so, at which point it hits the axis. Renormalization group
arguments 31] suggest that the behaviour at zero temperature is very similar to the one
at nonzero temperature: the transition is of first ordeNer> 3 as well as folN; = 2
in the absence of the (1) o anomaly, while it could be of second order filF = 2 in
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the presace of theU (1) o anomaly. In the latter case, however, it would remain of second
orde aong the whole phase transition line, and only the universality class would change
from O(4) critical behaviour at nonzero temperature to Gaussian critical behaviour at zero
temperature. Since lattice QCD calculatioBg][indicate that the transition becomes of

first order for temperatures below the critical point, and since it is hard to imagine that
the transition switches back to second order as the temperature decreases further, this
paossibility can most probably be ruled out. Note, however, that if quark—gluon matter is

in a colour-superconducting phase to the righthe QCD phase transition line, other
possibilities emerge, for details, s&ection 2.4

In any case, model calculation33] within a Nambu—Jona—Lasinio (NJL) mod&4]
support the picture that the transition remaaidirst order below the critical point all the
way down to theu axis. The value ofi, where the first-order phase transition line meets
the u axis, depends sensitively on the paragnetused in these model calculations. Its
actual value should not bekien too seriously, because the NJL model with quark degrees
of freedom does not have a phase where matter consists of nucleons. Instead, the transition
to quark matter happens at a quark chemical potential which is of the order of the ground
statequark chemical potential,g ~ 308 MeV. Since we know that nucleonic matter exists,
this behaviour is clearly unphysical.

The critical point has recently received a fair amount of attent8%h [For a second-
order phase transition in theZ (2) universality class, there must be one massless degree of
freedom. The fact that this degree of freedom is massless causes critical fluctuations. These
fluctuations were suggested to be an expentalesignature for the critical point in heavy-
ion collisions. Which physical particle dedhe massless degree of freedom correspond
to? For realistic quark masses, the pionsraemassless in the vacuum, and it is unlikely
that they become massless at the criticahpéthe pions usually get more massive when
the temperature is increased). Moreowsince isospin is still a good symmetry at the
critical point, all pions would simultaneously become massless. Then, one would have
three massless modes instead of just one. Eguesntly, the pions cannot assume the role
of the massless mode. Sinttee critical point exists even when considering oNly = 2
quark flavours and since, fad; = 2, there is only one other degree of freedom in the
effective theory besides the pions, it must s tlegree of freedom that becomes massless:
the scalar meson B3, 35]. In the vacuum, this meson has a mass of about 400-1200 MeV
[36]. If it becomes massless, it can be copiously produced. When shesesons decouple
from the collision region, they assume their vacuum masses and rapidly decay into pions.
Besides critical flatuations, another signature for the critical point would thus be the late
emission of a large amount of pions in a heavy-ion collision.

2.4. The colour-superconducting phases of QCD

2.4.1. Proof of existence of colour superconductivity

There are other phases in the phase miagof nuclear matter, which have recently
received much attention in the literature, the so-called colour-superconducting phases in
sufficiently cold and dense quark mattéi§]. Colour superconductivity occurs, because
there is an attractive interaction betan two quarks at the Fermi surfa@&¥,[38]. Then,
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by Cooper’s theorem, these quarks formoper pairs which condense in the new ground
state of the system.

At least at asymptotically large quark chemical potentials, the existence of an attractive
interaction between quarks at the Fermirface, and thus the existence of colour
superconductivity, can be rigorously proven. Due to asymptotic freeddnmvhenu >
Aqcp, the stong coupling constant of QCD, evaluated at the sgaldecomes small,

g(u) < 1, such that the dominant interaction between quarks is given by single-gluon
exchange. The scattering amplitude for single-gluon exchange ifSai(N:)c] gauge
theory is proportional to

Ne + 1 Ne—1

(Taki(Ta)lj = — IN (Bjkdil — dikdjl) + aN
C C

(8jKéil + Sikdjl), (16)

wherei, j are the fundamental colours of the two quarks in the incoming channek, and
their respective colours ité outgoing channel. Under the exchange of the colour indices
of either the incoming or the outgoing quarks the first term is antisymmetric, while the
second term is symmetric. In group theoretical language[3&#(3)c] Eq. (16) represents

the coupling of two fundamental colour triplétsan (antisymmetric) colour antitriplet and

a (synmetric) colour sextet,

[31° x [3]1° = [3IS + [6]¢. 17)

The minus sign in front of the antitriplet contribution in EQ.6] signifies the fact that
this channel is attractive, while the sextet chdmmeepulsive. Therefore, one expects that
quark Cooper pairs condense in t@our-antitriplet channel.

This argument holds rigorously at asymptotically large densities. The highest densities
of nuclear matter that can be achieved in the labany through heavy-ion collisions, or that
occur in nature in the interior of neutron stars, are of the order of ten times nuclear matter
ground state density. At these densities, dnark chemical potential is still fairly small,

u ~ 0.5 GeV. Fophenomenology it is therefore important to answer the question whether
colour superconductivity also exists at therfguaratively moderate) densities occurring in
nature. There is no rigorous way to answer this question, as an extrapolation of the above
asymptotic argument becomes unreliable wigén) ~ 1. Nevertheless;alculations in

the framework of the NJL model39] show that colour superconductivity does seem to
occur also at moderate densities. In this case, the attractive interaction could be mediated
by instanton (instead of single-gluon) exchange.

Colour superconductivity is a much more complicated phenomenon than ordinary
superconductivity. From a very qualitative pointwéw, in comparisond dectrons, quarks
carry additional quantum numbers such as colour and flavour. The wavefunction of a
Cooper pair has to be antisymmetric under the exchange of the two fermions forming the
pair. Consequently, the possible colour and flavour representations of the two-fermion state
have to be chosen in a way which respects this antisymmetry. This requirement helps to
classify all possible colour-superconducting condensdt@si[l]. This clasdiication will
be presented in the following.
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2.4.2. Classification of colour-superconducting phases

The baryon density in heavy-ion collisions or in neutron stars is at most of the order
of ten times the nuclear ground state density. Therefore, the quark chemical potential is
unlikely to assume values beyopd~ 1 GeV. At zero temperature, one can only have
fermions if the Fermi energy exceeds their mass. Thus, only the three lightest quark
flavours, up, down, and strange, play any role; charm, bottom, and top quarks are too heavy.
For small temperatures, these heavy flavours can be thermally excited, but their abundance
is exponentially suppressed exp(—ms /T), cf. Section 2.3.1Therdore, they will be
excluded from the following consideration. For ~ 1 GeV, up and dan quarks can
be treated as truly ultraraivistic particles, asng/u ~ 10-3. To first goproximation, also
the strange quark wilbe considered to be massless. Corrections due to the strange quark
mass can be treated perturbatively, the correction factor being of medar ~ 10-1 [22].

For dtrarelativistic particles, spi® and angular momenturn are not separately good
quantum numbers, only the total spin= L + S is. Therefore, possible Cooper pair
wavefunctions should be classified according to their total spirLet us firstfocus on
the spn-zero channel) = 0. TheJ = 0 represerdtion of theSU(2); spin goup is
totally antisymmetric. Therefore, the remaigioolour and flavour part of the Cooper pair
wavefunction has to be symmetric under the simultaneous exchange of colour and flavour
indices in order to fulfil the requirement ofverall atisymmetry. If oneassumes that
quaks pair in the antisymmetric colour-antitriplet channel, one has no choice but to also
choose an antisymmetric flavour representation.Nrpe= 1 flavour, this is impossible, as
there is no flavour symmetry group with an antisymmetric representation.

One therefore haotconsider at leasNt = 2 quark flavours (for instance, up and
down), where the most simple representation is the antisymmetric flavour s[mdlet
representiion of the SU(2)y flavour group. Therefore, the most simple = 0 quark
Cooper pair condensate has the form

f
@ijg :eijkefg@k. (18)
Here,i, j = 1,..., N; are the colour indices of the quarks forming the Cooper pair, while
f,g = 1,..., N are the corresponding flavour indices. The two totally antisymmetric

tensors on the right-hand side ensure that the condensate belongs[éjgthle colour,

as well as the[l];f1 representation in flavour space. The colour-superconducting phase
represented by the condensat8)(is comnonly called the “2SC” phase (for2*flavour
colourSuperConductor”).

Condensation of quark Cooper pairs occurs if the quantityn the right-hand side of
Eq. (18) isnonzero @k # 0. Thus, the quark Cooper pair condensate carries a fundamental
colour indexk. This indicates that the loc4SU(3)¢] colour symmetry is spontaneously
broken by the quark Cooper pair condensate, similarly to the spontaneous breaking of the
global chiral symmetr\5U(N¢); x SU(N¢), by the chiral condensatd?) in the QCD
vacuum discussed iBection 2.3.3In this sense@y is the order parameter for colour
superconductivity. It is zero in the phase of unbrok&W(3):] synmetry, and nonzero in
the broken phase where condensation of quark Cooper pairs occurs.

Of course, a local symmetry can never be truly broken spontaneodgly [
However, after fixing the gauge, spontaneous breaking does occur, just like in ordinary
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superconductivity or in the standard model of electroweak interactions. In ordinary
superconductivity, the condensation of electron Cooper pairs break¥)itigem] gauge
symmetry of electromagnetism, while in the standard model, the Higgs field breaks
[SU2),] x [U(Q)vy] to [U(D)eml. Analogously, the quark Cooper pair condensa® (
breaks thg SU(3)¢] colour gauge symmetry.

Since quarks carry baryon and electric charge, the Cooper pair condeh8gaia (
principle also breaks the glob&l (1)y of baryon number conservation and the local
[U(@eml of electromagnetism. In thdiscssion of chiral symmeyr breaking, these
symmetries were never broken because the chiral condensate consists of a quark and an
antiquark which carry opposite baryon and electric charge. The chiral condensate is thus
a snglet undeiJ (1)y and[U (1)em] and consequently preserves these symmetries. This
is different for a colour-superconducting condensate which consists of two quarks. It turns
out, however, that there exists a “rotated” baryon nuntbe) symmetry and a “rotated”
electromagneti¢U (1)] symmetry, which are fioned from the original baryon number and
electromagnetic symmetries and the eighth generatpgof3).] [43]. This is similar to
electroweak symmetry breaking, where th(1)em] symmetry of electromagnetism is a
combination of thgU (1)y] hypercharge symmetry and the third generatofSi(2),].

Thus, theU (1)y and[U (1)em] symmetries are not really bken in the 2SC phase, but
“rotated”. The rotation angle is the analogue of the Weinberg angle in the standard model
of electroweak interactions; for more details, Setion 5.4

Spontaneous symmetry breaking in gauge theories does not lead to Goldstone bosons.
Rather, what would have been a Goldstoneda will be “eaten” by a gauge boson which
in turn becomes massive and thus acquiresdtfitianal longitudinal degree of freedom.
There are as many massive gauge bosons as there would have been Goldstone modes
due to spontaneous symmetry breaking. Idimary superconductors, the electromagnetic
[U(@Dem] symmetry is broken, whichds only one generator. Consequently, there is a
single Goldstone mode whicls featen” by the single gauge boson present in this case,
the photon. The photon acquires a so-called Meissner mass. What happens physically
is that magnetic fields are damped on length scales of the order of the inverse Meissner
mass, which in turn leads to the Meissner effect, the expulsion of magnetic flux from the
superconductor. In the standard model of electroweak interactiStk2),] x [U(1)y]is
broken to[U (1)eml, i.€., there are three Goldstone modes which in turn lead to the massive
gauge bosons of the weak interactig¥t andZ. The photon is massless. This is required,
since it is he gauge boson of the residud) (1)em] symmetry of electromagnetism.
Analogously, in a colour superconductor one expects some of the gluons to become
massive. Exactly how many gluons acquire a mass depends on the pattern of symmetry
breaking. For the condensati8], one can clarify this via the following argument.

By a global colour rotation, one can always orient the order parandgtes point in the
3-direction in colour space (more precisely, #rai-3-direction, as condensation occurs in
the wlouranti-triplet channel),

Py = Sk3 P. (29)

Physically, his means that if we call colour 1 red, colour 2 green, and colour 3 blue,
red up (or down) quarks and green down (or up) quarks condense to form an anti-blue
Cooper pair condensate. Blue up and down quarks do not participate in condensation.
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The condensatel) does not break the coloy6SU(3):] gauge symmetry completely.
The residual symmetry is a locEBU(2)c] symmetry in the space diie first two colours
(in our conventions, red and green). Incloglielectromagnetism, ¢hsynmetry beaking
pattern for the condensateg) is theefore[SU(3)¢c] x [U (Deml — [SU2)c] x [U(D)].
Consequently, there are-83 = 5 broken generators, which lead to five massive gluons.
The remaining three gluons must remain massless as they correspond to the gauge bosons
of the residual locdISU(2)] symmetry. This is also borne out by an explicit calculation of
the gluon Meissner nsses inle 2SC phaseifs, 45). The gauge boson of the locl (1)]
symmetry (the “rotated” photon) is also massless. For more detail§eg@®n 5.4

For Nt = 3 flawours, condensation of quark Cooper pairs becomes considerably more
interesting. First, to preserve the antisymmetry of the Cooper pair wavefunction the two
quarks have to be in th[ﬁé];f1 representation of the glob&U(3)y flavour symmetry.
Consequently, the quark Cooper pair condensate has the form

f
@ijg :eijkefgh@E. (20)

The difference to Eqg.18) is that, to ensure antisymmetry in flavour space, one is
required to use the totally antisymmetric tensor of rank 3", rather han its rank-2
counterpart. Consequentlgn additional flavour indexh appears in the order parameter,
qBE. A nonvanishing order parameter automatically implies that not only the[ISt&13)]
colour, but also the glob&U(3)y flavour symmetry is broken. The situation is not unlike
the one encountered in superfluid helium4B]. Superfluid helium-3 forms Cooper pairs
with spin S = 1 and angular momenturh = 1. (Both spin and angular momentum
are good quantum numbers, as helium-3 is a nonrelativistic system.) Consequently, the
order parameter breaks the glolsD(3) s of spin aswell as the globaE O(3) . of angular
momentum. This breaking can occur in many possible ways, giving rise to a plethora of
phases in superfluid helium-3.

Similarly, one wuld expect many different phases to occur in a 3-flavour colour
superconductor. However, in fact there areyotwo possibilities, one of which is likely
to be realized in naturedfl]. To see this, note the formaimilarity between the order
paramete@lﬂ and the one encountered in chiral symmetry breaki, in Section 2.3.3
While 'l transforms undeBU(N+),; x SU(N ), (in the presence of tHe (1) o anomaly),
@E transforms unddrSU(3)¢] x SU(3)y . Consequently, the effective Lagrangian tﬁfj is
of the same formX(3) as for @'/ . The twopossible patterns of symetry breaking occurring
in such an effective theory were already mentioned above.

If the coupling constanit, > 0, the order parameter assumes the form

o =8 o (21)

In contrast to the 2SC case, where blue quarks remained unpaired, now all quark colours
and flavours participate in the pairing process. The order parar2éjes §imilar to the one

for chiral symmetry breaking, whe®! = sl &. (In the ground statefyac = ¢o.) Similar

to the chiral symmetry breaking patteBU(N); x SU(Nt); —> SU(Nt)v,V =1 + ¢,

the cmndensateql) breaks[SU(3)c] x SU(3)y to the vectorial subgroulSU(3)c+v.

The condensate is still invariant under vedi@nsformations in colour and flavour space,

or in other words, a transformation in colorgquires a simultaneous transformation in
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flavour to preserve the invariance of the condensate. Therefore, the discovifien$ |

this 3-flavour colour-superconducting state termed it t@elour-Flavour-L ocked”, or in

short, “CFL” stae. The raidual SU(3)c+vy symmetry is no longer a local symmetry, so

that there are no massless gluons. The complete pattern of symmetry breaking, including
theU (1)y symmetry of baryon number and thie (1)em] symmetry of electromagnetism

is [SU®B)c] x SUB)v x UMDy x [U@D)eml = SU®B)erv x [U(D)]. (This notation is
dightly ambiguous: theU (1)em] symmetry is generated by the quark charge operator

Q = diag2/3, —1/3, —1/3) which is traceless. Thus, thgdobal part of the[U (1)em]
symmetry is actually a subgroup of tlggobal SU3)y flavour symmetry. However, the

local part of [U (1)em] is not. Therefore, here and in the following | choose to explicitly
denote theflU (1)em] symmetry group.) In the CFL case, unlike the 2SC case, baryon
number is broken, but a rotated electromagnigicl)] is again preserved. The symmetry
breaking pattern leads to nine Goldstoneditss eight of which are “eaten” by the gluons,

i.e., all gluons acquire a Meissner mass. There is one Goldstone boson from the breaking
of theU (1)y symmetry.

In the chira limit, the flavour symmetry of QCD is actually not jugU(3)y but
SU); x SU),. Assuming that also th& (1)a symmetry of QCD iseffectively
restored at large quark densities, qu@doper pair condensation of the for@1j breaks
[SUB)cl x SUR)r x SUR)¢ x U(Dyv x U(1)a x [U(D)eml to SUR)ctv x [UD)], i.e.,
not only thelocal colour, but also the global chiral symmetry is broken. In addition to the
eight massive gluons, there are also ten real Goldstone bosons, eight from the breaking of
the SU(3) a chiral symmetry, and one each from the breaking/éf)y andU (1) a.

Closer inspection48] shows thatthe excitation spectrum in the CFL state bears a
striking resemblance to the one in the hadronic phase. Let us first focus on the fermionic
sector. In the CFL phase, there are nine gapped fermionic quasiparticles (c&eason
5.2), eight of which are degenerate in mass. These correspond to the baryon octet in the
QCD vaaum. (For this argument we have to assume that there is no expliiB)y
flavour-symmetry breaking in the QCD vacuum.) The ninth quasiparticle is twice as heavy
and does not have a counterpart in hadronic matter, but this is not a reason to worry,
as such a particle would have a large decay lwidto lighter particles. In the bosonic
sector, there are nine Goldstone bosons from the breaking of theSi@) o x U(1)a
symmetry, which correspond to the pseudoscalar nonet in the hadronic phase. Only the
tenth Gldstone boson from the breaking 0f(1)y does not have a counterpart in the
QCD vaaium. Such a boson exists, however, in dense nuclear matter, where a superfluid
A/ condensate may form, which also breaks th@)y baryon number symmetry. The
preceding arguments have led to the conjextiif‘continuity” between hadron and quark
matter [48]. This conjecture states that, since there is no difference in symmetry between
quark matter in th€FL state and$U(3)y flavour-symmetric) hadronic matter, there need
not be any phase boundary between these two phases at all. Of course, this requires that
there is no other colour-superconducting phase, for instance the 2SC state, which separates
CFL matter from hadronic matter.

For iz < 0, the order parameter is given by

o = "33, (22)
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where the 3-direction is arbitrary. This condensate breg&b(3)c] x SU(3)y to
[SU2)¢] x SU2)v. In thiscase[SU(2).] is still a local symmetry. Consequently, like in
the 2SCcase only five gluons become massive, and blue up, down, and strange quarks do
not participate in the formation of Cooper mmiAdditionally, there are also five Goldstone
bosons from the breaking of the flavour symmetry. There is a more technical and a more
physical argument, why the CFL state is most likely realized in nature. From the more
technicalpoint of view, one can show4fl] that, to one-loop order, in QCD.1 = 0 and
A2 > 0. From the more physical point of view, the CFL state is energetically favoured
becauseall quark colours and flavours (instead of just a few) acquire a gap at the Fermi
suface. The gain in condensation energy is thus expected to be larger than for a state with
a mndensate of the forn2p).

Although a single quark flavour cannot form Cooper pairs with total dpia O, it
can pair in thel = 1 chanel. (An exhaustive discussion of possible pairing channels for
a sigle quark flavour is given indR].) This channel corresponds to the symmetﬂ];’
representdon of theSU(2) 3 spn group. If one still assumes pairing to occur in the colour
[31$ channel, the Cooper pair wavefunction is, as required, overall antisymmetric. The
condensate is a 3-vector in space which points in the direction of the spin of the Cooper
pair. It hasthe form [38, 40, 50, 51]
@ﬁ = €ijk @E, (23)
wherea = X, y, z denotes the spatial component of the spin vector. Condensation breaks
the local colouf SU(3)¢] symmetry and the glob& O(3) ;3 spin symmetry. This is similar
to superfluid helium-3 where condensation bregké(3)s x SO(3)L (see disassion
above). While many different phases arise, let us just mention two which are quite similar
to the ones discussed in thentext of three and two quark flavours, the so-call€dlor-
Spin-Locked” or CSL phase, where the order parameter assumes the form

P =50 D, (24)
and the so-called polar phase, where
B = 83827 9. (25)

In the CSL phase, the order parameted)(is stikingly similar to the one in the CFL
phase, cf. Eq.41). All quark colours participate in the formation of Cooper pairs. Also
the symmetry breaking pattern is similggU(3)c] x SO3)j x UD)v x [UDeml —
SO3)c+3. The maindifference is that now there %o rotaed electromagnetism] D1,

cf. Section 5.4Consequently, all eight gluorsdthe photon become massive]]. In the
polar phase, the order parameter resembles that of 2}. Negleding electromagnetic
interactions for the moment, the symmetry breaking patteriSld(3)c] x SO3)5 x
Uy — [SU@)c]x SO@2)3xU(1). Like in the2SC phase, the residy8U(2)c] colour
symmetry is a local symmetry, and there are three massless and five massive gluons. The
breaking of the rotationgb O(3) 3 synmmetry toSO(2) ; also leads to two real Goldstone
bosons. Baryon number is not broken, but merely rotated. IncludingUti&)em] of
electromagnetism there is a small subtlety which is explained in more deta#édtion

5.4 if there isonly a single flavour present, or if all flavours carry the same electric charge,
a rotaed electromagnetigt) (1)] symmetry exists. If there awt least two flavours which
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Table 1
Colour-superconducting phases in dense quark md@ the polar phase, there is an additiorjal(1)]
symmetry, if all flavours in the sysin carry the same electric charge

Phase Condensate Order parameter Residual symmetry
25C qsi‘jg = cijke 9y By = Sz ® [SU@)c] x U () x [U(D)]
CFL 9,9 = eijice "IN ] o =sho SU@)crv x U]

CSL @ﬁ = €ijk @E @E = 8?@ SOB3)c+y

Polar 45;'].1 = 6jk ¢ PR = 8136920 [SU@)c] x U (1)

differ in charge, thd¢U (1)em] symmetry is brokenTable 1summarizes the results of this
section for the 2SC, the CFL, the CSL, and the polar phase of colour-superconducting
quark matter.

2.4.3. Colour-superconducting phases in the nuclear matter phase diagram

How does colour superconductivity affect thbase diagram of nuclear matter? Let us
firstassume that the temperature is sufficiently small to favour a colour superconducting
over the normal-conducting state. As long @as>»> ms, the CFL stée is likely to be the
ground state of quark matter. Since one heggpfoximately) equal numbers of up, down,
and strange quarks of colours red, green, and blue, the system is (approximately) neutral
with respectto colour and electric charge wéwer, when one d@rapolates down to smaller
quark chemical potentials, say of the orderof~ 500 MeV, the strange quark mass is
no longer negligibly small and causes, for a giyena mismatch in the Fermi surfaces
between nonstrange and strange quaB&. [In general, a nonzero strange quark mass
reduces the number of strange quarks as compared to the massless species. This, in turn,
leads to nonzero electric armblour charge in the system. Consequently, one is forced
to introduce chemical potentials for electric and colour charge, which have to be tuned
to again ensure overall electric and colour neutrality. The chemical potential for a quark
species of colour and flavourf thus reads

f
Ky =pm—(q f He + ti3,U«3 + tigl/«& (26)

whereq is the electric charge of flavour (q" = 2/3,q%S = —1/3), ue is the electron
chemical potentialti?’ andti8 are the colour charges assoeitwith the third and eighth
generator of SU(3)c], respectively ¢ = 1/2,t3 = —1/2,t3 = 0,t8, = 1/(2V3),

tE = —1/+/3), andus, ug are the associated colour chieal potentials. (One could also
introduce individual chemical potentials for red, green, and blue quarks, but these can be
written as linear combinations ¢f, 13, andusg.) The mismatch in the Fermi surfaces of
different quark species forming Cooper pairs is then

f f
3kFijg =Kgr; — kF? ~—@q" —q9ue+ 3 - t?)ﬂ?) + (8 - t?)us
2 2
— ity (27)
21 M
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where only the first correction im /Mif <« 1 was taken into account. EQRY) shows that
the mismatch in the Fermi surface between different quark species is proportional to the
electric and colour cheital potentials, as well as their mass difference.

