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Abstract

Our current knowledge of the quark–gluon plasma in thermodynamical equilibrium is reviewed.
The phase diagram of strongly interacting matter is discussed, with emphasis on the quark–hadron
phase transition and the colour-superconducting phases of quark matter. Lattice quantum
chromodynamics results on the order of the phasetransition, the thermodynamical functions, the
heavy quark free energy, mesonic spectral functions, and recent results for nonzero quark chemical
potential are presented. Analytic attempts to compute the thermodynamical properties of strongly
interacting matter, such as perturbation theory, quasiparticle models, “hard-thermal-loop”-resummed
perturbation theory, the Polyakov-loop model, as well as linear sigma models are discussed. Finally,
colour-superconducting quark matter is considered in the limit of weak coupling. The gap equation
and the excitation spectrum are derived. The solution of the gap equation, gap parameters in various
colour-superconducting phases, and critical temperatures for the transition to normal-conducting
quark matter are presented. A summary of gluon and photon properties in colour superconductors is
given.
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1. Introduction and summary

Quantum chromodynamics (QCD) is the fundamental theory of the strong interaction.
QCD is an asymptotically free theory [1], i.e., interactions between quarks and gluons
become weaker as the mutual distance decreases or as the exchanged momentum increases.
Consequently, at very large temperatures and/or densities, the interactions which confine
quarks and gluons inside hadrons should become sufficiently weak to release them [2].
The phase where quarks and gluons are deconfined is termed thequark–gluon plasma
(QGP). Lattice QCD calculations have established the existence of such a phase of strongly
interacting matter at temperatures larger than∼150 MeV and zero net-baryon density.
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Depending on the number of quark flavours and the masses of the quarks, the transition
between ordinary hadronic matter and theQGP could be a thermodynamic phase transition
of first order, of second order, or simply a crossover transition.

The QGP was certainly present in the evolution of the early universe. The early universe
was very hot, but close to net-baryon free. In the opposite limit of small temperature
and large baryon density, the QGP may exist even nowadays in the interior of compact
stellar objects such as neutron stars. The main effort in present-day nuclear physics is
to create the QGP under controlled conditions inthe laboratory via collisions of heavy
nuclei at ultrarelativistic energies [3]. The temperatures and net-baryon densities reached
in nuclear collisions depend on the bombarding energy. They interpolate between the
extreme conditions of the early universe on one side and compact stellar objects on the
other.

If at all, the QGP is only transiently createdin a nuclear collision; free quarks and gluons
will not be released. Therefore, deciding whether a QGP was formed or not is not easy.
Detectors in the laboratory can only measure hadrons, leptons, or photons. The bulk of the
particles emerging from a nuclear collision are hadrons with transverse momenta of order
∼1 GeV. They carry information about the final stage of the collision after hadronization
of the QGP. The formation of the latter can only indirectly influence this final stage, for
instance by modifying the collective dynamics of the system through a softening of the
equation of state in the hadronization transition [4]. Very few hadrons are emitted with
transverse momenta of the order of several GeV. They arise from the fragmentation of
jets and may carry information also about theearlier stages of the collision. Of particular
interest is the situation where the jet has to traverse hot and dense matter possibly formed
in the collision and is quenched by multiple rescattering in the medium [5]. From this
“jet-quenching” process one may indirectly learn about the properties of the hot and dense
environment. Finally, leptons and photons only interact electromagnetically. Once formed
in the early stage of the collision, they leave the system unimpededly and carry information
about this stage to the detector [6]. The difficulty is to disentangle the thermal radiation
from a hot, equilibrated QGP [7] from the initial production of leptons and photons in
the very first, highly energetic partonic collisions and from the thermal radiation of hot
hadronic matter [8].