The formation of Cooper pairs occurs at the Fermi surface. Typically, a Cooper pair
consists of fermions with momenta which are in magnitude close to the Fermi momentum,
but which have opposite directions, such that the total momentum of the Cooper pair
is zero. However, when the mismateikpif-g increases, it becomes increasingly more
difficult to form such pairs with zero totalJ momentum. For the species with the smaller
Fermi surface one may take a fermion right at its Fermi surfaces, but in order to match
the momentum, one has to go deeper into the Fermi sea of the other species. Pictorally
speaking, forming a Cooper pair becomes energetically disfavoured once the cost of
“diving” into the Fermi sea to find such a matching fermion is higher than the gain in
condensation energy by forming a Cooper paAlhether this condition is fulfilled depends
on the magnitude of the colour-superconducting gap at the Fermi sugfgcepmpared
to the mismatch in the Fermi surfacédxpi‘;g. As long as¢gp > SkFigg, the Cooper-

paired state remains the ground state of the system. However,&khé?\ becomes of the
order ofgo, or even considerably exceeds it, the Coopeirpd state becomes energetically
disfavoured as compared to normal-conducting stk [

It was recently realized, however, that instead of a transition to the normal-conducting
state many other possibilities can be envisioned. For instance, imagine being in the CFL
state and fothe manent negleciue, u3, andug in Eq. 7). Then, the CE stae will
become energetically disfavoured whmﬁ/zu exceeds¢o [53]. Nevertheless, quark
matter will not simply become normal-conduudi because there is nothing to prevent
the Yy and down quarks to form a 2SC state. Of course, one cannot simply discard
e, 13, and ug from the consideration. Taking these chemical potentials into account
to ensure overall neutrality with respect to colour and electric charges, the 2SC state
may become unstable with respect to the formation of a gapless supercon@&ttar [
crystalline colour superconductdd], or some other sta with an even more exotic pairing
scenario p7, 58.

However, also a more cgantional pairing scenario is conceivabEZ]: the doninant
terms in the mismatct2({) are the ones~ue and the mass difference (the colour chemical
potertials u3 and ug are parametrically of orde;bg/u < ¢0). Consequently, instead of
redizing one of the more exotic pairing scenarios, it could be energetically favourable
to simply pair quarks with the same charge and the same mass, i.e., of the same flavour.
As discussed above, these Cooper pairs must have spin one. Although spin-one gaps are
orders of magnitude smaller than spin-zero g&§3 51, 59, the gain in condensation
energy AEcong is parametrically larger than for some of the aforementioned exotic
paifing scenarios, for instanc& Econg ~ u1?¢3 for spin-one pairing vSAEcond ~
12p3(pLorF/p0)* for the crystalline colour superconductdif]. (Here, ¢Lorr is the
value of he gap in the LOFF phase, whifg is the gap in a superconductor with equal
Fermi surfaces for the particle species forming Cooper pairs.) Whether, and if yes, which
of these pairing scenarios are realized in nature, can only be decided by a quantitative
comparison of the pressure in the various cases. This has not been done so far and to
draw definite conclusions about the structofghe phase diagram of nuclear matter at
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small emperatures and chemical potentials of the order ef 500 MeV appears to be
premature at this point.

On the other hand, it is far simpler to ddei what happens to a particular colour-
superconducting phase when one increases the temperature at a given chemical potential.
Like in any other superconducting system, thermal motion will break up quark Cooper
pairs. In BCS theory, the transition beten superconducting and normal-conducting
phases is usually of second order and occurs at a tempeﬁﬁ&%proportional to the
size of the superconducting gap parameigr

eY
TECS = — ¢ ~ 0.56 70, (28)
T

where y =~ 0.577 is the Euler-Mascheroni cdant. At least in the mean-field
approximation, in all colour-superconducting phases studied sddaither rigorously
obeys this relation or differs only by a factor of order one from it, for detailsSsgion
5.3and B1]. The value of the colour-superconducting gap paramgges therefore of

great importance in order to locate the transition line between the normal and the colour-
superconducting quark matter phaseshie nhuclear matter phase diagram.Saction 5

it will be discussed how to aopute this gap parameter. Here it suffices to know that
an extrapolation of the result of solving a gap equation in weak coupling QCD down to
moderate densities suggests gap parameters of the order of 10 MeV for pairing in the spin-
zero channel. NJL model calculations suggest somewhat larger values around 100 MeV.
With Eq. 28), this would lead to transition temperatures of the order of 6—60 MeV. In the
spin-one channel, the gaps and critical temperas are typically sniker by two to three
orders of magnitudes, 51, 59.

3. LatticeQCD
3.1. Basic concepts

The most fundamental approach to compute thermodynamic properties of strongly
interacting matter and, in particular, its equation of state, are lattice QCD calculations
[60]. In these calculations, one directly computes the grand partition functjoan a
discretized space—time lattic¥, x 1/T = (a, N,)3a.N;, wherea, = L/N, is the
lattice spacing in spatial directioa; = 1/(N; T) is the lattice spacing in Euclidean time
(i.e., temperature) direction, amdl, andN, are the number of lattice points in spatial and
temporal direction, respectively. Any space—time poin¥in 1/ T is then parametrized as
XH = (1,X) = (al, a5, 8], ask), with0 < | < N;,and O< i, j,k < N,. Comnonly,
one uses symmetriattices, wherea, = a;, = a. A space—time point on the lattice,

a lattice site, is thenuniquely determined by the 4-vectat = (I,n), n = (, j, k).
Quantities with the dimension of energy are measured in units of the inverse lattice spacing
a~%, and different lattices are simply chacterized by their extensioNS x N,. The
smallest length scale on a lattice is the lattice spaeingorresponding to a maximum
momentum scalelyy ~ a~1. This sale serves as ultraviolet cut-off which regulates the
ultraviolet divergences commonly appearing in quantum field theories. The largest length
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scale on the lattice is the lattice extens®N, . It determines the minimum momentum
scaleAdr ~ (aN,) L.

The next step is to define the QCD actiBn= [, £, with £ given by Eq. @), on the
discretized space—-time lattice. As a first guess, one could replace all derivatives with finite
differences between lattice points. For reasons explained below, this naive prescription is,
however, not particularly suitable, neither for the gauge field (gluon) nor the matter (quark)
pat of the action. To find an alternative, note that the only condition a discretized version
of the QCD action has to fulfil is to reproduce the continuum action in the bmit 0.

The choice of a discretized QCD action is therefore not unique. This apparent shortcoming
can, however, be turned into an advantage by choosing a form of the action which reduces
or even complety eliminates discretization errors (so-call@sprovedor perfectactions,
respectively).

To find a sitable discretized version of the gge field part of the action, one first
observes 1] that, on a finite-&ze lattice, the gauge fixing termigaugein Eq. @) is no
longer necessary, as the integration over gauge fields becomes convergent. Nevertheless,
a naive discretization of the gauge field part of the action is still not gauge-invariant, and
will remain so even when taking the continuum lieit> 0. It is therefore advantageous
to formulate the gauge field part of the action in a gauge-invariant form. A suitable choice
was proposed by Wilsong1],

Sa=> Y. [1 - NicRe Tr(Un,MUnW’VULﬁ’HUr‘;v)} . (29)

n O0<pu<v<3

The sumovern runsover all lattice sitesi* and thelink variableUy , is defined as

X+pa
Un, = Pexp ig/ dy? A2(y)T? |, x#* = an®. (30)
X

The link variable describes the parallel transport of the gauge field between two
neighbouring dttice sitesn* andn* + 4%, wherei* = §#* is the 4-dimensional lattice
unit vector pointing inu-diredion.

Visualizing the product of the four link variables on the right-hand side of £9), bne
realizes that this product transports theiga field around an elementary lattice plaquette;
it is therefore also called thglaquetteoperator. The trace of the plaquette operator, and
thus also the Wilson actior29), is gauge-invariant. The Polyakov loop) {s related to the
link variables via

N
1 T
Lx) = —Tr[ [ Uno. n“ = (I, n), X = an. (31)
Ne -1

Expanding the Wilson actior2@) for small lattice spacing, one obtains the continuum
limit

~psa = [ (CRFLFE) + O, (32)
X
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where = 2N./g? = 6/g? is the so-callebare coupling The corection terms to the
continuum result are of ord€(a?). The @nstruction principle behind an improved action
[62] is to addfurther terms toSa in Eq. 29) in order toeliminate corrections of order
O(a?). The improved action then reproduces the continuum limit up to corrections of order
O(a%). Repeating this procedure, one can systemdliigiminate discretization errors up

to a given power of2. Extending this procedure in order to eliminatk corrections leads

to so-calledperfectactions p3].

The naive discretization of the fermionic part of the QCD action is not particularly
sutable because of the so-calledubling problemfor massless fermions on the lattice
[60]. Fermion doubler states originate from the periodicity of the fermion dispersion
relation within the Brillouin zone. One odins one extra doubler state per space—time
dimension, such thahere are in total 2= 16 instead of a single fermion species. One
way out is to break chiral symmetry explicitlgy introducing a mass term. This leads
to the so-calledMison fermion prescription§1]. Wilson fermions eliminate the doubler
states completely, but they have the disadvantage that one can in principle no longer
study the restoration of chiral symmetry at the QCD transition. Another possibility is to
distribute components of the fermion Diracispi over several lattice sites. These so-called
staggeredr Kogut—Susskinfermions B4] do not completely solve the fermion-doubling
problem: the number of doubler states is merely reduced to four. However, the solution
to this problem is to interpret the doubler fermions as different flavour states. Hence, the
standard siggered fermion action is interpreted as describing QCD With= 4 flavours.

The advantage of the staggered fermion prescription is that it preserves a subgroup of
the ariginal chiral symmetry. The chiral condensate is thus an order parameter for chiral
symmetry restoration at the QCD transition. Other attempts have been made to solve the
fermion-doubling problem, while at the same time improving (or even preserving) the
chiral symmetry of the lattice action. To name a few, there are the so-called ovéslap [
domain-wall €], fixed-point [67] or chirally improved [68] fermions.

Let us take a closer look into the staggered fermion prescription, where the fermionic
part of the QCDaction reads

$S = ZlﬁnMéﬁ\Wm, (33)

with the inverse stagged fermion propagator

3
L. 0 -1
MR, 2, U) = 3> (=D 60 mUn — SnmsaUgh )
n=1
+ %(Sn—&-@,mU”»oeﬂ - 3n,m+(A)UrT1,0e7ﬂ) + Sn.mM. (34)

Here, the fermion mass (in units of the inverse lattice spacing) is denotee=aam. This
notation prevents confusion of the fermion mass with the lattice site vettarm*. The
chemical potential (in units of the inverse lattice spacing) is au. As shown in 9], the
correct prescription to introduce the chemical potential in the discretized fermion action is
as indicated in Eq.34), i.e., in exponential form on a temporal link.



D.H. Rischke / Progress in Particle and Nuclear Physics 52 (2004) 197-296 225

The fermionic part of the QCD action is bilinear in the Grassmann figlasdy. The
fermion fields can thus be integrated out exactly. The result for the QCD patrtition function
(1) on a discréized, 4-dimensionaN3 x N, lattice is

Z(Ny, Np, B, M, 1) = / [ JdUn..[detM"S(m, i, U)NT/ e P, (35)
n,u

The integration is over all link variablés, ,,. ThepowerN¢ /4 of the femion determinant
takes into account that, in the continuum limit, the standard staggered fermion prescription
leads toN¢ = 4 fermion sgcies. In order to obtain results with less thén = 4 flavours,
one has to take the appropriate root in B3)( In this way, one can also obtain results for
fermions with different masses. For instance, in order to compute the partition function for
two light (say, g anddown) and one heavy (say, strange) quark flavour (also called the
“2 + 1" flavour scenario) one replaces the fermion determinant in ).y the product
[detMKS (Mg, fig, U)1Y?[detMKS(ms, fis, U)]Y4.

For vanidiing quark chemical potentigli = 0, the fermion determinant in Eq3%)
is real and positive, and standard Monte Carlo meth&@k §an be applied to evaluate
the integral over the link variabldsy, ,. However, br nonzero quark chemical potential,
the fermion determinant becomes complex. It is clear that the partition function itself
cannot have an imaginary part, thus the imaginary part of the fermion determinant has
to cancel when integrating ovel, m. However, for a prticular configuration of the gauge
field, or equivalently, the link variabldsy ,, onthe space-time lattice, the real part of the
fermion determinant is no longer strictly positive. This so-caléegh problemprevents
the application of standard Monte Carlo techniques to evaluate the partition function. For
this reason, most lattice QCD calculations have been performed at zero quark chemical
potential, with data reaching an impressive level of quality. Results for the QCD phase
transition and the equation of state, i.e., the pressure as a function of temperature, are
presented irSectbns 3.2and 3.3, respectively. Only recentettempts have been made
to compute the partition function also for reero values of the quark chemical potential.
This will be discussed isection 3.6

Finally, let us note that, in order to extramintinuum physics from lattice calculations,
onehas to extrapolate the results to the case of vanishing lattice spaeing, 0. In order
to change th valie ofa, one has to change the value of the bare cougfiirg 6/g2. Since
QCD is an asymptotic theory, the strong coupling constant at the momentumascale
vanistes asa goes to zerog(a) — 0 fora — 0. This, in turn, implies thag(a) — o
asa — 0. Asymptotically, be reldion betweena and g is given ly the leading-order
renormalzation group result

6o’ P/ (2% B 11— 2N¢/3
AL >~ | — —_— = —
o (ﬂ) eXp( mo)’ 0= T e

_102—38N¢/3

by = 1622 (36)

where A is the lattice scale parameter that can be unambiguously related to the scale
parameter in other regularization schemes, for instaligg in the M S scheme.
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In principle, this allows one to convert tielue of a physical quantity, say the pressure,
which on the lattice is computed in units af4, i.e., asp = a’p, into physical units,
i.e., MeV*. However, as Eq.36) is stictly valid only for asymptotically small values of
a, in practice one uses a different prescription. Consider a physical quantity, for instance
a hadonic massmy, which is well-known in the continuum. Compute this quantity on
the lattice, where its value is given in units of the inverse lattice spadmpg,= amy.
Then, any other quantity with the dimension of energy can be determined in unitg,of
say the temerature, which i /my = (aN;)~1/(fn /a) = 1/(Mu N;).

When decreasing the lattice spacan¢py increasing the value of the bare couplig)g
the temperaturd = 1/(aN;) increases, if one keeps the number of lattice points in
tenporal directionN; fixed. (Simultaneously, for a fixed number of lattice points in spatial
diredion N,, the volumeV = (aN,)3 decreases.) Therefore, in order to determine the
temperature dependence of a quantity, one simply has to compute it on a lattice with a
fixed number of temporal pointl;, but for dfferent values ofa, resgectively 8. Thus,
oneoften finds lattice data presented as a functior ahther than as function of T.
Both presentations arequivalent, but note that the temperatimereaseswith the bare
coupling 8. One should therefore never confuse the bare coupdingith the quantity
B = (kgT)~! from thermodynamics and statistical mechanics, whielsreaseswith
temperature. (The way appears in Eq.35) certainly does not help to avoid this mistake.)

When extrapolating latticeesults to the continuum limie — 0, one does not
simultaneously want to increase the temperatuoe decrease the volumé of the system.
Rather, one has to ensure thaése quantities are kept fixed. In other words, the continuum
limit a — O is obtained by simultaneousiyncreasingthe number of lattice points in
space and time directionN,, N, — oo, such hataN, = VY2 andaN, = 1/T
are constant. This is obviously quite costly numerically. There is, however, also another
problem of numerical nature with this limit. Consider, for instance, a lattice computation of
the pressure, which yields values for the quanfits a%p = (p/ T N-4. A given value
for the physical temperature corresponds to some value for the physical pressure, such
that p/ T# assumes a certain value. Consequentljlas> oo the numericalvalue for p
onthe lattice rapidly decreases N;“ whena — 0. Since lattice QCD calculations are
subject to statistial errors, it therefore becomes increasingly more difficult to extract the
physically relevant quantity from the statistical noise. It is thus important to use improved
actions (see discussion above), which reduce the discretization errors and allow one to
perform calculations for moderate valuesNf where p is still significantly larger than
the statistical noise.

Finally, not only is one interested in the continuum limit fdiirdte volumeV, butone
would like to extrapolate to the thermodynamic livit = (aN,)3 — oo as well. At
a givennonzero temperature, howevey,TL = aN, remains finite (in fact, it decreases
asT increases). Therefore, simulations at rero temperature, which aim towards the
thermodynamic limit, requird, > N;, which rgresents another numerically expensive
condition. Nowadays, typical “hotalttices have space-like extensidts ~ 16— 32 while
the time-like extension isl; ~ 4—8. The only situation where one also has to have a large
extension of the lattice in the time direction is the zero-temperature dase 0. “Cold”
lattices typically haveN, = N; ~ 16 — 32.
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How close to the thermodynamic limit aragsent-day lattice QCD calculations?
Suppose one is doing a simulation at thdical bare coupling, i.e., where the QCD
transition occurs (se&ection 3.2 Physical values for the transition temperature are
of the order ofT; ~ 150 MeV, cf. Section 2.3.3Consquently, the lattice spacing at
the critical bare coupling; is a; = 1/(TcN;). For temporal lattice extensions of the
order of N; ~ 4 — 8, this corresponds to valueg ~ 0.15— 0.3 fm. Fa typical
spatial lattice extensiond, ~ 16 — 32 on a “hot” lattice, the physical volume is then
V ~ (25— 10° fm® ~ (15— 1000 fmS. Is such a sgtem sufftiently close to the
thermodynamic limit? The answer is not necessarily “no”, as this depends on how large
the system is in comparison to the size of its constituents. The latter can be estimated
via their Compton wavelengthc = m~L. For nucleons, the Compton wavelength is
Ac ~ 0.2 fm, so thatmany nucleons would comfortably fit into the system. (Of course,
this is an optimistic estimate: taking the nuclear charge raditts0.8 fm insiead of the
Compton wavelength drastically worsens the situation.) For a pieny;- 1.4 fm, such
that the lattice volume for these light particles appears to be on the verge of being too
small unless the pion becomes much heavier at the phase transiti@eatfon 4.9. In
any case, not more than a few pions would fit into the physical volume, which certainly
casts doubts on whether one is able to reaehttiermodynamic limit with present-day
lattice sizes.

In the following, results from lattice caltations at zero and nonzero quark chemical
potential will be reviewed. For = 0, a wealth of data is available; for the purpose of this
introductory review, | only focus on the QCphase transition, the equation of state, the
heavy quark free energy, and mesonic spectral functions. Thewcgse has only recently
received a fair amount of attention. The maittivity is still to find solutions of (or ways
around) the sign problem of the fermion determinant. For more details1Segtq.

3.2. The QCD phase transition

As already discussed isection 2.3 lattice QCD calculations have numerically
established the existence of the quark—hadron transkign.3(@) shows the x@ectation
value d the Polyakov loop{L (x)), with L(x) as defined in Eq.31), as a function of the
bare coupling (i.e., as explained i8ection 3.1as a finction of temperature) fals = 2
quark flavours. For the pure gauge theory, i.e., for quark magses oo, the Pdyakov
loop is an order parameter fdré¢ deconfinement transition: it changes its value from zero
in the confhed phase below, to a honzero value in thdeonfined phase abovk,, cf.
discussion inSection 2.3.2However, the presence of dynamical quarks in the calculation
of Fig. 3breaks theZ (3) symmetry of the pure gauge theory explicitly. Thus, the transition
is no longer of first order, but crossover. This is also observed in the data.

In Fig. 3(b) the chiral condensatg ) is shown as a functionfahe bare couplings.
For vanishing quark masses, the chiral condensate serves as an order parameter for chiral
symmetry breaking: it is nonzetbelowand vanishes abovg, cf. disassion inSection
2.3.3 Sincethe calculations ofig. 3 have been done for a nonzero quark mass, chiral
symmetry is explicitly broken. Consequently, the chiral transition is not of second order,
as expected foN¢ = 2 flavours, but crossover, which is also seefim 3(b).
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Fig. 3. Deconfinement and chirgframetry restoration in QCD wittNs = 2 dynamical quark flavours. (a) The
expectation value of the Polyakov loop and the correspamdusceptibility as functions of the bare coupling. (b)
The dchiral condensate and the corresponding su#tziéty as functions of the bare coupling. Frorhg].

Also shown inFig. 3(a@) and (b) are theusceptibilities corrggonding to the Polyakov
loop and the chiral condensate. These are defined as

9 _
x=N3(L?) — (L)), xm= = ). 37)

These quantities have a maximum at the valugg afhere the Polyleov loop and the
chiral condensate change stoapidly. This value is the critical bare couplirflg, which
corresponds to the critical temperaturefor the QCD transition. In this way, one can
define a critical temperature, even if the transition is not of first or second order, but
only crossover. The interesting observation one can make Fign3 is that 8. assumes
the samevalue for the deconfinement transition as for the chiral symmetry restoration
transition. A posdile explanation for this strong correlation between deconfinement and
chiral transition is provided by the Polyakov-loop model @6]] see alsoSection 4.5
Current results for the phase transition temperature in the[|8€3)]; gauge theory, as
well as in QCD with different flavours, extrapolated to vanishing quark mass (for details,
see [1]) are summarized iffable 2

Lattice QCD calculations have also begun to explore the quark-mass diagram discussed
in Section 2.3.4n order to decide the question about the order of the QCD transition.
The present knowledge is summarizedHig. 4. Theopen triangles are results froid
and correspond to the line of second-order transitions separating the first order from the
cros®ver region inFig. 2 The other data points confirm that the transition is of first
order below the second-order line and crossover above. It is somewhat difficult to locate
the physical point on this diagram. Naively, one would think that it suffices to determine
the lattice spacing in physical units, after which onfinds the physical point in lattice
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Table 2
The citical temperaturelc for QCD with different quark flavours (extpolated to the chiral limit) and the pure
[SU(3)c] gauge theoryN 1 = 0). For the “2+ 1" case,T¢ is close to the 2-flavour case. Frofb[ 16]

Nt Te (MeV) Remarks

2 171+ 4 Wilson fermions

2 173+ 8 Kogut—Susskind fermions
3 154+ 8 Kogut—Susskind fermions
0 271+ 2 Pure gage theory

units via multiplying the physical quark masses by this valua,ai) ¢° = an¥*. This
deceptively simple method does not work iragtice, because the physical mass in lattice
units mgf}?’s also receives contributions from renorimation, which violate this simple
relationship. Present estimates seem to indicate, however, that the physical point is deep in

the crossover regior7p).
3.3. Equation of state

The equation of state is determined by the presg(fe 1) as a function of temperature
T and chemical potential. Hence, according to Eg4) one has to computd /V)In Z.
From the pressure, other thermodynamic diti@s can be derived via differentiation, cf.
Eq. ®), and the fundamental relation of thermodynamicss Ts+ un — p. For any
quantum field theory in the continuum as wel on the lattice, the calculation of the
absolute value ofT/V) In Z is plagued by ultraviolet divergenced]. These arise from
vacuum fluctuations and have to be subtracted in order to obtain a finite valp€lfon).
The simplest way to achieve this is to subtract the valug@ ¢g¥/) In Z in the vacuum, i.e.,
atT =u =0,

T T
P(T,n)=—1InZ - (— In Z) . (38)
" \% \% T=pu=0

In this way, the value of the pressure in the vacuum is normalized to pédoQ) = 0.

A direct computation of the pressure using this formula is still cumbersome, because
it requires the calculation of the absolute values of (i1, V, 1) and InZ(0, V, 0) which
then have to be subtracted from each other. On the lattice, it is much simpler to compute
average values of quantities. Therefore, one uses the following method to determine the
pressure. First, note that

1| 7T T
%=—4 —InZ—(—InZ)
T T4 |V \Y T—p=0

N InZ(Ny, N, 8, M, i) B InZ(Ny, Ny, B, M, (1)
4 N3N, N4 '
The assumption underlying this identitig that one can approximate the vacuum

subtraction by the value ofT/V) In Z computed on a “cold” lattice wittN; = N, but
at the same value of the bare couplifidi.e., with the same lattice spaciag as for the

(39)



230 D.H. Rischke / Progress in Particle and Nuclear Physics 52 (2004) 197-296

0.14 X
amg two-state, Columbia
0.12¢ A no two-state, Columbia
crossover like, JILQCD

0104
] 1st order like, JLQCD
two-state, JLQCD

Mg, 3-flavor reweighted —a—

0.08f

® » o [0 O

0.061

0.04} Mgy, CUmMulants  —e—

0.02¢ 1
amu d

O'0004 001 002 003 004 005 006 0.07

Fig. 4. The quark-mass diagram as computed in lattice QCD. Below the line of open triangles, the transition is of
first order, above it is cexover. The data pats labelled “Columbia” are from7p], the ones lablled “JLQCD”
arefrom [74). The other points are fronvp, 75].

“hot” lattice (whereN; <« Ny), (T/V)InZ|1=y=0 = (@N;)~ 4INZ(Ny, No, B, M, f2).
Now introduce the expectation value of the (dimensionless) Wilson adéasity(5a) =
aty (Sa) = (N3N,)~ 1<SA>,
1

Sp) = I Z(Ng, N¢, 40
and its zero—temperature val(@ )o, which is computed on a “cold” lattice, i.e., by setting
N; = N, on the right-hand side of Eq4(). The quantityp/ T* in Eq. (39) can now be
obtained through an integration of E40f with respect to the bare coupliny

£————N“f 45’ ({5 (41)

T4 T4

In order to determine the second term on the left-hand sﬁ:@ﬁ]’f, one would like to
choose a rather low value for the temperatiife For temraturesTy <« my, where

my is the lightest hadronic particle, the pressure is exponentially snpaM,Tl“ ~
exp(—mpy / T1). This argument holds to very good approximation in the pure gauge theory,
since he lightest glueball state has a mass of order 1 GeV. It does not hold in full QCD
in the chiral limit, where there ari? — 1 massless Galstone particles:f. discussion in
Section 2.3.3For lattice QCD calculations, however, chiral symmetry is always broken
by a nonvanishing dynamical fermion mass, tmg is always positive. To very good
approximation one may therefore spi/Tl4 = 0. Once the pessure is known, other
thermodynamic quantities can be deteredrfrom thermodynamicdientities, for more
detals see [L5).

As discussed inSection 3.1 before one can draw definite conclusions about the
thermodynamic properties of hot quarkegh matter, one has to extrapolate the lattice
data to the continuum limit (and hope that presaay lattices are sufficiently large to be
close to the thermodynamic limit). This has been donign 5which shows the pressure
(normdized toT#) as afunction of temperature (in physical units) for the case of two light
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Fig. 5. Left panel: pressure (divided ﬂ')f‘) as a function ofémperature for the pure gauge theory and for QCD
with two and three light flavours, as well as with two light and a four times heavier quark flavour (curve labelled
“2 +1"). Arrows denote the aoesponding Stefan—Boltzmann values. For the-“2" case, the arrow is slightly
below the three-flavour case, due to the nonzermgeaguark mass. Right panel: pressure normalized to its
corresponding Stefan—Boltzmann value as a functiorewipierature normalized to the corresponding transition
temperaturel, for the four cases shown in the left panel. FratB][

flavours, three light flavours, and the 2 1" case, i.e., two light plus one heavy flavour
[77], in compari®n to the pressure for the purBU(3)¢] gauge theory{g].

Oneobserves that the pressure is rather sn#dhatempeatures. This is to be expected,
as the contributions from hadronic resonances (or, in the pure gauge theory, from glueballs)
to the pressure are exponentially suppresspd,/T* ~ exp(—my/T) for a hadron
(gluebdl) of massmy. However, at e critical temperaturd, for the QCD transition
(cf. Table 2, the pressure increases rapidly, agmtung the so-called Stefan—Boltzmann
limit psg for a system of quarks and gluons 8s— oo. The Stedn—Boltzmann limit
is the pressure for an ideal (i.e., noninteracting) ultrarelativistic gas of particles. For an
ultrarelativistic gas atu = 0, the temperatures the only scale with the dimension of
energy, consequentlpsg/ T# = const The value 6 this so-cdled Stefan—Boltzmann
constant only depends on the number of degrees of freedom in the system. For an
[SU(N¢)]c gauge theory wittN+ massless quark flavours one obtains

2
%: [2(N§—1)+2N0Nf£]%. (42)

Here, the first term in brackets the ontribution from the gauge fields, while the second
corresponds to that from the matter fields. The factors of 2 in these terms arise from the
spin dgrees of freedom of massless gauge fields and fermions. The N@:terl counts

the number of gauge fields which are in the adjoint representation of the gauge group. The
factor NcN¢ counts the number of colours and flavours of the fermions which are in the
fundamental representation of the gauge group. The fagtbadcounts for the difference
between Bose—Einstein and Fermirdi staistics and for the fact that at = 0 there are as
many antifermions as fermions. Finally, the factdy90 is the value of the (dimensionless)
Bose—Einstein integrall/67?) [;° dx x3(€¢ — 1)~ occurring inthe calculation of the
pressure.
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In all cases, the functiop/ T* approaches the Stefan—Boltzmann value for a gas of
quarks and gluons, whidhdicates that there is indeedransition from hadronic degrees
of freedom to quark and gluon degrees of freedom, i.e., from hadronic matter to the
QGPR From the behaviour of the Polyakov loop and the chiral condensate discussed in
Section 3.2in theQGP colour charges become deconfined and chiral symmetry is restored.
However, the gproach of the pressure to the corresponding Stefan—Boltzmann value is
rather slow; even at temperature8T, devidions are typically of the order of 20%. This
indicates that at such temperatures the QGP cannot really be considered as a noninteracting
gas of massless quarks and gluons.

In order to understand the deviations from the Stefan—Boltzmann values, one has to
resort to analytic calculations of the pressure, taking into account interactions between
quarks and gluons. In an analytic approach, deviations from the ideal-gas behaviour
are well under control and can be physically interpreted. For instance, in a perturbative
calculation of the QCD pressure, deviations from the Stefan—Boltzmann limit are due
to corrections proportional to powers of the strong coupling constantSseton 4.1
Another possible explanation for the deviation of the pressure figgi T4 is that quarks
and gluons are actually quasipatrticles, i.e., they are not massless, but assume a thermal
mass due tinteractions with the hot environment, seectons 4.3and4.4.

An important step to understand the deviations from ideal-gas behaviour might be the
observation that, when normalizing the pressure to the corresponding Stefan—Boltzmann
value andthe temperature to the critical temperature, the cumpgpsg as a function
of T/T. exhibit a universal behaviour for the pure gauge theory and for QCD with
various dynamical quark flavours, see right panelFd. 5. A possible &planation for
this behaiour is provided by the Polyakov-loop model of(], seeSection 4.5where
the dynamics of chiral symmetry restoration is exclusively driven by the dynamics of the
deconfinement transition.

3.4. Heavy quark free energy

The behaviour of the heavy quark free eneag a function btemperaure is aother
indication for deconfinement in the QGP. The heavy quark free enBggy(R, T) is the
free energy of a heavy quark and an antiquark, separated by a spatial diRiaata
temperaturd [24]. It is related to he Polyakov-loop caelation function via

Foo(R T
exp(—¥)=(L(0)L*(X)>, R=|xI, (43)

whereL (x) is the PolyakoMoop operator defined in Eq3(). At T = 0, the heavy quark
free energy is identical to the heavy quark poten\i’@lQ, which is expected to have a form
motivated by the string model,

0
VQQ(R) = _&R) + o R+ const (44)

The second term ensures confinement of colour charge due to the linear incréfgge of
with distanceThe constant is the string tension. The first term is an attractive Coulomb-
like contribution arising from fluctuations of the string.
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Lattice QCD dataf9] confirm these expectations, €fig. 6. Below T, (top panel ofig.
6), at small distances the heavy quark free energy is dominated by an attractive Coulomb-
like part, while at large distances it linearly rises with the distance, indicating confinement.
The linear rise becomes less pronounced with increasing bare cogplindicating that
the string tension deeases with temperature.

At temperatures abov&;, colour charges are deconfined, i.e., the linearly rising part
of the potential in Eq.44) has to vanish,daving only a Coulomb-like part. The latter
is, however, screened due to the presence of a hot medium. This is confirmed by lattice
QCD dat alove T (bottom panel ofig. 6). It turns out [79] that a fitto the numerically
computed potential can be achieved by the formula

Foo(RT) o™ ™R

T —  (RDID (45)

whereu(T) is the temperature-dependent scregnimass (or inversecseening length).
This function is shown irfrig. 7.

While the qualitative picture of deconfinement and screening of colour charges is
certainly applicable, the deconfined gluon-plasma phase cannot be described perturbatively
at temperatures in the range frofato a few timesT.. This is indicated by the fact that
the fit functiond(T) in Eq. @5) is temperture-dependent{9] and alwas smaller than
~1.5 in the range of temperatures considered here, while from perturbation theory one
expectsdpert = 2. Furthermore, the screening massl') deviates from the perturbative
value ppert (T) = 2mp(T), wheremp(T) = gT is the Debye mass in a hot gluonic
medium. The solid line ifrig. 7represents a fit inspired ypert (T) to the two déa points
corresponding to the highest temperatures, for details/gkedne observes that while the
guditative behaviour of the data follows the perturbative expectation at large temperature,
nearT. the data strongly deviate from the perturbative result. They even suggest that the
screening mass goes to zero when— Tc. This is an ndication for critical behaviour and
is naturally explained byhte Polyakov-loop model of70], seeSection 4.5

More recent developments in the study of the heavy quark free energy include a
calculation in full QCD with dynamical quark flavourg]]. Below T, the strng breaks
when creation of dynamical quark—antiquark pairs becomes energetically favourable.
Consequently, the heavy quark free energy saturates at larger distances instead of
increasing linearly. i another recent paper8(] the cobur-singlet and colour-octet
contributions to the heavy quark free energy were studied separately within the pure gauge
theory, using a avel presciption to renormalize the expectation value of the Polyakov
loop. It was found that the singlet and octet contributions only deviate at smaller distances.
As expected, the colour-octet channel ipuksive, while the colour-singlet channel is
attractive.

3.5. Mesonic spectral functions
The correlation function of a mesonic stéig (z, X) is defined as

GH (. X) = (YO Thy (O (z, ) 1Y (T, X)), (46)
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i.e., it is the overlap of a esonic state with quantum numbers determined by tked4
Dirac matrixI'y at the origin with the same mesonic staté@qtx). Fourier-transforming

Eqg. @6) with respect to the spatial variable, one obtains the mixed correlation function
GH (1, p), whichhas the spectral representation

cosh[a) (r - %)]
: : (47)
sinh(%)
Here,on (w, p) is the gectral density in the quantum number channel under consideration.
Suppose the spectral density is dominated by a single, stable, mesonic state withgnass

In this casepH (w, 0) = 7A25(w — My)/w, Wherea? is a constant with the dimension
[MeV*]. Then, the susceptibility

© dw
GH(f,D)=/ > oH(w, P)
0 JT

v fUT
XH = —/ dr/ d®*x Gy (7, %) (48)
T Jo Vv

assumes the valugq = (V/T)Azmgz, i.e., itis proportional to the inverse mass (squared)
of the meson. In a lattice QCD calculation, one can thus infer the mass of a mesonic state
in a given quantum number channelrfrdhe corresponding susceptibility.

The masses for the pion, tlke meson, and th@y meson computed in this manner
are shown irFig. 8 as a function of the bare coupling (i.e., the temperature). The results
indicate restoration of chiral symmetry, i.e., the mass of the pseudoscalar meson (pion)
becomes degenerate with those of the scalar mesoasdap) at large temprature. The
fact that the pion and the meson become degenerate in mass at smaller temperatures than
the pion and th@g meson indicates that tH&U(2), x SU(2), symmetry is restored prior
to theU (1) o synmetry when increasing the temperature.

Instead of the susceptibility, one could also try to compute the complete spectral density
oH (w, p) of a mesonic state from lattice QCD data. An important motivation for such a
calculation is the fact that the speaitdengty in the vector channeby (w, p), is directly
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proportional to the rate of dilepton emissidi], which is an experimentally observable
quantity [87],

dNpso- 502 1 oy(w.p)

d*Xdod®p 2772e/T -1 w2

To detemineoy (w, p), one would have to perform an inverse Laplace transformation of
Eq. @7). This requires complete knowledge of the correlation func@y(z, p) on the
left-hand side. On the lattice, however, this function is only known at a few discrete points
in the t-diredion. Moreover, its value atkese points is subject to statistical fluctuations.
Consequently, a computation ef; (w, p) via inversion of Eq. 47) with lattice data for
Gy (1, p) isimpossible.

Neverthelessy solition of this problem is provided by the so-called “Maximum Entropy
Method” (MEM). The basic idea is to construct that particular spectral deasgityw, p)
under the integral in Eq4({), which is themast probableone to yield a given correla-
tion functionGy (z, p) on the left-hand side of that equation; for details <&8.[Fig. 9
shows the spectréunction in the vector meson channel computed with this metBaid [
(left panel) and the corresponding dilepton rad8)((right panel). One observes that the
peak in the spectral density broadens andtstowards larger energies as the tempera-
ture increases. Consequly, the dilepton rate is depleted for small dilepton energies. This
behaviour is in stark contrast to the dilepton emission rate computed in the Born approxi-
mation and in the so-called HTL-resummation scheme, which are also shakig.if.

Finally, the low-enegy behaviour of the spectral density determines the value of
transport coefficiets in a hotmedium B4]. | do not elaborate further on this point, as
it concerns the nonequilibrium properties of the QGP, which are beyond the scope of the
present review.

(49)

3.6. Nonzero chemical potential

As discussed ifsection 3.1for nonzero values of the quark chemical potentiai O,
a draightforward evaluation of the QCD partition function on the lattice is not possible due
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Fig. 9. Left panel: the spectral détysin the vector channel, divided bgaz, for various temperatures. Right
panel: the dilepton rate computed in lattice QCD for two different temperatures as a function of energy (in units
of temperature). Also shown is the Born approximatiod &e result from HTL-perturbation theory. Frofd#].
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Fig. 10. The QCD phase transition as computed in lattice Q&P [To the left of the critical point the transition
is crossover, to the right it is of first order. At the critical point, the transition is of second order and in the
universality class of the Ising model. Note thag = 3u.

to the sign problem of the fermion determinant. However, for sufficiently smphogress
has recently been made by applying methadigch explicitly avoid the sign problem.
Most notably among these are multiparameter reweigh88} Taylor expansion around
u = 0 [85], and analytic continuation from imaginary valuesof where tke fermion
determinant is real-valued and positive, to real valueg §86]. For the sake of brevity,
here | only discuss the multiparameter-régkging method; for a detailed comparison of
all approaches see the reviel].

The multiparameter-reweighting method is based on the so-called Glasgow method
[87]. The idea of the Glasgow method is to treat the fermion determinant at nopzaro
the partition function5) as anobservableather than as a part of the integration measure.
The integration measure itself is computed with a fermion determinanta0, which is
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real-valued and positive and thus causes no problems when applying standard Monte Carlo
methods to sample gauge field configurations,

detM(m, i, U) . _
Z(Ny, N;, B, /l_[“ " etV (0, U)detM(m,o,u)e BSa
_ <detM(rT~1, a, U)> (50)
detM(m, 0, U) [i=0
Here, the expectation valy®) ; —o of an operato0 is defined with respect to an ensemble
of gauge fields and fermions at zero quark chemical potential.
This method is limited to small values of. In order to understand this, one has to
remember the principle behind a Monte Cactumputation of the functional integrad @)
[60]. A Monte Carlo computation assumes that in order to obtain a reasonable approximate
value of the finctional integral in Eq.50) it suffices to sum only over (a few #@o 10*
of) the “most probable” gauge field configuiais, rather than performing the integrals
over the link \ariablesUn, ,, explicitly. The “most probable” gauge field configurations are
obviously those which minimize the acti@a. However, thanost probable configurations
atu # 0 arenot the same as the onesiat= 0. Thus, approximating the partition function
atu # 0 by confgurations obtained fqu = 0 becomes increasingly worse asncreases.
In other words, the “overlap” between the ensemble of most probable configurations at
= 0 and the asemble that consists of the configurations which are actually most
probable ajx # O diminishes.
It has been recently realize84] that a way to mcrease this overlap is to also include
the exponential of the action into the operator which is averaged over the ensemble,

B <e—ﬁSA detM (m, i, U)>
i1=0, 80

Z N 7N ’ ’m L T
(No, N, B e FoSadetM (, 0,U) [;_

(51)

i.e., the ensemble one averages over is generatpd-atO and a alue 8o for the bare
coupling. In this way, one not only reweights the ensemble in the parametes in the
Glasgow aproach 50), but also in the bare coupling (hence the name “multiparameter
reweighting”).

How does one choose the second reweighting parang&erhis degnds on which
physical question one asks. Suppose one wants to compute the QCD phase transition line
for nonzero values oft. One firstgenerates an ensemblejat= 0 andgy = B¢. This
ensemble is “maximally” critical in the sense that it is generated at the phase transition
point(8, it) = (Bc, 0) (which corresponds to the poii, u) = (Tc, 0) in the continuum).

For each nonzero value gf one then derminesg such ttat one remains on the phase
transition line.

The criterion for “remaining on the phase transition line” is the position of the Lee-Yang
zerospy, B5, . .. of the partition functionz in the complexs-plane Bg|. For a given set
of parameterd\,, N, M, i, there are rany Lee-Yang zeros, i.e., roots of the equation
Z(Ny, N, g*,m, 1) = 0. (In fact, the total number of Lee-Yang zerd8, increases
linearly with the volume of the systenM ~ Ng.) In the case of a first-order phase
transition,one root, says;, has a wanishing imaginary part, i.e., it lies on the positive
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real 8 axis. Then the value ¢f which corresponds to the phase transition line in(hex)
plane isp = Rep;.

Note that in a finite system, such as thegp-time lattice considered in lattice QCD,
all Lee-Yang zeros have nonzero imaginary parts. Then one has to study lattices of
different sizes and extrapolate to the infinite-volume limit. 34][ this is done via linear
extrgpolation in the variable AV, g7 (V) = Bi(c0) + a/V. In the case of a crossover
transition, the imaging parts of the extrapolated Lee—Yang zeros never vanish. In this
case, the value ogf corresponding to the phase transition line is determined by the real
part of the Lee—Yangero with the smallest imaginary part.

The phase transition line calculated in this way is showifrign 10. It agrees with
the expectatins discussed in Sectio@s3.4and 3.2 there is aline of first-order phase
transitions ending at the point(T, w)er = (1604 3.5, 242+ 12) MeV, at which the
transition is of second order. To the left ofglpoint, the transition is crossover. One should
mention that the lattice QCD calculation underlykig. 10wasdone on fairly small lattice
sizes, with probably unrealisticallyrige quark masses. As discussederction 2.3.4for
smaller quark masses the endpoint should move towards the temperature axis. For three
massless flavours, it should reach the tempegaduis, since in thisase the transition is
of first order. For realistic quark masses, however, as discusS&atiion 3.2he transition
is crosgver aty = 0, and the line of first-order transitions should always end at some
nonzero value oft.

The position of the phase transition line determined by multiparameter reweighting is in
good agreement with that computed by the other approaches mentioned previously, namely
the Taylor expansion method, and the method of analytic continuation from imaginary
values ofu [16]. Recent development89] are the application of the multiparameter-
reweighting method to compute the equation of state at nonzero quark chemical potential.
Fig. 11 shows the results for tharessure differencAp = p(T, u) — p(T, 0), normalized
to T4, as a finction of T for various values oft. There isa stong increase oh p around
the phase transition temperature. This increase is larger for larger values of

Multiparameter reweighting, as well as théher aforementioned methods, is restricted
to values of the quark chemical potentialhich are not too large as compared to the
temperature. In order to compute the partition function of QCD for large quark chemical
potential at small or even zero temperature, and possibly study the colour-superconducting
phases of quark—gluon matter, one has to resort to other methods. A promising approach is
the so-called meron-gster algorithm which has been shown to solve the sign problem of
the fermion determinant for the Hubbard and the Potts maaigl For QCD, as of yet no
sdution has been found.

Another possibility is to study a model for QCD which does not have the sign
problem. Such a model is, for instance, the NJL model which has been investigated on
the lattice atT = 0 andu # 0 in [9]]. Although this model has no colour gauge
symmetry which could be spontaneously broken, and thus strictly speaking cannot exhibit
colour superconductivity, quarks can still form Cooper pairs and the system may become
superfluid. Fig. 12 shows the chiral condensate, the baryon density, and the superfluid
diquark condensate as a functiof the baryon chemical potential, computed on the lattice
and then extrapolated to the thermodynamic limit. One observes that, as the baryon density
increases, the chiral condensate vanishegldiquark condensate increases, signalling
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Fig. 11. Ap as a function ofT / T for various values ofxg. From bdtom to top,ug = 100, 210, 220, 310,
530 MeV. From 89].
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Fig. 12. The chiral condensate, the baryon density, aeditiuark condensate as a function of baryon chemical
potential xg. The solid line is the chiral condensate computedlically within the Hartree approximation.
From [91].

theonset of superfluid behaviour. These results are in agreement with analytic calculations
[39 for the NJL model in the mean-field approxitiea, which stimulated recent interest
in colour superconductivity.

4. Analytic approaches

4.1. Perturbation theory

The QCD partition functionk) can be expanded in a power series in the strong coupling
constantg. In the fdlowing, | present the general ideatired this approach, neglecting
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contributions from gauge fixing and from Fadeev—Popov ghosts. Of course, these have to
be properly accounted for in order to obtain the correct answer; for more detaildGsee [

| also foais on the casg = 0. The first step is to split the QCD Lagrangi&) {nto two

terms, the noninteracting pafy = Lg—o, and the mteraction partl; = £ — Lo. Then,

the QCD actiorS = [, £ can be written as

s =So+S|E/(£o+£|), (52)
X
Lo=PGyly + 3ATAG A, (53)
2
Ly = gy TRy AL + gfao%, AL AL AL — 2 F20F20eAD AC AL AL (54)

HereG,* = iy#d, — mis the free inversguark propagator andy 4 = (Ogt —

9*9")d4p is the free inverse gluon propagator (et will eventually receive another
contribution from the gauge fixing terms neglected here). The next step is to introduce
source terms for fermions and gauge fields (which eventually have to be set to zero).
One can then replace all fields B in terms of functional derivatives with respect to

the ources, and thus extractefrom the functional integral. The functional integration
ove the exponential of the noninteracting part and the source terms is a Gaussian integral
and can be performed exactly. The result is

5 8 8
Z = Zyex 222
0 p{S [3;7’3;7 aJ;;l”

) 1
X exp UX (—nGon - EJ;';‘AOQ; va)]

where Zp is the partition function for a systemf moninteracting quarks and gluons.
Obviously, the pressurgg = (T/V)In Zg is identical to the Stefan—Boltzmann pressure
defined through Eq4@), po = pse. The full pressure in QCD also receives contributions
from the remaining two terms in Ep%). After introducing Feynman rules for propagators
and vertices 10, these terms have a graphical representation as an infinite series of
diagrams with no external legs. The diagrams can be sorted according to powers in the
strong coupling constarg associated with the verticeshiis, one obtains a perturbative
series inpowers ofg.

Inspecting the topology of these diagrams, one would naively conclude that this
perturbative series is an expansion in powerg?fn fact, it turns out that this is only true
at zero temperaturé@p]. At nonzero temperature, the expansion is in powerg, aather
thang?, due to the different infrared behaviour of a field theory containing massless modes
(such as gauge fields) at nonzero temperature. Roughly speaking, the difference arises
from the infrared behaviour of single-patégphase space, which, at zero temperature, is
~dk k3, while at nonzero temperature it isTdk k2. The missingpower ofk at nonzero
temperature leads to a complgtéifferent infrared behaweur as compared to the zero-
temperature case.

At zero temperature ththeory is well-behaved in the infrared and the terms of the
perturbative series are probably computable to all orderg?if41]. Freedman and

: (55)
i=n=3=0
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McLerran computed the series up to terms of ordér for detdls see P2]. | do not
present a more ddtad discussion of their results at this point, as quark matter at zero
temperature is a colour superconductor, cf. Sectids3and5. Colour superconductivity
is a nonperturbative phenomenon, which cannot be described in a purely perturbative
calculation of the pressure.

At nonzero temperature, the infrared behaviour of the theory leads to terms proportional
to odd powers ofy in the perturbative expansio&%) of the partition function. Technically,
they arise from a resummation of an infinite sethsf diagrams describing the screening of
long-range electric fiels. Moreover, there are infinitely many diagrams at o@eg®), and
the perturbative expansion breaks dow@|[ Thisis sometimes called tHende problenof
QCD, after its discovererlfl]. Nevertheless, what is perturbatively computable has been
evaluatel. These are all terms up ©(g®), and the tems of orderO(g®Ing). How to
obtain the latterd discissed in greater detail iBection 4.2 While the terms which are
genuinely of orderO(g®) cannot be computed perturbatively, they can in principle be
evaluated via a lattice calculation.

At zero chemical potential, the pressure assumes the form

p = T%co + c2g? + 30 + (¢, Ing + ca)g* + cs9° + csg°). (56)

The coefficienty is equal to the Stefan—Boltzmann constad®), The coefficient; arises
from the lowest-order perturbative correction to the pressure of an ideal gas. It consists of
two-loop diagrams, and was first computed by Shurgsk [

NZ—1 5
Cr = — N —N¢ ). 57
= (c+4 f) (57)

The computation of the coefficient requires a nonperturbative resummation of plasmon
ring diagrams in the infrared limit. This was first done correctly by Kapu&h {vith the
result

c —N"Z_1<N+ N>3/2 (58)
3_36\/§n o > f .

The coefficient) has been computed by ToimeBH],

NZ -1 1

The coefficientcs is due to threedop diagrams and has been computed by Arnold and
Zhai [96],

N2 -1 1 Nc + Nt /2
Cp=— —24Nc ( Nc + =Nt | In [ ——=—="=
’ (48n>2{ ( "2 f) ( 122

+N§[2—2In L S s S N +%}

3 4xT ' 3¢(—=3) 3 -1 TETB

47 @ 1¢/(=3)  37¢(-1) 1759 37
NeNp |t p 289 30eth ) 209, 30,
+ e f[6n4nT+6§(—3) 3c—n  Et ot 1o"
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Here, (x) is Riemann’szeta functionyg is the Euler—Masadroni constant, and is the
renormalzation scale in theM'S scheme, dr detdls see P6]. The coefficientcs arises

from corrections to the three-loop diagrams due to Debye screening of electric gluons. It
has been computed by Zhai and Kasteni@ig) Rndby Braaten and Niet®fg],

_ONZ-1
9216373

1 1/2 -
x (NC+ ENf) [NCZ (176|nﬁ + 176y — 2472 — 494+ 264In2>
TT

Cs

+ NeNj (56In-L— + 56y +36—64In2
47T

+N2 (16" — 16/e +8—32In2 —36N°2_1N (61)
f 4T E Ne |

The coefficientcg contains terms~Ing and constant terms. The former contribute to
order O(gfIng) and can be evaluated perturbatively, while the latter are genuinely of
order O(g®) and can only be computed e.g., via a lattice calculation, for more details,
seeSection 4.2At finite temperatug andnonzero chemical potential, the @ntributions
of orderO(1), O(g?), andO(g* In g) to the pressure have been computed by Toin@9h [

To be more gplicit, consider pure[SU(3)c] gauge theory, i.e.Nc = 3, Ny = 0.
The pressure up to terms of a given ordergins shown n the left panel ofFig. 13.
The strong coupling constagtis taken to be running and evaluated at the scaleAfter
applying the principle of fastest apparent convergence to minimize the two-loop corrections
to the running ofg, this sale is chosen a8 ~ 6.742T; for more detéls see L0(J. The
scale x also enters under the logarithms in Eq¥0)(and €1). In principle, the complete
result for the pressure, being a physically etyable quantity, must be independent of the
renormalizéion scalejx. The way his works out is thafi under some logarithm, such as
that occurring in Eqs.80) and 61), is cancelled by a similar logarithm from the running of
the coupling constant in a lower-order contribution. Nevertheless, while tedmg must
cancel, there still exist physical termsn g, andhereg has to be evaluated at the scale
The cancellation of th¢i-dependence holds for the complete result foibut this does
not happen if one terminates the perturbative expansion at some given order. This is the
reason why, for instance, tf@(g?) contribution to the pressure Fig. 13is not flat. Here
the aurvature arises from the logarithmic running of the strong coupling constant with the
scaleit ~ 6.742T.

The perturbative series6) converges badly. The second-order termmpg? gives a
negative contribution to the Stefan—Boltzmann pressure, which is less than 109 af
T ~ 10°Ags and at most 40% opsg at T ~ Ags (~Tc). However, the ext contribution
~c3g° is positive and so large that the pressure overshpgisup tothe largest values of
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Fig. 13. Left panel: pressure (divided By*) as a finction of temperature for the puf8U(3)c] gauge theory.
Several perturbative contributions (up to a given powen)iare shown, as well as lattice QCD data frorig].
Right panel: sensitivity of the pressure to the value of the constarthe term~g®. From [100.

T shown inFig. 13. The terns of orderg* are again small, but also positive, such that, to
orderO(g*), thepressure is larger thapsg. The terns of orderO(g®) are negative and so
large in magitude, that the pressure even vanisheg at Ags. Thus, nare pertirbation
theory is clearly not applicdé for tenperatures of order.

In the setions following Section 4.2 seveal ways to improve the situation will be
explained. All of them are based on the observation thatatié powers ofg in the
perturbative expansiorbf) are responsible for the bad convergence properties, i.e., the
latter are caused by thefrared properties of QCD. Note that there have also been attempts
to improve the convegence properties of perturbation theory by using mathematical
devices such as Padpproximates 101] and Borel esummation102. Here, | do not
discuss these methods in more detail, bsedbe physical problem of improving the
description of the infrared sector of QCD cannot be solved in this way. For the sake of
completeness, one should also mentid@3, where a phenomenological solution to the
problem of convergence of the perturbative series was presented.

4.2. Dimensional reduction

Consider a quantum field theory at nonzero temperature in the Timit oo. In this
limit, the Euclidean time interval in the partition functioh) (shrinks to zero, 1T — 0.
Consequently, the original 3 1-dimensional theory reduces to a theory in three spatial
dimensions. This is calledimensional reductiofil04. What are the degrees of freedom
in the dimensionally reducedebry? Recall that the compactiition of the Euclidean time
interval[0, 1/ T] at nonzero temperature leads to déterenergies for the field modes, the
so-called Matsubara frequencie$(]. Bosonic degrees of freedom have periodic boundary
conditions in Euclidean time, and thus their Matsubara frequencies are even multiples of
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7T, ®? = 2nzT, n = 0,+1, +2, .... On theother hand, fermionic degrees of freedom
are antiperiodic in Euclidean time, and consequently their Matsubara frequencies are odd
multiples of 7T, o, = @2n + DzT,n = 0,41, +£2,.... AsT — oo, all modes with
nonzero Matsubara frequency become infinitely heavy, and are thus removed from the
spectrum of physical excitations. These atefermionic modes, and atlonstatichosonic
modes. Consequently, dimensional reduction leads to a theory of static bosonic fields in
three spatial dimensions.

The dimensionally reduced theory can be viewed asfiattivetheory at energy scales
much lesghan the temperature. Considesr £xample, QCD in weak coupling, < 1,
where there is a distinct separation of energy scaf€B,« gT < T. Thedimensionally
reduced theory is then the effective theory for modes at energies of©«ddr) which one
obtains from the underlying theory, i.e., QCD, by integrating out modes at energy scales of
orderO(T). Onecan then take this idea one step further and integrate out modes at energies
of order O(gT) and obtain an effective theory at an energy scale of o@i@?T). In
[105 it was suggested to apply this principle of constructing a series of effective theories
to compute the pressure in QCD. This task was recently carried out to Gx@g in
a swecession of paperd 0d. In the following, | outline the idea and discuss the results,
which are also shown iRig. 13. Note hat the idea of constructing an effective theory valid
on a certain energy scale has also been applied to nonAbelian transport th&0fes [
As transport theory concerns nonequilibriuituations, a discussion of these aspects are
beyond the scope of the present review.

After the first step of integratingut modes at energy scales of or@(T ), thepressure
in QCD takes the form (gt = 0)

p(T) = pr(T) + % In [/ DAZDAS exp(—SE)], (62)

wherept (T) is the pressure of the modasaergy sales of ordeO(T) and the remaining
term is the contribution from odes at energy scales of ord@(gT). The agument of

the logarithm is the partition function of the effective theory for these modes. Since the
energy scalgT is that of the Debye massjp = gT, which deternines the screening
length of static colour-electric fields, quantities appearing in this partition function will
be labdled with a subscript E”. The actionSe of the effective theory is that of a three-
dimensional nonAbelian gauge theory (i.@nsisting of the colour-magnetic fields of the
original theory) coupled to a Higgs field in the adjoint representation of the gauge group
(corresponding to the static colour-electric fields of the original the Q[

S :/Vd?’xCE, (63)
Le = 3TrF2 + TrDi, Aol? + mETrAZ + a2 (TrA2? + AP Tr AL+ (64)

Here,Fij = (i/ge)[Di, Dj1 = F2T3, D = 3 —igeAi, andA, = AﬁTa. There are five
unknown quantities o the right-hand side of Eq6Q): the pressurer, the massng of
the adpint Higgs field. 4o and the coupling constants:, A(El), A(EZ). Theirvalueshave to
be determined by “matching” the effective theory to the original theory at some matching

energy scale. At this point, however, one adready determine their scaling behaviour
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from counting dimensions. The pressyreis that of a 3+ 1-dimensional theory of modes
with momenta of orde®(T). Thus, at nonzero temperature (see abgue)} T [ dk k2 ~

T4. Sincethe actionSe has 1o be dmensionless, one can deduce the dimensionality of the
fields A; from the kinetic termv]-'ﬁ. As lengths have dimensiofi—1, the fields have to

scale asd; ~ T2, The adjint Higgs field must have the same dimensigty, ~ T1/2.
From this one deduces that the mass term scalegas mp = gT, the @upling constant
ge scales~gTY/2, and the bur-point couplings behave a8’ ~ g*T. Thedots in Eq. 64)
denote higher-dimensional operatorsiédcan show by power counting that they are not
relevant if onds interested in a calculation of the pressure to o@eg®) [100.

The next step consists of integrating out modes at energy scales of@¢dge&p. Since
physics at this scale is determined by static colour-electric fields, or in other words, by the
adjoint Higgs fieldAg, one has to integrate out this field,

%In [/ DA DAY exp(—SE)] = pe(T) + % In [/ DA? exp(—SM)] ) (65)

The termpg is the pressuref modes with energy of ordéd(gT). The agument of the
logarithm on the right-hand side defines the partition function of an effective theory at
energy scales of ordéd(g2T). Sincethe energy scalg?T is associated with the scale

of the magnetic seening massny ~ g2T in nonAbelian gauge theories at nonzero
temperature, quantities appearing in this partition function are labelled with a subscript
“M”. The actionSy entering the partition function of the effective theory at an energy
scale O(g?T) is simply that for a three-dimensional nonAbelian field theory for colour
magnetidields,

Sy :/d3xcM, (66)
Ly =3TrFE +-, (67)

whereFj = (i/gw)[Di, Dj1, Di = 8 —igmAi, andA; = A?T2. The two onstants
Pe, guw on the right-hand side of Eq6%) have to be dermined by matching the
effective theory at the energy scaéT to that at the energy scatgT. However, their
scaling lehaviour can already be determingy powercounting. The pressunge is again
~T [dk k2, butnow the integral runs only over modes with momenta of o@leg T), thus
pe ~ (gT)3T ~ m?éT. Thedimendonality of the fieldsA4; is the same asiitheprevious
effective theory, thugy ~ gTY2 ~ ge. Thedots in Eq. 67) denote higher-dimensional
operators which are again irrgbnt if one isinterested in a computation of the pressure to
orderO(g®).

The final step is to compute the pressure of modes with energies of@(dér ),

pm(T) = % In [/ DA? exp(—SM)} ) (68)

From power counting one deduces thay ~ T [dkk?® ~ (g°T)3T ~ ¢bT* ~ ¢§ T,
since he integral runs over modes with momenta of or@ig2T). Due tothe Linde
problem, this contribution cannot be obtained perturbatively. What one can evdlQfte |
is the contribution of orde®(g® In g) to pwm, sincethis arises from ultraviolet divergences
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~In(a/mp) and not from the nonperturbative infrared sector which yields a genuine
0(g® contribution to the pressure. The latter has to be evaluated e.g., via a lattice
calculation.

The final answer for the pressure in QCD is th&iT) = p71(T) + pe(T) + pm(T).
If one wants to determine the pressure to or@gg®Ing), one has to compute all
terms appearing to this order ior, pg, and pp. This can be done perturbatively. The
contributions topt constitute a power series g, andnot ing. They are needed explicitly
only to orderO(g?), sincethe full O(g®) contribution to the pressure is nonperturbative
in any case. One then evaluates all four-ldtgyrams in the effective theory at scatgF,
in order to determingg up to orderO(g®In g) [100. As expected from power counting
(see above), the lowest-order termsoia are~m3,::T ~ g3T%. Findly one ads everything
to the O(g®Ing) termfrom py. Oneobtains a well-defined expression for the pressure
up to orderO(g®Ing). The termwhich is genuinely of orderO(g®) remains unknown.
The result for the pressure in QCD is then given by B) vith the O(g®) contribution
(Ne =3,Ns =0)

N2 —-17/215 805 1
ce = N3—C s x2)In=+88 69
6= e [(12 768”) g ] (69)

wheres is an unknown constant.

In the right panel of-ig. 13 the result for the pressure as a function of temperature is
shown forvarious vdues ofs. Comparingto lattice QCD data for the puf&U(3)c] gauge
theory, he optimum value appears to b€.7, since then the perturbative calculation nicely
matches onto the results from the lattice computation, see left parigboll3. One also
observes that for the optimum value, the pressure Up(@f) is rather close to the result
to order O(g?), unless the temperature is very closélto This provides a certain amount
of confidence that this perturbative evaluation of the pressure is reasonable.

Finally, note that the above framework of constructing a sequence of effective theories
via dimensional reduction was recentlytemded to include quark degrees of freedom
at nonzero chemical potentiall§7. At nonzero temperature, the quark Matsubara
frequenciess!, = (2n + 1) T are always of orde®(T), consequently quark degrees of
freedom have to be integrated out in the first s&3) {n the @mnstruction of the sequence
of effective theories.

4.3. Quasiparticle models

In Section 4.2thepressure of QCD was computed by evaluating the partition functions
of various effective theories. This considerably improved the somewhat unsatisfactory
situation of a purely perturbative evaluation of the pressure up to terms of G@e)
as discgsed inSection 4.1 Another way to improve theitsation is based on the
following observation. The results @&ection 3.4suggest that nonperturbative effects
gtill influence the physics at temperatures in the range ffiynto a few timesTe..
Consequently, a perturbative expansion of the pressure arourmethebativevacuum
in terms ofmasslesguarks and gluons seems inappropriate. What is obviously missing
in a perturbative description of the QCL[amition function are nonperturbative effects
which, when decreasing the temperature from> T, are responsible for the phase
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transition atT¢. This was ealized a while ago and attempts were made to incorporate
them into the properties of the physical degrees of freedom. In the following, | discuss two
sleh attempts, the so-called “cut-off model” and a model which treats quarks and gluons
as masive quasiparticles.

4.3.1. The cut-off model

Let us again restrict the discussion to the giB8(3).] gauge theory. The cut-off model
is motivated by the fact that QCD is an asymptotically free thedtyile., only gluons
with large momenta can be considered to be perturbative, while those with small momenta
are subject to confinement. Quite similar to the effective-theory approach discussed in
Section 4.2 one then introduces a cut-off momentuinto separate #se two regions
[108 109. Gluons with momenta larger that are treated perturbatively, while gluons
with momenta smaller thas are assumed to remain bound inside colourless objects (glue-
bdls in the case of purgSU(3)c] gauge theory). The dispersion relation for perturbative
gluons then changes from the one for free massless partigles—= |k| = k to

wk) = Ok — A)k. (70)

Gluons with moment& < A are bound inside glueballs. The glueball mass sbhhls of
the arder of 1 GeV. The contribution of glueballs to the thermodynamic functions is then
exponentially suppressed exp(—M/T), andcan thus be neglected for the temperature
range of interest.

The leading-order contribution to the pressure arises from noninteracting gluons with
momentk > 4,

cut 2 d3k k
Po (T) ==2(Ns = DT / w@(k— MNin|l- exp(—?) . (71)

One can also compute perturbative corrections to this leading-order result. To this end,
one has to evaluate the standard diagrams of the perturbative expansion of the pressure as
discussed inSection 4.1 but with additional thetatinctions like in Eq. 70) to restict the
phase space of the internal gluon lines. 109 this has been done up to ordéxg?).
Due to the restricted phase spaté¢he loop integrals, the perturbative corrections become
relatively small compared to the zeroth-order contribution. In this sense, the perturbative
series for particles with the dispersion relatiofQ)(is beter behaved than the original
perturbative series when the cut-dff= 0.
Besides the ct-off A, the cuteff model has another parameter, the MIT bag constant
B [110, which describes the ergy difference between the perturbative and the
nonperturbative vacuum. Fitting the paranmstef the cut-off model to lattice QCD data
for the pure[SU(3)c] gauge theory, quite reasonable agreement could be obtained. |
do not explicitly show results from 109, because lattice data at that time were not
yet extrapolated to the continuum limit. Consequently, the valuesifand B obtained
previously will quantitatively change once doruum-extrapolated data are used for the fit.
Nevertheless, on a qualitative level, the valuesfanecessary to fit the data were on
the order a typicaglueball massA ~ M ~ 1 GeV. This walue for A nicely confirms
the mnsistency of the assumption underlying the cut-off model, namely that gluons with
momentak < A ~ M are bound into glueballs of mas4. Moreover, ifone irterprets
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the cut-off model as an effective theory in the senseSafction 4.2the physics cannot
depend on the precise value 6f In other word, if one properly matches the effective
theory for gluons with momentk > A to the dfective theory for glueballs (i.e., gluons
with momentak < A), the cut-off would drop out. This matching procedure has not been
done for the cut-off model. However, one may expect that a proper matching calculation
would just confirm the result ~ M obtained from the fit to lattice QCD data. One may
thus simply replace the unphysical parametday the physical value of the glueball mass
M to obtain a model which is independent of the arbitrary (and thus unphysical) cut-off
scale A. Thecut-off model has not been applied to lattice data for full QCD, because then
the assumption that all colourless objects are heavy and are negligible when computing
thermodynamic functions breaks down (the pion mass is of the ordRy) of

The gluon dispersion relatiorv@) can be interpreted in the way that gluons with
momenta below the cut-off momentumhave infirite mass, while those with momenta
above A have zero mass. It is harb believe that the true dispersion relation of
gluons as computed in Yang—Mills theory wduustain the oversimplified and rather
radical assumptions of the cut-off model. A more conservative model to improve our
understanding of the thermodynamic properties of the QGP is explained in the following
section.

4.3.2. Models with massive quasiparticles

In a hot and dense medium, fiales attain a self-energif (w, k), which (due tothe
breaking of Lorentz invariance) depends separately on energyd 3-momenturk, as
well as on the properties of thmedium (i.e., its temperatuiie and chemical potential).
If the imaginary part of the self-energy on the dispersion branch of the physical excitations
is not too large compared to the real part, these excitations are called quasipatfidles [
The simplest situation is when the self-energy is independent of energy and momentum,
i.e., constant and real, corresponding to a mass term, which depefdarmty., but not
on the energy and the momentum of the partittethis case, the dispersion relation for
quasiparticles of massa reads

w(k) = VK2 + m2. (72)

The self-energies of quarks and gluons in QCD are certainly not constant (see also
Section 4.3. Nevertheless, one can still simphgsumethat they are coriant and &plore
the mnsequences. These so-called “massive quasiparticle models” have been investigated
in great detail in the literature as a means to describe and interpret lattice QCD data on
thermodynamic functions of QCDOLL2-116. The advantage of #se models is that it is
straghtforward to extend them to nonzero quark chemical poteritiad [

Here, as in therevious section let us only focus on a quasiparticle model for pure
[SU(3)¢] gauge theory. For the generalization to QCD with dynamical quarks14ée [
117). For the pure gauge theory, there are only massive gluon degrees of freedom and the
pressure reads

d3k (k)
map — _ 7 _
p"P(T) = —DT )3 In[l exp( = )} B, (73)
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with w(k) given by Eq. (72). As in the cut-off model, an MIT bag constant is introduced
to account for the difference between the perturbative and the nonperturbative vacuum.

Two camments regarding the pressuré3) are in oder. First, wlle massless
gluons have two transverse pakations, massive gluonsyean additional longitudinal
polarization degree of freedom. Therefore, one would naively argue that the cobstant
in Eq. (73) should assume the valup = 3(N§ — 1), instead of D = 2(N§ -1,
as for massless gluons. This is, however, not quite correct. First, the pregsSuleas
to approach the correct &an—Boltzmann limit whel — oo. For three polarization
degrees of freedom, the Stefan—Boltzmann pressure is a fg@da@er han the correct
value. Another reason why this is incorrect is the following.3ection 4.4we shall see
that gluons indeed acquire a longitudinal degree of freedom in a hot or dense medium, but
that the respective longitudinal spectral dgnganishegapidly for energies and momenta
larger thangT. Thus, in a calculation of the pressure, which is dominated by modes with
momenta of ordeT, one should in principle not count the longitudinal degrees of freedom.
We shall theefore setD = 2( Ng — 1) in the following. (Note that 115 also inwestigated
a enario where is a function of temperature.)

The second comment concerns the possibility to fit lattice QCD data with78).1{
turns out that for constant mass and bag parameters, the quality of the fit is not satisfactory.
Consequently, one needs to generalize the mo@8) {o dlow for a temperature-
dependent gluon mass) — m(T). A conwenient parametrization is motivated by the
dispersion relation for transverse gluons at large momenta, which takes thefdom=

Jk2+m?,, see Eq.100). Consequently,

_gMmT 872
Nz 11INF(T/Te, Te/ Ags)]’

For a fixed value off¢/Ays ~ 1.03 £ 0.19 for pure[SU(3)c] gauge theory]1§, one

only needs to know the functioK (T/T¢) in order to determine the mass)(T), and

thus the kinetic term in the pressuf&d]. In [115 the functionK (T /T¢) is simply fit to
reproduce lattice QCD data. A surprisingjpod fit is obtained with the functional form

K (x) = 18/[18.4 ex—0.5x%) + 1], seeFig. 14. Once he gluon mass is a function of
temperature, thermodynamical consistency requires the bag parameter to depend on the
temperature as welB — B(T). The functional form ofB(T) can be uniquely determined

from m(T); for detals see [L15.

m(T) , gA(T) = F(x,y) = KOXOXy. (74)

4.4, HTL/HDL-resummed perturbation theory

Apparently, the idea that quarks and gluons are quasiparticles works rather well to
describe the thermodynamic functions oBtQGPR Therefore, it seems appropriate to
put this concept onto a more formal basis. In fact, the quasiparticle excitations in the
QGP are well-known in the weak-coupling limi, <« 1, and for temperatures and/or
chemical potentials much largéran the quasiparticles’ ergges and momenta. At nonzero
temperature, these quasitieles form the basis of the so-called HTL-resummation scheme
[13, 119. At zero temperature, but large quark chemical potential, there is an equivalent
approach, the so-called HDL-resummation scheti& 120. From the quasiparticle
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Fig. 14. The temperature dependence pﬂ?“ and e/T4 in pure[SU(3)c] gauge theory. Symbols are lattice
QCD data from 78]. The dashedines are a fit within the massive gluon model. The dash—dotted lines represent
the contribution of the kinetic term in Eq7§). The horizontal line is the StefaBdtzmann limit. (Since for an
ultrarelativistic ideal gas = 3p, thislimit is the same for the functionsg T# ande/ T4.) From [115].

exdtation spectrum, one can also construct the equation of state. All this will be discussed
in detail in the following.

4.4.1. The excitation spectrum in a hot and dense medium

How does one determine the spectrum of physical excitations in a hot and/or dense
medium? | shall illustrate this explicitly for the case of gluons. The case of quarks can
be considered analogously, | only briefly report the results at the end of this section.
The outline of the procedure is the following. First, one computes the gluon self-
energy,H:b”(w, p). From the sdlenergy, one then determines the full gluon propagator,
Agg(w, p). From thegluon propagator, one then deduces the spectral density, which
provides all information about the excitation spectrum in a hot and/or dense medium.
Quite surprisingly, it turns out that one can follow this procedure in complete generality,
without actually specifyingfé‘b” until the very end. Although the derivation is somewhat
formal, it is nevertheless atteer instructive exercise and will therefore be discussed in
more déail [12]]. Note that, in a medium, Lorentz symmetry is explicitly broken, and all
quantities depend separately on enetggind momenturp. Nevertteless, to abbreviate the
notation, | shall frequently use the 4-vec®f = (w, p) to characterize this dependence.
Note also that, at nonzero tentpture, one usually computesEuclidean space time, i.e.,
all energies are discrete Matsubara frequencies ornthginary energy axis. However,
in order to determine the physical excitation spectrum, one has to analytically continue
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to real energiesjon — w + in. Thisin prescription produces thestarded Greens
functions [L11]. When writing real energies in the following, thein prescrigion will
be suppressed.

y7aY

The self-energyl,,, can be decomposed according totéasor structure. First of all,
if the colour[SU(3)c] gauge symmetry is not broken, one may assume that the gluon self-
energy is diagonal in adjoint coIodﬂé‘b” = §aplI*. (In a colour superconductor, thisis in
general no longer the case, for examplesSeetion 5.4) It thus suffices to considdr .
The next stepd to cecomposdl“’ in terms of tensors, multiplied by scalar functions of

w andp [13,127. Let us define

o _ P1PY
=5

as the projector onto the subspace parallétto Then one chooses a vector orthogonal to
P#, for instarce

(75)

2 2
w w
. ( p—pz : —pf ) =@ -FO, (76)
with f# = (0, p). Now one defines the tensors
y7aY N#NY YAy nwpv N Y j7AY y7AY j7aY y7AY
B:NZ’ CH = N*PY 4+ P*NY, ARV = gtV —B*Y —E*Y. (77)

With the help of these tensors one can write the gluon self-energy as
I = [I3AMY + [I°B*Y + IT1°CHY + I1°E™. (78)

The scalar functiond72P-¢€ can be obtained by suitable projections6f"" onto the
respective tensestrudures.

Using the explicit form ofN#, one convinces oneself that the tensdt’ frojects onto
the gatially transverse subspace orthogondpPtq
AV A0 —o Al = 1 — piph. (79)
This means that the self-energy functidff deternines the excitation spectrum of the
spatially transverse gluon fields
ALS(P) = Ay ANP). (80)

As A"V projects onto a two-dintesional subspace, there are two degrees of freedom
associated withAL;'j. In the vacuum, these are the only physical degrees of freedom, since
gluons are massless.

The tensor BY projects onto the spatially longitudinal subspace orthogonBFto

N

. | y o
B0 — -5 B B —-Tpp @)
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Consequently, the polarization functiafi® deternines the excitation spectrum of the
longitudinal gluon degree of freedom,

N Aa ( P)
N2 ’
which becomes a physical degree of freedom in a medium.
The spatially transverse and spatially longitudinal gluon fi@lgg andA, are the only

physical degrees of freedom. There is an unphysical degree of freedom associated with the
projection ontoP*,

PHAS(P)
pz
The scalar function7€ is the lf-energy of this unphysical degree of freedom. It will
be seen that gauge fixing ultimately removes this degree of freedom from the theory. A
nonvanishing7® indicates that the spatially longitudinal, physical gluon degree of freedom
A%, mixes with the unphysical degree of freedo@nﬁ. Before extracting the physical
exdtation spectrum, one has to remove this mixing term, as will be discussed below.
Now use the tensor decompositior8] to deermine the full gluon propagatcn;gg
Since he free inverse gluon propagator

AR (P) = (82)

Aﬁ(P) = (83)

AGYY = Sap(P2GHY — PHPY) = apP2(AR” + BY) (84)

is diagonal in adjoint colours, so is the full inverse gluon propagaott, ab = 0abA~ luw,
Oneobtains

Afl/w = Aal/w +H;Lv
= (P2 + A" + (P? + [[°)B*” + IT°C*” + IT°E*". (85)

In an effective action, this invee propagator is the coefficient of the term quadratic in the
gauge fields. In momentum space (abosing a normalization such thag(P) retans
dimensions of energy),

NZ-1
=-—>= Z Y (AT, (~P)P? + IT3(P)IAM AZ ()
P a=1
— AY(=P)[P? + IT°(P)IN? A} (P)
~ AN=P)IIS(PIN?P2 A (P) — A} (~P)IT*(P)N’P?AR(P)
— AN(=P)IT®(P)P?A%(P)}, (86)

where) p = (V/T) fP. The physical excitation spectrum can be most easily extracted
from a diagonalized inverse gluon propagator, i.e., the term which mixes the physical
field componentA}, with the unphysical componen@cﬁ‘ has to be eliminated. This can

be done as follows. Remember that in the pamifienction one functionally integrates the
exponential of the action (a part of which$s in Eq. 86)) over all gauge field components,
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including A""‘. For the purpose of diagonalizing the inverse gluon propagator one may
simply redefine the integration variable

I1°(P)N?
AZ(P) — AZ(P) = AZ(P) + %A""N(P). (87)

This redefinition does not change the phggas it only involves the unphysical component
of the gauge field) and diagonalizes the actB1in the components of the gauge field,

———Z Z (AR, (—P)[P? + IT%(P)IAM AT (P) — A} (—P)

P a=1
x [P2 4+ T1°(P)IN?AZ (P) — A2(—P)IT®(P)P2A%(P)}, (88)
where
¢ P12 N2 P2
f[b(p) = Hb(p) _ w (89)

1T8(P)

From Eq. 88) one can read off the inverse gluon propagator in diagonal form. However, in
order to be able to invert it, it is necessary to fix the gauge. (To see this, consider the case
wherell® = 0. Then, the inverse propagator hasemo eigenvalue and is not invertible).

For the sake of simplicity, let us choose the covariant gauge, where the gauge fixing term
in the action only involves the unphysical components of the gauge field,

St = 2” Z Z A%(—P)P2P2AZ(P). (90)

P a=1
Adding &t to S, one reads off the (gauge-fixed) inverse gluon propagator

A 1
Afllw(P) — [P2 + Ha(P)]A/w + [P2 + Hb(P)]Blw + |:X P2 + He(P)i| BNV,
(91)
which can be straightforardly inverted, since A’, B*¥, and E*" are projectors,

p2
AMY(P) = At(P)AMY — Ay (P)—B’” + ﬁﬂe(P)EW’ (92)

where the transverse and longitndi propagators are defined as
1 1

P2+ 3P)  PZ—IL(P)’

p? 1 B 1

P2 P24 b(P)  p2—I(P)’

At(P) =

A¢(P) = — (93)

with the transverse and longiinal polarization functiondl; = —II? and II, =
—(p?/PHIIP. The last term in Eq. 92) can be removed from the spectrum of physical
exdtations by the guge choice. = 0. The physical excitations are described by the
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Fig. 15. The one-loop diagranesntributing to the gluon self-energy (@&ble ghost contributions are not shown).

transverse and lonitgidinal propagators defined in EQ3). From these one can derive
the corresponding spectral densities in the usual &8y [

1 . 1 )
pt(w,p) = ;lm At(w +in,p), pe(w,p) = ;lm A¢(w+1in,p). (94)

All that is left is to actually specifithe form of he polarization functiond’; and
II;. In the weak-coupling limit,g « 1, this can be done via a one-loop calculation of
these functins. To this end, one has to compute the diagrams shov#iginl5 using
standard methoddlp, 13]. Note, however, that the result depends in general on the choice
of gauge and thus cannot determine the physicata&ton spectrum, wich is by definition
independent of the choice of gauge. However, it was noticed many yeard 2§othat
the high-temperature limit > w, p of the polarization functions is actually independent
of the choice of gauge,

Rum@ngﬁ[g+<LJ§)%mE§%}, (95)
Im ITy(w, p) = —n%mﬁ% (1— ‘;-2) o(p— ), (96)
Relly(w, p) = — ( ‘w+p> (97)
Im IIy(w, p) = — Eg—wpw) (98)

where thegluon mass parameter at a giverandu is

2Nc + N N
m _gz|: c+ Nf_» _f 2:|

2
9= T+

18 o2t
This result is not restricted to the high-temperature limit, in fact it holds as long as €ither
or u is much larger tham and p. Thus, it also describes gluonic quasiparticle excitations
atT = 0 andhigh density. It is only this gauge-invariant high{or high-u) limit of the
one-loop polarization functions, which is relevant for the HTL- (or HDL-) resummation
scheme discussed 8ection 4.4.2

What is the physical meaning of the resu#5]—(98)? The conditionT, © > w, p
implies that there is a separation of scales, just like in the construction of the effective
theories inSection 4.2 The tempeature (or the chemical potential) sets a “hard” energy
scale, while the external energy and momentum are “soft”. As will be se$adtion 4.4.2

(99)
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this separation of scales forms the badighe HTL- (or HDL-) resummation scheme.
In this scheme energies of ordegT (or gu, in the HDL-resummation scheme) are
“soft”, while energies of ordel (or u, respectively) are “hard”. In the loops Fig. 15,
one integrates over the internal loop momentlmput the reslt must be finite, as
there are no other ultraviet divergences at nonzerd and/or u than those already
known from the vacuum. Therefore, the ultraviolet regularization must be provided
by the distribution functions of quarks and gluons, which decrease exponentially with
temperature. (AT = 0 andu # 0, the gluon distributionunction vaiishes, while the
quark distribution function is a step functien® (i1 — k), whichcuts off moment& > u).
On the other hand, #phase space in the loop integral growg dk k2. One hus expects
that thedominantcontribution to the loop integral comes from “hard” momenta of order
T (or,at T = 0 andu # 0, from momenta close to the Fermi surfake,~ ).
For dimensdnal reasons, and including factors @ffrom the vertices/I ~ g%T?2 (or
~g?u?, atT = 0 andu # 0). This gives rise to the prefactermj in Egs. ©5)—(98).
The “soft” external energy and momenturmoat significantly alter the kinematics in the
loop, where the dominant contribution comes from “hard” momenta. In fact, it suffices to
expand the integrands of the loop integrals to leading order in these external quantities.
This gives rise to the particular dependencewmmnd p of the result 95)—(98). The
essential approximation which leads to this result is the assumption that internal momenta
are exclusively “hard”. Therefore, the loops computed under this assumption are called
“hard thermal loop%s(or “hard dense loogsat T = 0 andu # 0).

From the sdlenergies one can construct the propagat@8s#ndthe spectral densities
(94), respectively. FollowingJ24 it turns out that the propagators have poles above the
light-conew > p, and a at below,w < p. In the spectral densities, the poles become
3-functions. These determine the excitation branchép). Since as-function has no
width, the quasiparticles corresponding to these excitation branchet@hblke i.e., they
have an infinite lifetime. (This changes if one computes beyond one-loop order.) The
excitation branches are above the light-core, they correspond to time-like, propagating
gluons. In the left panel ofFig.16 they are shown fotransvese and longitudinal
gluon modes. For large momenta, the longitudinal mode has an exponentially vanishing
residue 124. In contrast, the transverse mode has a finite residue and a dispersion relation
which gpproaches the form

o (p) = +/ p? + M2, Mey = Sm2. (100)

The cuts in the propagator become continuous distributions in the spectral density. They
provide Landau-damping for space-like gluons.

Peaforming a similar exercise for quark&25, one obtains the spectrum of fermionic
quasiparticle excitations. It turns out thaetk are twice as many excitation branches as
expected. There are in fatt/o solutions fa positive energiesp. (p), deermined by the
equation

2
01(P) Zipim_pf [1_ r(PDF P (wi(p)+ p)}

101
2p w+(p)—p (101)
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Fig. 16. The excitation branches forughs (left panel) and quarks (rightrgg) in a hot and/or dense medium.
For gluons, energy and momenta are shown in units of the gluon mass paramgtéior quarks, energy and
momenta are showm units of the fermion mass parameters; .

where the fermionic mass parameter (squared) is

2 2 ch -1( ?

Mt =9 716N (T +P>'
These two solutions are shown in the right panelFaf. 16. (The two sdutions for
negative energies mirror the above solutions below phaxis.) The solutionw_(p)
corresponds to a quasiparticle with the oppositgality than the onassociated with the
solutionw (p). This peculiar quasiparticle is commonly called the “plasmino”. Note that,
while the ordinary quasiparticle dispersion braneh(p) has a positive group velocity
dwy(p)/dp > 0, the plasmino branch has negative group velocity at small momenta. For
large momenta, the residue of the plasmino branch becomes exponentially small, while the
one for the ordinary quasiparticle remains finite and its dispersion relation approaches the
form

wy(p) = /P2 +mi .

The quark propagator also features a cut Welwe light-cone, which gives rise to Landau
damping. Finally, note that the fermionic quasiparticle spectruign 16 is shown for
energies and momenta much smaller thanegitemperature and/or chemical potential.
However, aff = 0 and largeu, this kineratic region is irrelevant, as it reflects the situation
at the bottom of the Fermi sea. At = 0 and largeu, therelevantfermionic excitations
are those around the Fermi surface, whpre: 1. The exdtation spectrum for this case
will be discussed in more eltail in Section 5.2

(102)

m3,, = 2m7. (103)
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4.4.2. HTL/HDL-reammation scheme

The HTL-resummation scheme and its counterpalft at 0 andnonzerou, theHDL-
resummation scheme, are explained in great detail in textbooks on field theory at nonzero
temperature andensity (see, for instanceld]). Therefore, for more details, | refer the
interested reader to the literature and restrict myself here to a short discussion of the general
idea behind these methods.

As already discussed iBection 4.1due to the infrared behaviour of gauge theories at
nonzero temperature, naive perturbation theory breaks down. We have Ssstiam 4.4.1
that loop calculations involve propagators of the form

1

w? — p?+ (0, p)
The leading-order terms in the one-loop self-energy arise from “hard” particles with
moment&k ~ T inside the loop. Together with factors of the coupling constant arising from
the vertices, the self-energy i ~ g2T2. Therdore, as long as eithes or p are “hard”,
i.e., of orderT, the sef-energy!l in the propagatorl(04) can beneglectedHowever, for
“soft” w and pof ordergT, the sel-energy is of the same order of magnitude as the first
two terms in the denominator aicdnnotbe neglected.

This observation forms the basis of the so-called HTL-resummation scH&EnE19
in field theories at nonzero temagure. In simple words it stas that whenever the energy
and the momentum of a propagator in a given diagram is “soft”, one has to use the
“dressed” propagatofQ4) including the self-energ¥/, and if dther energyor momentum
is “hard”, one may use the “bare” propagattg(w, p) = 1/(w? — p?) without the self-
energyll. Howdoes the name “HTL-resummation scheme” arise? The dressed propagator
is the solution of the Dgon—Schwinger equation

A = Ag— AgllIA. (105)

Alw, p) ~

(104)

Iterating this equation, one realizes that it stands for an infinite series of diagrams;
consequently the solutiodQ4) is aresunmedpropagator. As explained iBection 4.4.1

the quantity which is resummed is the self-eneffgomputed in the HTL approximation,

i.e., one resums HTL's.

It is now also easy to see why naive perturbation theory breaks down at nonzero
temperature. Imagine a diagram witlvertices, such that naive perturbation theory would
tell us that this diagram is of ord€(g"). Now imagne that there is a loop in this diagram
with propagators of the typel04) and thatthe dominant ontribution to this loop arises
not from the “hard” region of phase space, i.e., from momenta of oFdexs in HTL's,
butfrom the “soft” region, i.e., from momenta~ gT. The @ntribution of the propagator
(104) to thediagram is then-1/(g?T?), instead of~1/ T2. Thiscancels two powers of the
coupling constant in the naive perturbative counting scheme. The diagram is thus actually
of orderO(g"—2) (or even of lower order, if other propagators contribute additional powers
of g—2). The occurrence of the additional energy scalr i, atT = 0) compared to the
vacuum invalidates the naive qerbative counting scheme.

For gauge theories, the Ward identities require to extend the HTL-resummation scheme
from propagators to vertices as well. Fphysical quantities which are determined
by computing diagrams with at least one loop, depending on whether the dominant
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contribution in the loop arises from the hard or the soft region of phase space, one
may be required to use only bare propagatmesunmed propagators, or both resummed
propagators and resummed vertices. Thgomsuccess of the HTL-resummation scheme
was the proof that the leading-order result for the gluon-damping rate is independent of the
gauge and positivelRg.

4.4.3. The equation of state for quasiparticles in HTL /HDL approximation

The objective of this section is to apply our knowledge fr&@action 4.4.1about
the quasiparticle excitation spectrum in QCD to determine the equation of state at high
temperature and/or density. What one obviously needs is a thermodynamically consistent
way to construct the pressure including information about the spectral density of the
quasiparticles. Obviously, classicaltittical mechanics, such as applieddaction 4.3.2
is of no use; we need a field-theoretical aggrh. The method of choice is the so-called
“Cornwall-Jackiw—Tomboulis” (CJT) formalisnilp7. The CJT formalism determines
the effective action of a theory as a functibofthe one- and and two-point functions.
The stationary values of the effective action yield the expectation value of the field and
the full propagator. The stationarity conditionseddyson—Schwinger equations for these
guantities. The CJT formalism is particularlyafisl for theories with spontaneously broken
symmetries, seSection 4.6For unbroken symmetries, the CJT formalism is equivalent to
the so-called?-functional approachl[28.

Let us elaborate on this in somewhat greater detail. In the CJT formalism the effective
action of a theory with bosonic fields and corresponding propagatats as well as
fermionic fieldsy,, v with propagatorss reads

i, v, v, A, Gl = 1[¢, ¥, ¥]1— 3Trin A7 = 1Tr(D~1A - 1)
+TrINnG L+ TS G — 1) + I[g, ¥, ¥, A, G]l.  (106)

Here,l[¢, ¥, ] is the classical action and all traces are taken in the functional sense. The
quantities D~1 and S~ are the inverse tree-level propagators for bosons and fermions,
respectively,

ICUCRZE2 RICEN)
3 (X)3¢(Y)’ SY (XY (Y)

The functional I is the sum of all two-patrticle irreducible (2PI) diagrams without
externallegs and with internal lines given by the propagatarand G. The stéionarity
conditions which determine the expectation value of the bosonic fiekk well & the full
propagators for boson®, and for £rmions g, read

DX, Y) = SIX,Y) = (107)

8I(p. . Y. A, G] _ 8I'[¢p. ¥, ¥. A, Gl _8I'[¢. ¥, ¢, A, G] 0 (108)
8¢ (X) B SA(X,Y) - 8G(X,Y) o

In principle, there are also stationarity conditions for the fermionic figidand v, but
their solution is always trivial, as fermionic fields are Grassmann-valued and thus cannot
assume a nonzero expectation value.
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Inserting the gplicit form of I" from Eq. (L06) into the last two equations ofl(8),
one obtains the Dyson—Schwinger equations for the full propagators for bd3paad
fermions,gG,

Dl=D14+11, ¢l=sl4+y (109)
where theébosonic and fermionic self-energies are

30209, ¥, ¥, A, Gl 8I%¢. Y. . A, Gl
SA 5G '

The right-hand sides of these equations have to be taken at the stationagy pointyy =
¥ =0, A =D,G = G. According to their definitionX10), the self-energies are obtained
from the set of 2PI-diagram& by opening one internal line.

For transléionally invariant systemsp(X) = ¢ = const A(X,Y) = A(X =),
G(X,Y) = G(X—-Y), and itis advantageous to work in energy—momentum space instead
of in space—time. The effective action is, upatdgn and a factor of the four-dimensional
volumeof the systemV /T, equal to the effective potential,

I = , X

(110)

_ T _
V[(pv ‘ﬁ» w9AvG]E_vF[¢v W’ WvAvG] (111)

At the stationarypoint, the effective potential is, again up to a sign, equal to the
thermodynamic pressure. Utilizing the stationarity conditiob@9 and the eéfinitions

(110,
p=-Vip,D,Gl=-U(p) = 3TrnD 1+ JTrID+ Tring™*
—-TrXG —Vaole, D, Gl. (112)

Here,U (¢) is the tree-level potentialf, = —(T/V) 1>, and TrA = fK tr A(wn, k), where
tr runs over possible internal indices (Lorentz, Dirac, colour, flavour, etcd) of

Eq. 112 is thedesired result. All one has to do is to apply it to QCD. In QCD, there
is no spontaneously broken symmetry (unless one considers colour superconductivity, see
Section 9, and thugJ (¢) = 0. The bosons are the gluons and the fermions are the quarks.
Of course, one also has to account for ghost degrees of freedom. These look like another
fermion contribution in Eq.X12), but the corresponding Matsubara sum in Tr has to run
overevenmultiples of # T [10].

This sounds much simpler than it is to realize in practice. The difficulty obviously lies
in solving the DysonSchwiger equations for the gluon and quark propagators. It is clear
that, asv, consists of an infinite set of diagrams, one can never aspire to solve the problem
exadly. However, a great advantage of theTCfbrmdism is that he solutions of the
Dyson—Schwinger equation$@9) are sefl-consistent and conserving, even if one truncates
this infinite se. Any truncation defines a meaningful many-body approximation scheme
(for a well-known example, the Hartree approximation, Seetion 4.9. Let us therefore
imagine we only take a finitsubset of all diagrams W5, for instarce the one consisting
of the two-loop diagrams shown fig. 17. This subset is particularly interesting, because
when computing the self-energies according to Ef0( one obtains these self-energies to
one-loop order. As discussed $ection 4.4.1the high-temperature (high-density) limit
of the one-loop self-energies defines the HTL (HDL) approximation, which is already
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ST

Fig. 17. The two-loop approximation 6, (possible ghost contributions are not shown).

known to provide a physically interesting, meaningful, and gauge-invariant quasiparticle
exdtation spectrum. Anotherdvantage of restrictiny> to a set of two-bop diagrams is

that the entropy density= dp/0T and the quark number density= dp/d . assume the
particularly simple form 129

d*K an(w) 1 d*K af (w)
s = —tr 20 aT [ImInD™" — Im IIReD] — 2tr (271)4?
x [Im NG~ — Im ¥Reg], (113)
d*K af (w) )
n=-2tr (271)4T[|m INnG™" — Im YRed], (114)

whereK# = (w, k) andn(w) = (¢/T — 1)~1 is the Bose—Einstein distribution function,
while f(w) = [e@~®/T 4 1171 is the Fermi-Dirac distribution function. While one has
to conpute two-loop diagrams to obtain the pressurgs, the entropy and quark number
dendties (113 and (L14) are essentially one-loop quantities and thus much simpler to
calculate.

However, even when restricting to the simpé aubset ofFig. 17, the soldion of the
Dyson—Schwinger equations is highly nontrivial (see eBertion 4.9. Let us suppose,
however, that it can be achieved. Then there is still the issue whether the propagators thus
obtained obey the Ward identities. In general, this is not the cE3@,[and a cure of this
problem would most likely require a self-consistent calculation of the three- and four-point
functions on top of the two-point functions. An extension of the CJT formalism in this
direction was proposed il 81], but since that work considers only scalar field theories, it
is not clear whether this approach also appt®gaige theories in a way which preserves
the Ward identities. Another question is the gauge invariance of the solution. Fortunately,
as shown in 130, the gauge dependence always enters at an order which is higher than
the truncation order. Finally, there is the issue of renormalizability. For scalar theories,
renomadizability was demonstrated inlBZ. For gauge theories, it still remains an open
question.

In order to make progress, one has to simplify the solution of the problem. Instead
of a completely self-consistent solution of the Dyson—-Schwinger equatiosy és a first
educated guess one might simply use the self-energies in the HTL (or HDL) approximation
to conpute the propagators entering the pressurg2y Since this approximation is
independent of the choice of gauge, gauge imvare is not an issue anymore. There is also
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Fig. 18. The pressure, normalized te tBtefan—Btizmann limit, as a function of temperature, normalized to the
critical temperature. Differemesummation methods are compared to lattice QCD results fof )] gauge
theory. The band labelled “pert.th. to orctfi” is the order O(g3) perturbative result computed Bedion 4.1
and shown irFig. 13 Theband labelled “ABPS” is the two-loop HTL-resummed pressure frd8%[ The band
labelled “BIR” is the result from 133. Bands arise from varying the renormalization scalavithin certain
limits. Lattice data fromT8, 13€] are shown asm@y bands.

another advantage: since the HTL- (HDL-) approximated self-energies are just th€ high-
(high-w) limit of the one-loopself-energies, Eqs1(3) and (L14) for the entropy and quark
number densities apply. These expressions are completely ultraviolet safe and thus do not
require nomadization. They are one-loop quantities and thus simpler to compute than the
pressure which contains two-loop diagrams. From the entropy and quark number densities
one can always deduce the pressure via an integration with respeetridy..

This approach has been followed 83, where a dailed discussion of the results and
their interpretation can be found. In particular, since the self-consistent approach is based
on a partial resummation of a subset of perturbative diagrams, i.e., a reorganization of the
perturbative series, it is possible to cpane with standard perturbation theo8ggtion 4.)
by re-expanding the results in powersgffor moredetals, see L7, 133. Here, | restrict
myself to a discussion of one of the main results, namely the pressure fofu(8)]c
gaugetheory as computed in this approach in comparison to lattice QCD dafgci.8.

One observes that the agreement at large temperatures is quite good, and that deviations
occur only belowT ~ 2.5T;. The quality of reproducing lattice QCD data is comparable

to that in the perturbative approach $éction 4.2 However, a ditinct advantage of the
sdf-consistent approximation scheme is that the physical interpretation of the results in
terms of a ga of quasiparticles is much more appealing.

Note that a very similar approach has been pursuedl®4]] utilizing directly the
expression {12) for the pressure, with propagators in éhHTL agpproximation and a
suitably nodified V». Another related approach is so-called “HTL-resummed perturbation
theory” [135. Here, the pressure of the pure gauge theory is computed to two-loop
order with HTL-resummed propagators. Yariational procedure like that of1B7
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is applied to determine thelgpn mass parameter. The pressure computed from this
approach is closer to the Stefan—Boltzmann limit and fails to agree with lattice QCD
datain the region of temperatures fromy to several timedl, cf. Fig. 18 The reason

for the differences between this approach and the onel8§ [lies in the way the
perturbative series is reorganized when resumming certain subsets of diagrams. The
differences can be explained by comparing to a dimensionally reduced version of HTL-
resummed pertudtion theory 13§. Finally, note that the CJT formalisnri83 as well as
HTL-resummed perturbation theor$39 were also applied to compute thermodynamic
properties of the QGP at = 0 andnonzerou.

4.5. Polyakov-loop model

The pressure, normalized to the appropriate Stefan—Boltzmann limit, as a function
of temperature, normalized to the approtwi&ritical temperature, shows a universal
behaviour, see right panel #fig. 5 Sincethe normalizedpressure for full QCD with
dynamical fermions looks the same as for the pure gauge theory (i.e., without dynamical
fermions), a natural conclusion would be to assume that the dynamics of the gluons drives
the QCD phase trangitin, not that of the fermions. Consequently, the order parameter
for the transition in full QCD should be thersa as in the pure gauge theory, i.e., the
Pdyakov loop, seeection 2.3.2For an[SU(N¢)c] gauge symmetry, the Polyakov loop
(7) is invariant undefSU(N¢)c] gauge transformations, up to an element of the centre
of the gauge groupZ(Nc), L(X) — exp2zin/Nc)L(X). The efective theory for the
Pdyakov loop consists of all possible terms invariant undéN.) transfomations [/Q],

Let = Go|VLI? 4+ Co|L |2 + [ L3+ (L3 — ca(IL1D? + - -, (115)

where thedots denote higher-order terms (which will be neglected in the following). For

Ne = 2, one would haves = 0, becausé 2 is not Z(2)-symmetic. For Ne = 3, it is

precisely this cubic term which drives the transition first ord@&[see als&ection 2.3.2
The ground state of the theottyy = (L (X)) (which is assmed b be eal), is determined

by the global minimum of the effective potential

Verr(L) = —C2|L|% — ca[L3 + (L*)3] 4 ca(|L|?)2. (116)

The Polyakov loof is dimensionless, therefore all coupling constants in B4.6 carry
dimensionenergy®. Sincethe only dimensinful scale is set by the temperature, one may
pull out a factorT# from the right-hand side of Eq1{6) and after apropriately renaming
the constants write

Verf(L) = baTH—bp|L|? — bg[L3 4 (L3 + (IL1H?}, (117)

where thenew coupling constants are dimensionless. In order to have a potential that is
bounded from below for large values bf one has to assunte; > 0. For the moment
takebs = 0 (for No = 2, bs = c3/(bsT# must always vanish). Then the sign lof
drives the transitionBelow the transitionT < T, there is onfinement, which can only

be achieved if the curvature & at the origin is positiveb, < 0, such thathe global
minimum is atLp = 0. Above the transition] > T, there isdeconfinement, which is
achieved by a negative curvature\@fs at the originp, > 0, giving rise to a nonvanishing
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Lo = £4/b2/2. The onstant;, is therefore a function of temperatut®, = by(T), while
in the simplest version dhe Poyakov-loop modelbs andb, are assumed to be constant.
Through the temperature dependencdgfL also becomes a function of temperature,
Lo = Lo(T). At T = T, one must havd,(T.) = 0, i.e., Lo vanishes continuously at
T, and one has a second-order phase transition. A nonvanibgifwhich is dlowed for
Nc = 3) turns this second-order transition intdist-order transition. Lattice QCD data
indicate that the transition for puf8U(3).] gauge theory has a comparatively small latent
heat, i.e., the transition is onlyeaklyof first order. This suggests that the constanis
small.

Now remember thathe pressure is, up to sign, equal to the value of the effective
potential afts minimum

P _ Vei(Lo) _ba
T4 T4 2
For N. = 2, wherebs = 0, one hasp/ T4 = bsbx(T)2/4, where the exjit value of
Lo was wsal. The physical interpretation of this result is quite astonishing: the pressure
in QCD, as calculated on the lattice, &fig. 5, is not deternined by thekinetic energy
of a gas of weakly interacting quasiparticles, as advocateseitons 4.3and 4.4, but
is simply given by thepotential for the Polyakov loop (at the respective minimum).
All that one has to know it o(T) (or, equivdently, bo(T), under the assumption that
this is the only coupling constant which depends on temperature), and the pressure in
QCD can be immediatelcomputed from Eq. 118). ComparingFigs. 3 and 5, this
conjecture is at least qualitatively correct. Quantitatively, it is not as simple: not only
is the absalte value ofLg as calculated on the lattice subject to renormalization, also
the onstantsy, bz, andbs are not known. In the meantime, one can at least convince
oneself that there are no principal obstacles for this interpretation: one may insert the value
of Lo (which is only a function ofb, andbg) into Eq. (118 and simply fitbs, by, as
well asby(T) to lattice QCD data. The result of this fit iy = 4/3, by ~ 0.1515,
bo(x) = 2(1 — 1.11/x)(1 + 0.265/x)2(1 + 0.300/x)% — 0.974, wherex = T/T.. The
pressure and the energy density obtained from this fit are shofig.id9.

The Polyakov-loop model also allows to predict other physical observables, for instance,
the ratio of screening masses related to the correlation function of the real and the
imaginary part of the Polyakov loofF(]. Decompose the Polkav loop irto its real and
imaginary partL = R+il. In anabgy to Eq. é3), the correltion functions for the real
and imaginary part are then defined @0) R(x)) and (I (0)I (x)), resgectively. In the
deconfined phase, one expects them to decrease exponentially with the distance,

(ROO)R(X)) ~ exp(—mRIx]), (1O 1)) ~ exp(—my X)), (119)

L2(bz 4 bsLo). (118)

where mgr, m; are the corresponding screening masses. In weak coupling, one can
make a definite pediction for these masses. To this end, expanih powes of g to
leading nontrivial order. One obtaii® ~ 1 — g?/(T2N¢)TrA3. Thus, the correlation
function for the real part indges the exchange of two statidg fields, which are
Debye screened. One therefore exped®$0)R(x)) ~ exp(—2mp]|x|). Analogously,
(1Ol X)) ~ exp(—3mp|X|). Thus, the perturbative prediction for the screening masses
ismgr = 2mp, m; = 3mp, andm; /mr = 3/2.



D.H. Rischke / Progress in Particle and Nuclear Physics 52 (2004) 197-296 265

3p/T, e/

0 \ \ \ \ \ \ \
0.9 13 17 21 25 2.9 3.3 3.7

TIT,

C

Fig. 19. The functions B/ T4 (lower curve) ande/T# (upper curve) as a function 6f/T¢. Fit of the
thermodynamic functions of the Polyakov-loop model tiide data (shown as circles and boxes) for the pure
[SU(3)c] gauge theory.

In general, because of the renormalizatah the Polyakov loop it is not as simple to
obtain an answer for the absolute valuesngf andm, . However, ih theratio m; /mgr one
expects unknown factors to cancel o). The Polyakov-loop model makes a definite
predidion for this ratio. First, write the potential £6) in terms of R and|. As usual, the
curvature of the effective potential in the ground state provides the masses. Consequently,
computing the curvature in the- and inthe | -direction, one obtains

m3 ~ —bp — bzl +6L3,  m? ~ —by + 6bglo 4 2L3. (120)

I have refrained from writing the constant of proportionality, which also provides the
correct dimension fomg |, because this constant will drop out anyway in the ratio
m; /mg. Let uscompute the ratio close td;. In the case of a first-order transition, at
T = T, the effective potentidVes has two minima, one at the origin and onelLat# 0,
which are degenerate and separated by an energy barrier. The coRgition= Ve (Lo)
givesLg = —by/bz, which together with the condition thaty is the nontrivial minimum
of Vett, LS = (3bzLo + bp)/2, allows to express all quantities in EG.A0) in termsof, say
bsLg. This yieldsm; /mgr = 3. This value differs from the perturbative expectation by a
factor of two, and is a definite prediction of the Polyakov-loop model which can be tested,
for instancepn the httice.

Another particularly appealing aspect of the Polyakov-loop model is that it correctly de-
scribes he behaviour of the screening masses when approathiingm above, cfFig. 7.
Near Tc, the tempeaiture dependence @b and Lo cause the screening masseg, m;
to decrease, in agreement with lattice QCD data. The fact that the perturbative prediction
completely fails to reproduce this behaviour was already mention8détion 3.4
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Finally, let us remark that thPoljakov-loop model may also naturally explain why the
chiral symmetry restoration transition occurs at the same temperature as the deconfinement
transition. There imothing to prevent the effective theorg1® from having a term
~c|L|2TroT ¢, where & is the chiral condensate andl > 0 a ®nstant. Thus, whefL|
condenses (in the deconfined phasiis term suppresses condensationdfon account
of the positive coupling constant effectively restoring the chiral symmetry. Thus, chiral
symmetry restoration argieconfinement occur at the same temperature.

4.6. Linear sigma models with hadronic degrees of freedom

In Section 3.2ve have seen that the QCD transition is most likely crossover for small
values ofthe chemicapotential.. Therdore, there is no real distinction between hadronic
degrees of freedom on the one side and quark and gluon degrees of freedom on the other
side of the transition. Consequently, there is no compelling reason why the thermodynamic
properties of QCD around the phase transitghould be described in terms of quarks
and gluons; a hadronic description should be equally adequate. (For a more complete
discussion of this argument, seietfy.)

Let us assume that, somewhat contrary to the idea behind the Polyakov-loop model
discussed inSection 4.5 the QCD transition is driven by chiral symmetry restoration
instead of deconfinement. In this case, the order parameter for the transition is the chiral
condensate, se®ection 2.3.3and the efctive theory is given by the linear sigma model
(13). The degrees of freedom in this effective theory are the fluctuations of the order
parameter fieldb around the ground statep). Physically, these fluctuations correspond to
the scalar and pseudoscalar mesons. Following the above line of arguments, this effective
theory could therefore not only serve to understand the dynamics of chiral symmetry
restoration, it could equally well be useddescribe the thermodynamic properties of QCD
around the phase transition.

Of particular interest is the question how chiral symmetry restoration is exhibited in the
meson mass spectrum. In the framework of lattice QCD, this was discusSattion 3.5
Here, | explain how to answer this cgteon using the #ective theory {3) at nonzero
temperature. The standard definition of a particle mass is via the pole of the propagator at
zero momentum. Consequently, the goal is to determine the mesonic propagators. The
method of choice is obviously the CJT formalism discusse&eation 4.4.3because
this approach allows to compute the fullopagator from the stationary points of the
effective actionl”, cf. Eq. (L08), or in other words, from the Dyson—-Schwinger equations
(109. Of course, the solution of these equations requitgs.e., the omplete set of 2PI
diagrams. For practical purposes, a solution of the Dyson—-Schwinger equations is therefore
impossible. However, as already discusse&dation 4.4.3one may truncaté’» at some
given order. Such a truncation defines a many-body approximation, within which a solution
of the Dyson—Schwinger equations becomes feasible.

The most simple, nontrivial truncation dfs is to include only the set of double-
bubble diagrams shown on the left i¥ig. 20. The séf-energies {10) computed from
these diagrams consist only of the tadpole diagrams shown on the right-hand side of
Fig. 20. This is he well-known Hartree approximatiohl1]. In general, all particle species
in a particular effective theory contribute via tadpole diagrams to the self-energy of a
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Fig. 20. Double-bubble diagrams (ld¢fand side), where full lines denote scalar mesons and dashed lines denote
pseudoscalar mesons. Cutting the bubbles producesdpel¢adiagram contributiont® the self-energies shown
on the right-hand side. The tadpole diagramestitute the so-called Hartree approximation.

given particle species. Since the tadpole diagrams do not have any dependence on the
external mmnentum, the self-energies are (tempemtdependent) constants in the Hartree
approximation. They simply shift the mesoragses as compared to their vacuum values.
In principle, the Dyson—Schwinger equatiof9) for the propagators are coupled integral
equations, but in the Hartree approximatitmy reduce to a system of coupled fix-point
equations for the meson masses. While numerically much simpler than solving integral
equations, the solution can still be a formatask, if the underlying chiral symmetry
group is large. For arD(4) chiral symmetry, this problem was solved ib4fl, 142.
The U (3); x U(3), case was discussed ii43. The cased) (2); x U(2), as well as
U (4); xU (4), were investigated in44. (TheU (1)y of baryon number is always trivially
respected in these modeld. the discission inSection 2.3.3Nevertleless, in order to
simplify the notation | include it in characterizing the symmetry of a particular chiral
effective theory.)

In Fig. 21the masses for the scalar and pseudoscalar mesons are shown as a function of
temperature, calculated within the framework of linear sigma models@ith, U (2); x
U(@2)¢, UR)r xUB)¢, andU (4); x U (4), chiral symmetry. The different subpanels show
the masses of the respective chiral partners. In the nonstrange sector, these arer(a) the
meson and the pion, and (b) thgand then meson. In the strange sector, these are (c) the
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Fig. 21. Scalar and pseudoscalar meson masses as tiofunf temperature in the Hartree approximation,

for effective theories models ith different chiral symmetry:0(4), U(2)y x U(2)y, U(3)r x U(3),, and

U (@) x U(4),. Chiral partrers are shown in the same panel to demonstrate that their masses become degenerate
at high temperature. Fromi44].
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« meson and the kaon, and (d) tlig¢ and then’ meson. Finally, in the charmed meson
sector one has (e) the scalBp and Dsg meson and the pseudoscalarand Ds meson,

and (f) thenc and xco meson. One observes that in all cases the chiral transition occurs
at temperatures of the order of 200—300 MeV. For the results showigir21 redistic,
noreero values for the quark masses were assumed, and consequently the transition is
crossover, cf. the discussion $ection 2.3.4Fig. 21 also allows to compare the results

for models with different chiral symmetry. For instan¢ég. 21(a) nicely demonstrates

the dfect of enlarging the symmetry group. In general, the higher the symmetry, the more
particle species contribute via tadpole diagrams to the mass of a particular species, and
consequently the larger is its mass at aegitemperature. Furthermore, one can learn
from all subpanels that the difference betweenh@), x U (3), and theU (4); x U (4),

model is at best marginal. The reason is that the additional charmed meson degrees of
freedom in the latter are so heavy that the contribution of the respective tadpole diagrams
is exponentially suppressed exp(—m/ T). Consequently, they only minimally influence

the behaviour of the noncharmed mesons in tamperature range considered here. In
turn, in this temperature range the charmed meson masses change little from their vacuum
values, cfFig. 21(e) and (f).

Lattice QCD calculations cannot be done in the chiral limit, because as the quark mass
decreases, the computation of the fermietedminant becomes more and more difficult.
The only way to make predictions about the chiral limit is to extrapolate data obtained
for nonzero quark masses. This is computationally expensive, as it requires calculations
at several different values of the quark mass. In contrast, in the framework of linear
sigma models, taking the chiral limit actually simplifies the calculation. A comparison
between quantities computed in lattice QCD and extrapolated to the chiral limit with the
corresponding values obtained in linear sigma models is therefore straightforward. Let us
discuss two examples. The first is the critical temperature for the chiral transition. The
way to identify the critical temperatre is the following. For a first-order phase transition,
look for the temperature where two minima of the effective potential become degenerate.
For asecond-order transition, the criterion is a igring second derivative of the potential
in one direction in order parameter spaced(cating a massless degree of freedom and
critical behaviour). It should be mentioned that the Hartree approximation does not always
reproduce the correct order of the transitichpedicted from universality arguments.
(Aside from that, being a mean-field type approximation, it always fails to predict the
correct critical exponents.) For instance, for t8€4) model and theJ (2), x U(2),
model with U (1) o anomaly, the transition should bé second order, but the Hartree
approximation predicts a first-order transition. For th€2), x U (2), model without
U (1) A anomaly, as well as for thd (N¢); x U(Nf), modelswith N > 3, the Hartree
approximation predicts a first-order transition in agreement with universality arguments.
In chiral effective theories, one can simply “switch off” thix1) A anomaly by setting
the mnstantc = 0 in Eq. L4). This is not possible for lattice QCD: tHé (1) o anomaly
may or may not be present, depending on how strongly instantons are screg@pethig
gusstion has been studied on the lattidelf, with the result that th&J (1) o anomaly is
not compléely absent at the critical tempeuag, but at least rapidly decreasing.

The critical temperatures obtained in various chiral models, with and witholk thex
anomaly, are shown ifiable 3 in comparison to the results from lattice QCD, Téble 2
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Table 3

The citical temperatureTc for the chial transition, computed for various chiral effective theories in the chiral
limit with and withoutU (1) o anomaly [L44], in comparison to results from lattice QCD, extrapolated to the
chiral limit. For N+ = 2 flavours, the QCD results for Wilson and Kogut—Susskind fermions ffarle 2have
been averaged, assuming uncorrelated statistical errors

Chiral model Tc with U (1) o anomaly (MeV)  T¢ withoutU (1) o anomaly (MeV)  LQCD (MeV)

0(4) 1595+ 0.2 N/A 17249
U@y xU@2, 1545402 1492+ 0.2 17249
U@y xU@), 1655+02 1475+ 0.2 154+ 8

Two things are noteworthy. First, the values of the critical temperature obtained in chiral
modds are rather close to the ones computed in lattice QCD. This is surprising given the
fact that chiral effective theories only comaicertain subset of the degrees of freedom of
full QCD, do not describe confinement, and moreover are treated here in the framework of
a very simple many-body approxirtian. Second, the ordering of the critical temperatures
as a function of quark flavours is the same in lattice QCD and chiral madtélsut U(1) o
anomaly, but the opposite in chiral modelgh U (1) o anomaly. This also lends support

to the above mentioned results4 regarding the rapid decrease of thi(1) o anomaly
nearT.

The second example is the investigation of the quark-mass diagign22 shows this
diagram as determined within &(3), x U (3); linear signa model [144. Of course,
the linear sigma modeloes not have quark degrees of freedom. Nonzero quark masses
correspond to a term of the forrhg) in the Lagrangian, where the matri is proportional
to the quark mass matrix. Since the vacuum expectation valdeisfa dagonal matrix,
the matrix H must also be diagonal. If one assunt@s(2)y isopin symmetry,H =
hoTo + hgTs. Consequentlymg = a(hg + hg/+/2), ms = b(hg — +/2hg). The fieldsho,
hg can be determined from the vacuum values for the pion and kaon masses, as well as
the pion and kaon decay constants. Then, settigg= 10 MeV,ms = 150 MeV fixes the
values for the constants of proportionalayandb; for detdls see [L46.

Oneobserves irFig. 22 that the position of the line of second-order phase transitions
between the first-order region around the origin and the crossover region depends sensi-
tively on the value of the meson mass in vacuum. However, the physical point is always
in the crossover region, if the (1) o anomaly is present. Without thé(1) o anomaly, the
transition could be of first order, if the meson is suffiently heavy.

Recently, there have been attempts to go beyond the Hartree approximation by
including diagrams with more complicated topologies/in[132 147. In this case, a
sdf-consistent calculation becomes techtiicaather difficult, because these topologies
lead to momentum-demdent self-energies, so that the Dyson-Schwinger equations
turn from simple fix-point equations for the masses into integral equations for the
full propagators. Moreover, momentum-dependent self-energies have in general nonzero
imaginary parts, such that quasiparticles, which are stable in the Hartree approximation,
develop a finite decay width. The spectral dgncarries the complete information of the
spectral properties of the quasiparticles in the system. It is therefore natural to solve the
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Fig. 22. The quark-mass diagram computed i @)r x U (3), chiral model 146, with or without U (1) a
anomaly for different values of the mesan mass in vacuum. The physical poifthg, ms) = (10, 150 MeV is
shown as adiamond.

Dyson—Schwinger equations for the full propéga as self-consistey equations for the
respective spectral densities. Work in this direction is in progre4§]

5. Colour superconductivity
5.1. Derivation of the gap equation

As discussed inSection 2.4.3 quark matter &high dengy and sufficiently low
temperature is most probably a colour supercondu@8r39]. While the colour quantum
numbers of a Cooper pair are determined by the attractive gluon interaction in the colour-
antitriplet channel, there are still many different ways to combine flavour and spin quantum
numbers, giving rise to a plethora of possilablour-superconducting phases. In general,
the energetically most favourable phase will prevail at a giveand. In orderto decide
which is the most favourable phase one has to pata the gain in condensation energy
when forming Cooper pairs. To this end, one has to calculate the colour-superconducting
gap parameter. In general, the larger the gag the more degrees of freedom participate in
forming Cooper pairs, the larger the gain condensation energy. The gap is computed from
a so-c#led gap equationin this sction, | shall outline the derivation of this equation.
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Consider the QCD action
S=SA+S+g / T (XY Tatr (X) A2 (X), (121)
X

whereS, is the gauge field action (including ghost and gauge fixing contributions) and

& = /Xlﬁ(xmy-ax + 10— MY (X) (122)

is the action for noninteracting fermion fields in the presence of a chemical potential. For
reasons which will becomelear in the following,S= and the quark—gluon coupling are
rewritten in terms of ordinary quark fields;, v, andtheir charge-conjugateounterparts,

Ve = ¥'C, yc = Cy', whereC = iy?yg is the charge conjugation matrix. To this
end, introduce the so-called Nambu—Gor’kov basis, with thé&\g N s -dimensional quark
spinors

xvz(‘”), = o). (123)
Ve
For the femion action one then obtains

5 =1 / B (XS5 HX, ) (), (124)

X, Y
where
1 (It 0
So = —1-1 />
0 Gyl (125)

[GF1 HX, Y) = —i(iy - dx £ uyo —m)sD(X - Y),

is the free invese femion propagator in the Nambu—Gor’kov basis. The quark—gluon
coupling becomes

P X) Y Tayr (X AL (X) = 3T (X)L T(X) AL (X), (126)
where
YR, 0
k= ( 0 a —yMTaT) (127)

is the Nambu—Gor’kov matrix which couples the corresponding quark spinors to gluon
fields.
Now add a bilocal source term to the QCD action,

SIKl =S+ / FOOKX, Y) T (Y), (128)
XY
where, in the Nambu-Gor’kov basis,
+ —
K= (‘l ‘p) . (129)
(0 o

Here,o* ando~ are sources which couple to adjoint quark spinors and quark spinors,
while ¢ couples to two quark spinors (remember thigg ~ ¥ ) and ¢~ couples to
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two adpint quark spinors, respectively/¢ ~ ¥ ). Charge-conjugation invariance of the
action relates the sources” ando~: o~ = C[o+]TC~1. The ation must also be real-
valued, which leads to the conditigrm = yo[¢] 0.

The next step is to derive the effective action from the partition function of QCD in the
presence of the external source

ZIK] = / DASDUD ¥ expSIK]. (130)

The details of this derivation are beyond the scope of this review, but the interested reader
can readily convince himself that, in the prase of bilocal sources, this problem is solved
precisely by the QT formdism [127] discussed inSection 4.4.3Consequently, if one

takes into account that there is no nonvanishing expectation value for a fermionic one-
point function, and if one adapts EdLQ6) to the notation of this section, the effective
action reads

A A S = 1A= 3Trin A7 = ITr(ag*A — 1) + 3Trins ™
+3Tr(SytS — 1) + I2[A, S, (131)

whereAg is the free and\ the full gluon propagator, andl is the full fermion propagator

in the Nambu—Gor’kov basis. The factors glin front of the fermionic terms account for
the double-counting of fermionic degrees of freedom in the Nambu—Gor’kov formalism.
The full propagators for the physical situation (whéfe= 0) are obtained from the
stationarityconditions (L08). These conditions are Dyson—Schwinger equations of the type

(109),
At=Agtvn, STt=St+ (132)

(In a slight abuse of notation, | also denote thkkgluon propagator at the stationary point
of I'[A, A, S§] by A and, similarly, the full quark propagator Isy)
In order to proceed one has to make an approximation$orAs in Section 4.4.3
the discussion will be restricted to the set of diagrams showkign17, howeer, with
the quark propagators in the quark loop now given by the Nambu—Gor’kov propagator
S. The gluon self-energy is computed d8 = —251%/8A, i.e., by cutting a gluon
line in the diagrams ofFig. 17. Thus, II is given by he diagrams shown ifig. 15
(with Nambu—Gor’kov propagatorS in the quark loop). The quark self-energy in the
Nambu—Gor’kov basis is
yt o 3Io[A, S]
SHEN a9
Itis given by the diagram shown on the left-hand sidEio 23. The diagonal components
Y+ correspond to the ordinary self-energies for particles and charge-conjugate particles.
In space-timeX*(X,Y) (¥~ (X,Y)) has a prticle (charge-conjugate particle) entering
at X and another particle (charge-conjugate particle) emergiMg@n theother hand, the
off-diagonal componentg* have to be iterpreted as follows: a particle (charge-conjugate
paticle) enters®™ (X, Y) (&~ (X, Y)) at X and acharge-conjugate particl¢anordinary
particle) emergs atY. This is typical for systems with a fermion—fermion condensate in
the gound state]11]. The self-energie®* symbolize this condensate. Note that the two
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Fig. 23. The quark self-energy. Writing out the indivilaamponents in the Nambu—Gor’kov basis one obtains
the diagrams on the right-hand side.

off-diagonal components are related in the same way as the bilocal sedraeEq. (129),
i.e., &~ = yo[ #1]Typ. In the fdlowing, also the terngap marix will be used forg.
In momentum space, the self-energy is given by

2(K) = —@? fQ TESQIEABK - Q). (134)

This equation can be decomposed in terms of its Nambu—Gor’kov components. To this
end, let us first determine the full Nambu—Gor'kov quark propagator by formally inverting
the Dyson—Schwinger equatiorl 82) for the quark propagatorif49,

+ =
S = ((; 8)’ (135)
where
G* =[Gt + 2% — T (GE171 + ) Loy, (136)
=% = —(IG{1I 1+ 2F) Lot Gt (137)

Here Gt (G™) is the propagator for quasiparticles @fge-conjugate quasiparticles).
Besides these quantities describing the ordinary propagation of quasiparticles, there
are also off-diagonal, or “anomalous” propagat&$ in Eq. (L35. These anomalous
propagators are typical for superconducting systetig][and account fortie possibility
that in the presence of a Cooper-pair condensate, symbolizédbg fermion can always
be absorbed in the condensate, while its ghazonjugate counterpart is emitted from the
condensate and continues to propagate.

In terms of its Nambu—Gor’kov components, the quark self-energy is

ZHK) = —¢? f YITaGH(Qy oADK — Q). (138)
Q
I (K) = —¢? / YATIG(Qy " TT AR (K — Q). (139)
Q
5 (K) = ¢ / YATTEH Q" ThAB (K — Q). (140)
Q

o (K) = ¢ fQ YITaE~ Q' TT A (K — Q). (141)
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The integrals in these equations are shown diagrammatically on the right-hand side of
Fig. 23. In thesediagrams, a normal full propagat@™ (G™) is denoted as a double

line with an arrow pointing to the left (right). According to EqL3?), the anomalous
propagators=* and =~ consist of a combination of propagatc(r[ﬁoi]—1 + 251

gap matriceshb*, and ful propagatorsG*. This combination is explicitly drawn on the
right-hand side ofig. 23, with propagator$[GéE]—1 + X*)~1 as single lines with arrows
pointing left/right, and gap matrice®* as full/lempty circles. Inserting these self-energies
(and the corresponding one for the gluons) into the Dyson—-Schwinger equéatRi)s (
one obtains a coupled set of integral equations which has to be solved self-consistently.
In particular, the Dyson—Schwinger equations for the off-diagonal compodents the
inverse propagatorS—1, i.e., Egs. (40 and (L41), are thegap equationgor the colour-
superconducting condensate.

A completely self-consistent solution of the Dyson—Schwinger equations is technically
too difficult to be feasibleand one has to make certain approximations. It turns out
that in weak coupling a well-controlled, approximate solution is possible. This will be
demonstrated irBection 5.3 Prior to that, | shall discuss the excitation spectrum in a
superconductor, which follows from the poles of the quark propaga®s)(

5.2. Exdtation spectrum

In order to find the quasiparticle excitations, one has to determine the pol@$ of
and 5*. For anarbitrary quark massn, this is a famidale task, see150. For our
purpose it is sufficient to consd the ultrarelativistic limitm = 0, where thesituation
simplifies conilerably [L51]. Let us also focus exclusively o@*; the poles of G~ and
=% can be determined accordingly (in fact, theguvl precisely the same poles). In order
to proceed, we need to specify the colour, flavour, and Dirac structure of the inverse free
propagator{;Goi]‘l, andof the self-energie§* and$*. The inverse p)pagator$Goi]‘1
are diagonal in colour and flavour space. To deteethe Dirac structure, it is convenient
to Fourier transform them into energpementum space and then to expand them in
terms of projectors onto state$ jpositive or negative energiedy = (1 + eyoy - k)/2,
e=4,

[Go1 ' (K) =y -Kxuyo=v ) _[ko— (ekF )] 4. (142)

e=+

For the weak-coupling solution discussed 8ection 5.3it turns out that it suffices to
compute the self-energiest neglecting effects from the breaking of tf8U(3).] colour
symmetry due to condensation of Cooper pairbeifi, the self-energies are diagonal in
colour and flavour space, and one only neem&rtow their Dirac structure. One may
expand themn terms of Dirac matrices,

SE=gy0+st oy +on (143)

Other Dirac structures are sjly abbreviated by dots. It turns out that, in weak coupling,
the dominant contributioto thequark self-energy arises from the exchange of almost static
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(i.e., Landau-damped) magnetjluions and, in momentum space, 158
MZ
IH(K) = 27(K) ~ pod? kolng+in|ko| , (144)

whereg = g/(3v2r) andM? = (3r/4)m3. The imagnary part gives rise to a finite
lifetime of quasiparticle excitations off the Fermi surfadetg), but in weak coupling

this contributes to the colour-superconducting gap only at sub-subleading order. (How
to count orders in weak coupling will be discussed in detaiSiction 5.3 There are
other contributions at sub-subleading order which have not been reliably computed so
far. Only the subleading order terms are under complete analytic control. They determine
the prefactor of the colour-superconducting gap to ordafl). The sb-subleading
contributions contribute to the prefactor at ord@¢g). Therdore, in the following the
imaginary part will be neglected and onhgtreal part will be kept, which, for {iM/ ko) ~

1/g contributes at subleading order to the colour-superconductinglgsh Pefining the
wavetunction renormézation factor

M2\
Z(ko) = <1+ g%In %> , (145)

the effect of thequark self-energy is to shift the poles in the propag&ipr> ko/Z (ko).
Note that the logarithm renders a normal-conducting system a nonFermi ligy5l [

The colour, flavour, and Dirac structure of the off-diagonal self-energiess less
trivial. As they symbolize the Cooper-pair condensate, they must have the quantum
numbers of the particular channel where condensation occurs. For the purpose of
illustration, | specify this structure for ¢hfour colour-superconducting phases already
discussed inSection 2.4.3Let us futhermore only consider parity-even spin-zero and
spin-one condensates. In this case, one may expand the gap n#dtr{in momentum
space) as follows%1],

T(K) = ¢ (K)My AR, (146)
e=+t

where®, the soealledgap function is a alar function of 4-momentum anty is a
matrix in colour, flavour, and Dirac space, wh is determined by the symmetries of the
colour-superconducting order parameter 8dction 2.4.3 An important property is that
it commutes with the energy projectofa/, A‘,i] =0.

In Table 4the explicit xpressions forMy are listed for the four phases considered
here. For these expressions, | have used the fact that a colour antitriplet is totally
antisymmetric and thus has a representation in terms of the antisymmetric Gell-Mann
maticesip, As, andi7. These GB-Mann matrices form ars O(3) subgroup ofSU(3),
and are thus identical to the generatorssd&¥3), (J1, Jo, J3) = J. These maices were
finally used inTable 4to parametrize thathe gap matrix T is a colour antitriplet.
Similarly, t2 (the only Pauli maik which is antisymmetric) symbolizes that the gap
in the 2SC phase is a flavoumgiet. The Dirac matrixs in the 2SC and CFL cases
is necessary to obtain even parity. For the CFL case, the flavour-antitriplet nature is
represented by another set of generatdrs 12,13) = | of SO(3). Colour-flavour
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Table 4
The struture of the matrices\ and Ly in various colour-superconducting phases,) fg — jefg, Jij =
—iejjk, (1M 19 = —ie 9N, andy, (k) = y — y - kk. For the matrixLy in the CSL phase, the second term is a

matrix in colour space, formed by the dyadic product of the two vediorsyl(k) andk — y1 (k), and a matrix

in Dirac space, formed by the product of the typ(k) matices. The last two columns show the two eigenvalues
Ar of Lk and their degeneraay (counting colour-flavour degrees of freedom in the 2SC and CFL phases, and
colour-Dirac degrees of freedom in the two spin-one phases)

Phase My Lk A1 (dp) A2 (dp)
2SC y572J3 (J3)?(12)? 1(4) 0(2)
CFL sl - J (1-3)2 4(8) 1(1)
csL Je[k +yL (k)] 1+ [k +y (I -y k)] 4(4) 1(8)
Polar B2+ y (k)] (J3)2 1(8) 0(4)

locking is obtained by a scalar product lofvith J, cf. alsoTable 1 For the wo spin-
one phases, the CSL phase and the polar phase, the order parameter is a 3-vector, see
Section 2.4.3but the gap matrix is a scalar. This requires it to be proportional to a
scalar product of the order parameter with another 3-vector. There are only two other
3-vectors (in momentum space), the direction of momentum of the quark in the Cooper
pair, k, and the vectory. Consequentlyd+ has to be proportional to a linear combination
of these two 3-vectors. It is convenied(] to use the priction of y onto the subspace
orthogonal tok, v (k), because thetM commutes with the energy projectors. Finally,
colour-spin locking requires a scalar producfaf¥ith this linear combination of 3-vectors.
In the polar phase, one may independently choose a direction for the gap in colour space
and in space—time. Conveniently, one choabes3-(anti-blue) direction in colour space
and thez-direction in space—time.

In order to proceed, however, one does not require the explicit forovigfin the
variousphases. The existence of the decomposititdg) and the ommutdion property
of My with the energy projectors is sufficient to derive the quasiparticle spectrum as a
function of the absolute magnitude of the gap functigif(K)|. To seethis, mmpute
o~ = y0[45+]Ty0 and, together withp+ and[Gg]‘l + X7, thequantity

(G I+ 2t (G 1T+ 27) = ) 19%(K)PLi A, (147)
e=+
where
Lk = vo M Mo (148)

is another central quantity for the quasiparticle excitation spectrum. Expressions for the
mattix Ly in the various phases are also listedable 4 Note hat alsoLx commutes with

the energy pjectors[ L, Aﬁ] = 0. SinceLy is hermitian, it has real eigenvalues, and

can be expanded in terms of a complete set of orthogonal projegars,

Ly = Z,\, Pr. (149)
r
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In the four phases considered here, there are only two distinct eigenvalues and therefore
two distinct projectors. The eigenvalues are also liste@ainle 4 and the prgctors can
be expressed in terms bk via
Lk — 221
pri= X220 150
k A12 —A21 (150)

Obviously, also these projectors commute with the energy proje¢ﬂqﬂ'52,, AR1=0.ltis
now straightforward to compute the full propagator by inverting the term in curly brackets
in Eq. (136), since the projector®, A; form a complete, orthogonal set in colour, flavour,
and Dirac space,

1
GHK) =[G 1K)+ X~ (K PLAE ., (151
(K) = [[G17H(K) + X7 ( )]lej e T 2007 — [, GO (151)
where
€g  (9°) = [(ek— )% + Ar[9®21Y2. (152)

Obviously, the poles of the full propagator are locatettga= iz(kO)GE,r (¢%). Because
of theko dependence of the gap functigf(K), this is acondition which has to be solved
self-consistently.

In order to get an impression what the excitation spectrum of the quasiparticles in a
superconductor looks like, let us for the moment approximgfteK) = ¢ = const
and also seZ(kg) = 1 (corrections are of ordef(q)). Let us also neglect the fact
that there are two different sets of @ation branches depeing on the value of;. In
Fig. 24 the excitation spectrum is shown for noninteracting massless fermions as well
as for quasiparticles in a superconductor. Tlepeksion branches for the quasiparticle
excitations corresponding to negative energiess —, i.e., thequasi-antiarticles and
quasi-antiparticle-holes, hardly differs from the noninteracting antiparticle or antiparticle-
hole branches. As we shall see Bection 5.3 in weak coupling,¢ <« u, such
that to very good approximationqk"r ~ k + w. On theother hand, the dispersion
branches for the quasiparticle excitations corresponding to positive eneggies+,
differ considerably from the noninteracting particle or hole branches. The most notable
feature is an energy gap at the Fermi surfdces= w«, between the quasiparticle and
quasiparticle-hole branches. This indicatkat, in a superconductor, it costs an energy
2¢ to excite quasiparticle—quasiparticle-hole pairs at the Fermi surface. In contrast, in
a noninteracting system it costs no energy to excite particle-hole pairs at the Fermi
suface. The superconducting state is thus ert@gky favoured compared to the normal-
conducting (noninteracting) state. As a rule of thumb, the more fermionic excitations
branches develop a gap (the more fermions form Cooper pairs), and the larger the
associated gap, the lower is the ground state energy, and the more energetically favoured is
the particular superconducting state.

In the CFL and CSL case, there are two differexdtation branches with two different
gaps,e:’l(qs) = V21 = 2¢ ande;’z(q&) = 29 = ¢. Consequently, it costs twice
the anount of energy to excite quasiparticle excitations from the first branch than from the
second. In the 2SC and polar phases, there are also two different excitation branches, but
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Fig. 24. The excitation spectrum for (a) noninteragtimassless particles and (b) quasiparticles in a
superconductor. The value of the gap functipfi(K) is assumed to be constagt, = 0.5u. The exdation
energies for noninteracting particles agg0) = k — u for paticles (solid),ex (0) = u — k for holes (dashed),
ek (0) = —(k+p) for artiparticles (dotted), anek (0) = k+p for artiparticle-holes (dash—dotted). The excitation
energies for quasiparticles arg(¢) = —v/(k — )2 + ¢2 (solid), ex (¢) = v/(k — )2 + ¢2 for quasiparticle-
holes (dashedy (¢) = —v/(k + )2 + ¢2 for quasi-antipaicles (dotted), andy (¢) = v/ (k + w)2 + ¢2 for
guasi-antiparticle-holes (dash—dottelp1].

the one corresponding to unpaired fermionic excitations is gaph;fs§ 0. In the next
section, the gap equatioh40) for the gapfunctiong®(K) will be solved, which allows us
to determine the magnitude of the gap at the Fermi surface.

5.3. Solution of the gap equation

In order to solve the gap equatiot4(), insert Eqs.146) and (151) into (137) for =7,

9°(K)
AT® 153
< Tko/Z(k 2 — (€8, @O (153)

(By the way, tlis result demonstrates the claim made earlier@aand=" have the same
poles.) Now insert this equation into the gap equatib40[, multiply from the right with
Ml/le, and trace over colour, flavour, and Dirac space. The result is an equation for the
scalar gap functiog®(K),

EH(K) == yoMkyoPg
er

¢%(Q)
K) = g°T / K —
#(K) =g Z <2n>3 ~ 190/Z(G0)? — [¢§ (¢*)12 MK - Q)
Yia‘t)”seé(k, a, (154)
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where

Try T voMqroPsAg S v To M| A
TrMM]AE] '

The form of this gap equation is the same for all colour-superconducting phases considered
here. The difference lies inh¢ exdtation spectrum and the structure of the term

T (. ).

At this point it is convenient to explaimé power counting scheme in weak coupling,
g < 1. The right-hand side of Eq164) has a préactorg?. Consequently, in order to
satisfy the equality, after performing the integral there have to be ter&?, which
together with the prefactor produce a ter®(¢), i.e., which is of the same order as the
left-hand side. These are the so-called termkeadling orderin the gap equation. Then
there are terms of so-calledbleading order These enterhe right-hand side of the gap
equation at orde©(g¢). The terms bso-cdled sub-subleading ordeare ~O(g2¢). It
turns out thabnly the terms of leading and subleagliordercan be reliably calculated in
weak oupling.

In order to proceed, one has to make further approximations. As showirb fo
leading and subleading ordene does not need the fully self-consistent gluon propagator;
it suffices to employ tb gluon propagator in HDL approximation, dection 4.4.1The
HDL gluon propagator is diagonal in adjoint coIoursf;LB = §3PA,,. For the sake of
definiteness, | choose pure Coulomb gauge, where

Tt (o) =

ab,s

(155)

Apo(P) = Ag(P), Agi (P) =0, Ajj (P) = A¢(P)(Sij — Bi Bj), (156)

with P = K — Q and the longitudinal and transverse propagatdys introduced in

Eq. ©3). Infact, itis not even necessary to use the full form of the HDL propagator. In weak
coupling, power counting along the lines of argument given above revakq, 156 that

the dominant, leadig-order contribution to the gap equation comes from almost static,
Landau-damped magnetic gluons. Thwiopagator may be approximated by

4

APPM(P) ~ . P OM — p), (157)

6 + M42

whereM? = (3n/4)mg. To aubleading order, there are two contributions, from nonstatic
magnetic gluons,

1
APM(p) = S5 O(p— M), (158)
and from static electric gluons,

ASE(p) =~ (159)

Cp2+3mg

All other terms in the HDL glon propagator contribute to sub-subleading order.
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In pure Coulomb gauge, one only needs the 00- compoﬂgﬁeé(k, g), and the
transverse projection of th¢-components of the tensﬁ’g“” eé(k, q),

T k. q) = — @ — Bip)Tane (k. 0. (160)

where the extra mmus sign is convention. Irbfl] it was shown thabne can writethese
components in terms of a power seriespy (kg), wherep = |k — q|, with coefficients
an which depend ork, g and the produce€, and an oerall normalization factoss
which is the same for the 00- and the transverse component. The power seri@s staer
atm = —1 and, for spin-zero and spin-one gaps, terminatmat 2. The normalization
factors satisfy the constraipt, as = 1.

Peforming the Matsubara sum in EqL%4) one then obtains

2 u+s =4 e
g » ¢ 9% (Gs @ €q.s

e, e k — 7 h
¢ (ek’r ) ) 16 2k s dqq e aS ( q S) ES:S tan 2T

k+q p2 m
X dpp| —
2m:/k—q (kq>
X (—2A85(P) 5 + [2ANM(p) + APV (€ + €€ . p)
+APM (S — €8 1. P)Inby)- (161)

Several aproximations have been made to obtain this result. First, the integratiom over
has been restricted to a narrow interval of lengthaPound the Fermi surfacé, ~ M.
It turns out that this approximation is good to subleading order; due to the momentum
dependence of the gap function, the value efdi-off affects the colour-superconducting
gap parameter only at sub-subleading ordé}.[Second, when evaluating the Matsubara
sum via ontour integration, to subleading order the value of the pades iZ(qo)egfs
may be approximated bgp =~ :I:egfs everywhere except in the residue of the contour
integral. Thesingle factor on(egfs) under the integral arises from the residue. In the
argument of this factor, one has also made the approximajion- :I:e{is, sincethe
logarithm inqgo in Eq. (145 gives at most a subleading contribution to the integral
[51, 153. Third, the gap function was assumed to be an even function of engfttkg) =
¢¢(—kp) [40]. Fourth, the gap function was assumed to be isotropic in momentum space,
¢¢(k) = ¢&(k) [5]]. Findly, the imaginary part of#€ was negtcted #0.

How do theleading,~O(¢), and sibleading,~O(g¢), termsarise? To this end, one
has to power-count the different contributions to the integral in E§l)( One uses
the fact (which will be confirmedelow) that in weak couplingg ~ wuexp(—1/9).
Neglecting all subtleties regarding different excitation branches, and segggng eg’ =

V(€q— )2 + ¢2, for € = + the integal overq gives rie to a term

/;H-S dq _, 8 d%‘
n-s €q VEZ+ 92
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=2|n<5+ "62+¢2> _2In< )
¢
~ In [L} ~ 1 (162)
exp-1/9)] g

where | have substituted the varialjle= q — n and used the fact that~ M ~ gu >

¢ ~ nexp(—1/9). The lbgarithm appearip in the eimate (L62) is cdled the “BCS-
logarithm”, because it also appears in standard BCS thddrd}.[For € = —, theBCS-
logarithm does not occur, ag; >~ q + u, such hat the integral is pametically only of

orderé/u ~ M/u ~ g (provided that the gap functiop~ falls off sufficiently fast that
one may restrict the integral to a narrow range around the Fermi surface).

For the kading-order contribution to the gap equation, we need another term which
is also~1/g, such hat this term and the BCS-logarithm combine to give a contribution
~1/g?% which cancels the prefact@? in front of the integral in Eq.161). To estimate
the order of mgnitude of the remaining terms, one notes that the coeﬁici@ﬁrﬁsare
parametrically at most of ordéd (1) [51], such that they can be neglected for the purpose
of power counting. The termy1/g which we ae looking for arises from the termn = 0
in the sum ovem in conjunction with the lendau-damped magnetic gluon propagator.
Abbreviatingo: = €f s + €f ., one estimates

k+q
/ dppAtPM(wy, p)
k—q

M 5 M6 M4 2 2
:/ dp—P2  —Zin Mo Tom (M), e
keg o PO+ MAw: 6 | (k—q)f 4+ M4wi w3

where the pproximationk ~ g was used. (@ly whenk — q >~ 0, may the logarithm
become large, see argument below. Otherwide—iff ~ M, the lbgarithm is only of order
0O(1), not O(1/g).) If eithere = — or& = —, orbothe = ¢ = —, the bbgarithm is
parametrically of orde© (1), andnot ~1/g. Consequently, the only case of interest is if
bothe = € = +. In thiscasew+ ~ ¢, and the bgarithmis large, Ity /¢) ~ 1/9.

One readily convinces oneself that théntegral ove theother terms in Eq.161) gives
at most a contribution of ordéd(1). In conbination with the BCS-logarithm, this leads to
a sableading contribution in the gap equation. From the quasi-antiparticle goles;—,
one does not obtain a large BCS-logarithm, but a terga With the prefactor and a factor
of ¢ from the gap function under the integraheir contribution to the gap equation is
of orderg3¢, i.e., even beyond sub-subleading order. In the following, one may therefore
safely nglect the contribution from quasi-antiparticles when computing the gap for the
guasiparticleexdtations,e = +.

In order to proceed, one performs tipeintegrals, which can be done exactl$1],
but only needs to be known to ordé€(1). One futhermore analyses the coefficients
an and realizes31] that, to subleading ordeone may approximate ~ q ~ wu in
the epressions for these coefficients. Thus, they become pure numbers of@¢ther
Moreover, to subleadingder the coef“ficientse_*t2 = 0 andneed not be considered further.
I list the coeficients form = 0, 1, 2 in Table 5 together with the normalization factors
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Table 5

The normalization factorsas, the cefficients '7(2);1 and the onstantd from Eq. (L65 in various colour-
superconducting phases. In the polar phasés the angle between the direction of the colour-superconducting
order parameter and the momentum of the quarks in the Cooper pair

Phase a; a» né n5 nf‘ ng My 7751 d
2 1 2 1
2SC 1 0 3 -3 0 3 § 0 0
1 2 2 1 2 1
CFL 3 3 5 -3 0 3 § 0 0
2 1 2 7 2
CsL 3 3 3 ~1s 18 3 18 0 5
2 2+cod ¥ 1+cof v 2 2—cog ¥ 1-3co ¥ 3
Polar 1 0 § —&egsv  lieesy 2 _Zz=c8 = 33+ cog )

as for the four colour-superconducting phases édeied here. The final result for the gap
equation can be written in the concise forei] (let us omit thesuperscript 4" for the
sake of simplicity)

¢(exr. k) = §° / d@q - mZaszeqs)‘”qs"”mm(%)
1 bZMZ
x=In{ ——], 164
2 (léé,s—GEﬂ) aen

which is exact to subleading order. In E466) | have irtroduced

. . 2 5/2
b = bexp—d), b5256714( ) ,

6
d= —n—t[nﬁ + b+ 24 + 1. (165)
0

The N¢-dependence db arises from the corresponding dependence of the gluon mass
parametemg, cf. Eq. @9). The values for the constadtare also listed infable 5 For
the gin-zero colour-superconducting phasgss 0, due to an accidental cancellation of
the coefficientsé andr;tz. Thisdoes not happen in the spin-opleases and, consequently,
d#0.

In order to solve Eq.164), one makes the following approximation which was first
proposed by Sorilfsg and is vdid to subleading order,

1 b?u? b
—1In 2711“2 Q(Gqs—ekr)m( M)
2 |6q,s — €y | €q,s

b
+ O(ekr —€q,8)In (EM) (166)

k.,r

The remainder of the calculation is technicalt Istraightforward and given in detail in
[51]. To summarize the steps, a suitable substitution of variables allows to rewrite the
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gap equation¥64), which is an integral equation, inrtes of Airy’s differertial equation
[51, 153. The result for the gap function has the form

d (%) = doF (%), (167)

where ¢g is the value of the gap function at the Fermi surface, i.e., the colour-
superconducting gap parameter or “gap”, afdXx;) parametzes the momentum
dependence of the gap function. The variablés defined as

_ 2bu
Xx =gn{ —— ). 168
=9 (k — W+ ek r ) (168)

At the Fermi surfacelk = p, one has¢ = x* = gIn[2bu/(VAr¢o)] = /2 + O(g) ~
O(1). If one moves away from the Fermi surfage,stays @& order O(1), as bng as the
momentum difference from the Fermi surfacgks— | ~ O(¢). When|k — u| ~ M
or larger,x; ~ O(Q). Theprecise form of the functioifr (X, ) is not very illuminating (it
consists of a combination of Airy functionS1, 153), and thus will not be discussed here.
All one needs to know is that it has a narrow peak in an intdkval 1| ~ O(¢) around
the Fermi surface. At the Fermi surface, = X/, the function F (x;) assumes the value
Fix) =1+ 0(g?). At a distarce |k — | ~ M from the Fermi surfacek (x;) ~ O(g).
If one neglects the factaZ (¢q,s) in Eq. (164), the differential equdion satisfied by the
gap fundion is that of the harmonic oscillator and, consequently, the solution of the gap
equation becomes simpler and more amenable to interpret&ti@nt = sinx; [40, 156.
The value of the gap function at the Fermi surface is

do = 2bbu exp(—z%) (5as)=t2, (169)

The constanty; = exgd—(m? + 4)/8] arises from the wavefunction renormalization
factor Z(eq,s) in Eq. (164 [59, 153. The result {69 differs from the standard BCS
resultin the power of the coupling constagtin the exponent. In weak-coupling BCS
theory,¢o ~ exp(—1/g?), while heregy ~ exp(—1/g). Thedifference in the parametric
dependence omg arises from the long-range nature of magnetic gluon exchange. In
BCS theory, the atictive interaction is assumed to be short-range (point-like or at least
exponentially screened). On the other hand, in QCD static magnetic gluon exchange is not
screened 13]. Almost static magnetic gluons are dynamically screened, but the screening
is rather weak. It gives rise to the large logarithh6g in addition to the BCS logarithm
(162). This reduces the power dfin the exponent.

In Table 61 list the valie of thegap¢g in units of its value m the 2SC phase. For
the sph-one gaps, the nonzero value of the constarieads to a strong suppression
~e~9 ~ 1072 — 1073 as compared to the spin-zerags. In the CFland CSLphass,
the cond gapped excitation leads to a nontrivial fac@'*kgz)—l/z < 1, which reduces
the gap as compared to the 2SC and polarsphavhere there isnly a single gapped
exdtation.

The result 169 is rigorously valid in weak coupling, i.e., for asymptotically large
quark chemical potentials, where the value of the strong coupling constant evaluated at the
scaleu is small,g(u) <« 1. However, for phenomenology it is of considerable interest to
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Table 6

The value of the gap function at the Fermi surfagg,in units of its value in the 2SC phase, and the critical
temperature, in units of its value expected from BCS theory, B}, &nd in units otthe critical temperature in
the 2SC phas&2SC

Phase $0/95°C Te/TECS Te/TE5C
2sC 1 1 1

CFL 2-1/3 21/3 1

csL 22/3g—d 22/3 e
Polar ed 1 ed

determine the gap also at values.ofvhich mightoccur in nature, for instance in the core

of compact stellar objects. To this end, adrgolates the weak-coupling resultg9) to

large values ofj() ~ O(1). Such an extrapolation has to be considered under the caveat
that the sub-subleading terms are not really smaligigr) ~ 1 and ould lead tolarge
deviations of the actual value of the gap from the subleading reltf}.(Nevertheless, the
computation ofpg atg(un) <« 1is a wdl-posed problem with a definite result, and so is its
extrgpolation to large values aj(u). In this sense, this approach should be considered to
be more reliable than ad hoc calculations within NJL-type models which are very popular
in the description of colour-superconducting quark matte] |

For the running of the strong coupling constanwith /A, whereA is the QCD scale
parameter, | take the standard 3-loop formi8€][| assume that there are only;s = 3
active quark flavours involved in the running of the coupling constant, so that in order to
obtain the correct value af(u) at the mass of th& boson, one has to adjust the QCD
scale parameter] = 364 MeV. | also takeN¢ = 3 in thefactorb in Eq. (165). Phystally,
this means that, independent of the number of quark flavours which form Cooper pairs,
there are always three (massless) quark flavours which screen colour charges. The result
of extrapolating Eq.X69) to redistic values ofu is shown inFig. 25(a) for the various
colour-superconducting phases considered here.

Oneobserves that the 2SC phase has the Iargesmjéﬁ,: 10 MeV followed by the
CH. phase. The spin-one phases have gaps which are about 2 to 3 orders of magnitude
smaller,q&g:l ~ 10~2-10"1 MeV. The gap is approximately zero for chemical potentials
below 500 MeV, rapidly rises to assume a maximum around: 600 MeV and then
decreases. (For larger valuesoft will eventually increase again.) This behaviour is due
to the depedence ofpg on g. For large alues ofg (small vdues of 1), the power-law
behaviourg—® from the prefactob leads to a suppression, while at small valuegyof
(large values of4), the exponential suppressionexp(—1/9) dominates. This leads to
a maximum for ntermediate values qf. (For asympttically large values ofx, the gap
increases again, because the prefaptaominates the: dependence of the remaining
factors.)

One can also solve the gamueation at nonzero temperature. One finds that the
shapeF (x;) of the gap function hardly changes wiih, but thatthe valueof the gap
decreasedd0]. The gap equationl@0) is equivalent to the one obtained in the mean-field
approximation 151], and therefore the temperatudependence of the gap follows the
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ag: 3-loop, Ny=3, A=364 MeV
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Fig. 25. (a) The gap and (b) the critical temperature &mation of the quark cheroal potential. Solid curves
are for the 2SC phase, and dotted curves for the CFL pliasthe case of theritical temperature, both curves
coincide.) The long-dashed curve is for the CSL phasd,the dashed and dash—dotted curves are for the polar
phase withy = 7/2 andy = 0, respectively.

predictions from mean-field theory. In parlar, the transition to the normal-conducting
phase is of second order, irrespective of the symmetries of the order parameter. The critical
temperaturd, for this rangtion can be computed analytically, for details sé@ b1, 153.

The result is $1]

_ e

4
To=— P01 A5)Y2[1 4 O(g)]. (170)

This result is surprising for two reasons. First, in a phase with a single gapped excitation,
like the 2SC phase or the polar phase, whér?kgz)l/z = 1, the citical temperature in
QCD, measured in uts of the gap, is theameas in BCS theory4(], at least to leading
order in weak coupling. This is unexpected, since we have seen that the dependence of
the gap itself org is parametrically very different than in BCS theory. Second, in a phase
with two different nontrivial excitation branches, like the CFL and CSL phase, the factor
(Ailkgz)l/z # 1 violatesthe expectation from BCS theor$(, 51]. In Table 61 show

Tc in units of the critical temperature expected from BCS theﬂSBP,S = (€ /m)¢o, tO
demonstrate this violation. In physical unitaysthe value of the critical temperature in

the 2SCphaseT25C = (¢” /m)$35C, the factor (A§1152)1/2 cancels against its inverse in

Eq. 169. This leads to the conclusion that, in the mean-field type approach pursued here,
the critical temperatures in the 2SC an#lCphases are actually identical. The critical
temperatures in the spipRe phases are just a facer smaller than intie 2SC and CFL
phases%9.
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The critical temperaturel{0) is shown as function ofu in Fig. 25(b). These curves
also define the boundaries of the colour-sgpeaducting phases in the phase diagram
of nuclear matter, cfFig. L The sibleading resultX70) for T; implies thd one would
have to cool quark matter below temperatures of order 5 MeV, before one enters a
colour-superconducting quark matter phgde 2SC or CFL phase). This means that,
unless sub-subleading corrections to the ghp9( (and hus to T.) are larg, colour
superconductivity is irrelevant in the context of heavy-ion physics, but that it may play
a large rolefor compact stellar objects which have a sufficiently dense core. While spin-
zero colour-superconducting matter may occur already quite early in the evolution of such
a ompact stellar object, i.e., while it is still comparatively hot, matter in a spin-one colour-
superconducting state only occurs after the core of the stellar object has cooled below a
temperature of order 10 keV, i.e., in the later stage of its evolufiéid [

5.4. Gluon and photon properties

In this section, | take a first step towards a self-consistent solution of the
Dyson—Schwinger equations132) and conpute gluon properties in a colour
superconductor. Within the two-loop approximation’tg thegluon self-energy consists of
the diagrams shown iRig. 15. At temperatures of relevance for colour superconductivity,
T < Te ~ ¢o ~ nexp—1/g) < u, we may nglect the contributions from the gluon
(and ghost) loops to the gluon self-energy: they amg?T2, while the quark loop is
~g2u? > g%T2. Thus, the gluon self-energy in momentum space is

2
I (P) = % /K THILS(K)TYSKK — P, (171)

where the trace runs over colour, flavour, Dirac, and Nambu-Gor’kov space. By
introducing the Nambu—Gor’kov basis one has effectively doubled the degrees of freedom
by introducing charge-conjugate quarks in addition to quad&. [The factor %2 in
Eq. (L71) preventovercountinghese degrees of freedom.

Similarly to the gluon self-energy one can compute the photon self-enﬁmﬂl
replacing the quark—gluon verticd%', I'} in Eq. (171 by the corresponding ones for
the aoupling between quarks and photons,

w_ &(v"Q 0
whereQ = diag2/3, —1/3, —1/3) is the quark electric chaegmatrix. Furthemore, as
discussed inSection 2.4.2in a colour superconductor gluons can mix with the photon,
leading to a “rotated” electromagnetjti (1)] symmetry in the 2SC and CFL phases.
This fact manifests itself in a nonvanishing “mixed” gluon-photon seIf—eany which
follows from Eq. (L71) by rephcing just one of the quark—gluon vertices with the quark-
photon vertex 172). In order to determine the gluon and photon properties in a colour
superconductor, one has to compute all theséerbht self-energies. For the sake of
convenience, in the following let us set the index= 9 and onsider Eq. {71) for
a,b=12,...,9.lalsointroduc@y = (e/g) Q as the appropriate generator for(1)em].
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(a) (b)

Fig. 26. Contributions from (a) normal and (b) anomalogusirk propagation to the $ednergies of gluons and
photons, and the mixed gluon-photon seieegy. The notation follows that &fig. 23

Taking the trace over Nambu—Gor’kov space in Efj 1), one realizes that the quark
loop consists of four contributions, tweegular” ones with normal propagato@&?* for
quarks and charge-conjugate quarkd &wo with anomalous propagatags”,

2
mye =% /K THy " TaG+(K)y " ToG™ (K — P)

+yPTIG (K ' TJG (K — P) — p*TaZ = (K)y" Ty 5H(K — P)
— YT EF(K)Y ThET(K = P)1. (173)

The two different topologies corresponding to these contributions are shdvig. iB6.

To further evaluate the trace one has to specify which colour-superconducting phase
one would like to consider. The form of the propagai@fs, =+ can then be determined
following the method outlined irfsection 5.2 see Egs.X51) and (L53). After inseting
these propagators into Eql743), one peforms the Matsubara sum. The resulting
expressions for the self-energies are rather unwieldy and will not be shown here. For
the 2SC phase they wefirst derived in 45 and for he CFL phase in15§. For the
spin-one colour-superconducting phases, this was done5§.[To further evaluate these
expressions, one has to compute the integral over Bor anarbitrary gluon 4-momentum
P#, this has not yet been done. However, in the static, homogeneous limit, the self-energy
Hfb”(O) was conputed in the aforementioned references in order to derive the Debye
and Meissner masses in the respective colour-superconducting phases. The results will be
discussed in more detail in the following. The gluon self-energy in the 2SC phase was also
evaluateddr nonzero energies and momepta p, whichare small compared to the quark
chemical potential. This calilation is rather technical, and | simply refer i®[l, 16Q for
the details. The main result was that the nficdiion of thegluon self-energy in a colour
superconductor does not influence the value for the gap parameter at leading or subleading
order in weak coupling. For the other colour-superconducting phases, a similar calculation
has yet to be done.

In general, in a medium at nonzero temperatand/or density static, long-wavelength
(colour-) electric fields are seened. The screening length is determined by the (inverse)
Debye mass. If the medium is normal-conducting, static, long-wavelength (colour-)
magnetic fields are not screened. This changes in a superconductor, where the Meissner
effect expels (colour-) magnetic fields. Thegn only penetrate a certain distance into
the superconducting medium. For static, long-wavelength (colour-) magnetic fields, the
(inverse) penetration length is determined by the so-called Meissner mass. The acquisition
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Table 7

The Debye masses for gluons, photons and from the mixedrgiphoton polarization tensor for various colour-
superconducting phases. The results are given in unitsl qfcz/(ﬁnz), whereNs = 2 in the 2SC phase,
Nt = 3in the CFLphase, and\s = 1 in the spin-one colour-superconding phases. The constants are
{=(21-8In2 /54,0 = 3+4In2/27,ands = (6 — 4In2)/9

Gluons Mixed Photon
a 1 2 3 4 5 6 8 1-7 8 9
2sC 0 0 0 302 39> 39> 3¢® 32 0 0 2?2
CFL  %g? 3g? 3g®> 3g® 3cg? 3g® 39> 3g?> 0 —VI2eg 4€?
CsL 389> 3eg® 3pg® 389 3wg? 369 3ag? 3pg? O 0 18%€?
Polar 0 0 0 3¢ 3¢ 3¢ 3¢ 32 o0 0 18%€2
Table 8

The Meissner mass for gluons, photons and from the mixadrgtphoton polarization tensor for various colour-
superconducting phases. The results are given in unitsl pfi2/(672), where Ni = 2 in the 2SC phase,
Nf = 3in the CFLphase, and\s = 1 in the spin-one colour-supercondimg phases. The constants are
{=(21-8In2/54,0 = (3+4In2)/27,andB = (6 —4In2)/9

Gluons Mixed Photon
a 1 2 3 4 5 6 7 8 1-7 8 9
2sC 0 o 0  39* 3¢® 3¢¢ 3¢ 3¢ O Zeg 3
CFL  ¢g? tg?  ¢g? cg? ¢ g? tg? g 0 ~Zeg 30
CcsL  pg? g2 B2 B2 ag? PR ag?  Bg? O 0 62€2
Polar 0 0 0 12 12 19?2 39® 30?2 O %qeg 4922

of a Meissner mass by a gauge boson indicates that the corresponding gauge symmetry
is broken via the Anderson—-Higgs mechanism. The Debye and Meissner masses are
defined as

M, e == M 750, ), M o = lim 1735(0. p). (174)

| present the alues for the Debye massesliable 7 and for the Meissner massesTiable 8
for various colour-superconducting phases.

In the 2SC and polar phases, the Meissner mass of the first three gluons vanishes. These
gluons correspond to the unbrokgdU(2)]; subgroup, cf.Table 1 What & intelesting
is that they also have a vanishing Debye mass, indicating that the corresponding colour-
electric fields are unscreened. Imptioas of this result were discussed k6[1]. The other
five duons acquire both a Debye as well as a Meissner mass. Electric and magnetic fields
are always screened in these colour-superconducting phases. Only the eighth gluon mixes
with the photon. Another interesting aspect is, however, that this mixing only occurs in
the magnetic sector, electria@ colour-electric fields remain unmixed. In order to obtain
the agenmodes of the gauge bosons, one has to diagonalize the mass matrices for electric
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Table 9

The dagonal elements of the electrio magnetic gluon—photon mass matrix and the (square of the) cosine of
the rotation angles for Debye and Meissner masses. The results are given in N}ita%ﬂ(&z), whereNf = 2

in the 2SC phase\+ = 3 in the CFLphase, and\ = 1 in the spin-one colour-superconducting phases. The
constants are = (21—-8In2)/54 andB = (6 — 4In2)/9

Phase rﬁZD,8 sziy co< 6p M2 g rﬁ%/l,y co Oy

2sc 3P 262 1 1%+ 4€ 0 39%/(3g2 + €?)
CFL  (3g?2+4H; 0 30%/(3g% +4€%)  (g®+4€%/3)c O 39%/(3g% + 4€?)
CSL  38¢? 1892 1 Bg? 602 1

Polar 3 1802¢2 1 19?2 +49%¢? 0 92/(0? + 129%€2)

and magnetic gluons. A zero eigenvalue in this mass matrix indicates the presence of an
unbroken “rotatedfU (1)] gauge symmetry.

In the CFL phase, all gluons acquire a Debye as well as a Meissner mass, indicating
that the[SU(3)]¢ colour symmetry is completely broken. Photons are Debye- as well as
Meissner-screened, and there is again mixing between the eighth gluon and the photon.
In contrast to the 2SC and polar phases, however, this mixing extends also to the electric
sector. In the CSL phase, all gluons and the photon obtain Debye and Meissner masses.
There is no mixing between the gluons and the photon. This means that the mass matrix of
the (former gauge) bosons is already diagonal, and it has no zero eigenvalue. Consequently,
there is no unbroken residual symmetry, and no room for a rotation that could generate one.
This is in agreement with the geral arguments presentedSection 2.4.2nd summarized
in Table 1 Theparticular pattern of gluon masses reflects the resi8@B)c ; synmetry
in the CSL phase, cfTable 1 the gluons corresponding to the three antisymmetric
generators ofSU(3)¢] (which are simultaneously generatorsi®(3)) assume a dferent
mass than the ones corresponding to the symmetric generators.

The final step is to diagonalize the mass matriu%’ab, mﬁ,,,ab for electric and
magnetic gluons. Since only the eighth gluon mixes with the photon, this diagonalization
is achieved by a simple orthogonal rotation in the 2 block corresponding to the indices
a = 8,9. The resulting diagonal (squared) Debye mash%§a and (squared) Meissner

massesrﬁﬁma, as well as thgsquare of the) cosine of the rotation angtes 6y are

shown inTable 9 In the case of an unbrokéhl (1)] synmetry, cf.Table 1, the “rotated”
(magnetic) photon is massless. The “rotatgtiion remains massive, but its degeneracy
with the aher massive gluons is lifted.

The case of the polar phase is special. If there is only one quark flavour, or all quark
flavours have the same electric charge, the results showiabites 79 hold. In this
case, the rotated photon is massless, and there is indeed an unpaghsymmetry.
However, in the case of two anore quark flavours with different electric charges, the
resuts change $2). Let us assume that the chemical potentials of all quark flavours are
identical. Then the ¢uared) gluon masses are the same, but in the mixed masses, the
factorq has to be replaced By ; g, while in the photon masses, the factpris replaced

by ¢ q?. In this case, it is not hard to realize that a diagonalization of the Meissner mass
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matrix does not lead to a massless rotated photon. There is therefighd symmetry.
Consequently, spin-one colour-superconducting quark matter exhibits a Meissner effect,
while colour superconductors with spin-zero Cooper pairs do not. Due to the smallness of
the ratiogo/ my for spin-one colour superconductors, these are very likely of type I, i.e.,
the magnetic field is completely expelled. This is in contrast to the standard model of a
neutron star, where the core is assumed to be a type-Il superconductor and thus threaded
by magnetic flux tubes. It was recently argued 11823 that the short precession period

of some pulsars contradicts this assumption and requires the core of the pulsar to be a
type-l superconductor. The question then isether the core could be made of spin-one
colour-superconducting quark matt&g].

6. Conclusions and outlook

In this review, | have presented the current knowledge of the equilibrium properties
of strongly interacting matter at large tematres and/or densities. In particular, | have
qualitatively discussed the phase diagramavdyresented calculations of thermodynamic
properties of strongly interacting matter, bata lattice QCD, as well as within analytic
approaches. Finally, | have given an overview of colour superconductivity in weak
coupling.

Our knowledge of the QCD phase transition and the QGP at zero quark chemical
potential has tremendously increased over the last few years. Lattice QCD calculations
are well under control for the puf&SU(3).] gaugetheory, and the quality of the data is
swch that an extrapolation to the continuum limit as well as to the thermodynamic limit has
become possible. Lattice calculations witynamical fermions are are challenging and,
consequently, the data are not of the same quality as for the pure gauge theory. The main
problem is that, with present methods of puftfiermions on the lattice, the pion comes out
too heavy. Since pns dominate the equation of state in the hadronic phase, calculations of
the pressure below the chiral restoration temperature do not yet reflect the correct physics.
The challenge for the future is to improve thetimods such that the pion mass on the lattice
is close to he value in nature. Besides a reliable computation of the equation of state, this
will also allow to decide the question abougttrder of the QCD phase transition in nature.

Another important development in lattice QCD is to extend the investigation of
thermodynamic properties to nonzero quark chemical potentials. For many years, the
fermion sign problem has impeded progrens this direction. Recent attempts, like
multiparameter reweightg, Taylor expansion around= 0, or analytic continuation from
imaginary values of:, have made an attempt to work around this problem. Much work
remains to be done to improve these methods in order to correctly determine the location
of the citical point in the(T, ) plane. This is of great phenomenological importance: in
order to find a sgnal for the first-order phase transition to the QGP in nuclear collisions,
one has to tune the bombarding energyhstitat one probes the region of the phase
diagram, which is to the right of the critical point. Nuclear collisions at very high energies
mostlikely probe the region to the left, i.e., the crossover region of the quark—hadron
transition. By definition, there is no qualitative difference between hadronic and QGP phase
in this region, and a clear signal for the QGP will be hard to identify.



292 D.H. Rischke / Progress in Particle and Nuclear Physics 52 (2004) 197-296

Although the question about the locatioh the critical point is important and can
be investigated with the above mentionattite methods, these theds circumvent the
fermion sign problem tlier than solving it. Moreover, they are only applicable for quark
chemical potentialg from zero up to values of ordér. Therefore, onewill ultimately
have to find arue solution which also works at sthéemperatures and large chemical
potential, so that the colour-superconducting quark matter phase can be explored.

Analytic approaches to compute the equation of state of strongly interacting matter
at high temperature have advanced rapidl recent years. The equation of state is now
known to all orders which are perturbativelyraputable. Work is in progress to determine
the remaining nonperturbative contribution of ord®¢g®). Resummation techniques have
been applied to compute the thermodynamic properties of strongly interacting matter. At
large temperature$ > T, they suggest that the QGP is a gas of weakly interacting
quasiparticles. However, when approaching the critical temperature from above, the
approaches based on resummation techniques fail to describe lattice QCD data. At the
moment, one seems to be forced to either abandon field-theoretical rigour in favour of
simple quasiparticle models with sufficientiyany fit parameters to reproduce the data, or
turn to an alternative description, such as the Polyakov loop model, which is physically
less intuitive. It remains to be shown how this model is related to the quasiparticle picture
at large temperatures.

Colour superconductivity is a rapidly evolving field. It is fairly likely that colour-
superconducting quark matter can be found in the core of compact stellar objects. It
remains to explore how this phase influences the properties of the star. Much work has
still to be done, for instance to compute the transport properties of colour-superconducting
matter and the phase diagram under the @@ of electric andcolour neutrality.
Although NJL-type models may give a qualitatipicture of possible scenarios, they
are unreliable when one wants to draw quantitative conclusions. The task is to improve
existing weak-coupling calculations or apply nonperturbative techniques to obtain further
knowledge about this interesting, exotic phase of strongly interacting matter.
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