In order to decide whether a QGP was formed, one has to have detailed knowledge
about its properties. Otherwise it is impossible to find an unambiguous signature for
QGP formation in nuclear collisions. In this review, I present an overview of the
thermodynamical propertiesof the QGP. Section 2contains a detailed discussion of
the phase diagram of strongly interacting matter. The present status of knowledge is
shown schematically inFig. 1. Depending on the temperature,T , and thequark chemical
potential, µ, strongly interacting matter may occur in three distinct phases: the hadronic
phase, the QGP, and colour-superconducting quark matter. The ground state of (infinite)
nuclear matter is at(T, µ)0 = (0,308)MeV. There is a line of first-order phase transitions
emerging from this point and terminating in a critical endpoint at a temperature of order
∼10MeV. At this point, the transition is of second order. This phase transition is the nuclear
liquid–gas transition [9]. To the left of the line nuclear matter is in the gaseous phase, and
to the right in the liquid phase. Above the critical endpoint, there is no distinction between
these two phases.
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Fig. 1. The phase diagram of strongly interacting matter (schematic).

For temperatures below∼160 MeV and quark chemical potentials below∼350 MeV
(corresponding to net-baryon densities whichare a few times the ground state density of
nuclear matter), strongly interacting matter is in the hadronic phase. Quite similar to the
liquid–gas transition, there is a line of first-order phase transitions which separates the
hadronic phase from the QGP and terminates in a critical endpoint where the transition
is of second order. This endpoint is approximately at(T, µ) � (160,240) MeV, cf.
Section 3.6. For smaller quark chemical potentials (smaller net-baryon densities), the
transition becomes crossover, and there is no real distinction between hadronic matter
and the QGP. As will be discussed in detail inSection 2, the position of the critical
endpoint depends on the value of the quark masses. Finally, at large quark chemical
potential (large baryon density) and small temperature, quark matter becomes a colour
superconductor. There can be a multitude of colour-superconductingphases, depending
on the symmetries of the order parameter for condensation of quark Cooper pairs.
The discussion inSection 2is qualitative and is meant to give an overview of the
phase structure of strongly interacting matter at nonzero temperature and quark chemical
potential. The discussion in the following sections is both more quantitative as well as
technical and focusses on the properties of the QGP and colour-superconducting quark
matter.

The early universe evolved close to the temperature axis in the phase diagram of strongly
interacting matter. Matter in the core of compact stellar objects, like neutron stars, is
close to the quark chemical potential axis, at values ofµ around 400–500 MeV. Nuclear
collisions at bombarding energies aroundELab ∼ 1 AGeV explore a region of temperatures
and quark chemical potentials around(T, µ) ∼ (70,250)MeV. Collisions at current RHIC
energies of

√
s = 200 AGeV are expected to excite matter in a region around and above

(T, µ) ∼ (170,10) MeV. Collision energies in between these two extremes cover the
intermediate region and, in particular, may probe the critical endpoint.
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Section 3presents a review of lattice QCD. After a brief introduction to the basic
principles, results on the order of the QCD phase transition, the equation of state of
strongly interacting matter, the heavy quark free energy, and mesonic spectral functions
are collected. For technical reasons, most lattice QCD calculations have been done at zero
quark chemical potential. An extension to nonzero values ofµ is difficult and has been
started only fairly recently. First results will also be discussed.

Lattice QCD is in principle an exact method to solve QCD. If one had sufficiently large
computer power, one could not only decrease the lattice spacing and increase the size of
the system to come sufficiently close to the continuum and thermodynamic limit, one could
also sample a sufficiently large number of configurations to make the statistical errors
arbitrarily small. However, one still has to interpret the results in physical terms. In this
respect, analytic approaches to solve QCD have a certain advantage over lattice QCD. In
an analytic approach, one has complete control over the physical assumptions entering the
calculation.Section 4gives an overview of what is known about the QGP from analytic
calculations.

The most simple approach from a conceptual (albeit not technical) point of view is to
determine the thermodynamical properties of the QGP by a perturbative computation of the
QCD partition function in terms of a power series in the strong coupling constant,g. This
can be done up to terms of orderO(g6 ln g). At orderO(g6), theperturbative series breaks
down [10, 11], and the remaining nonperturbative contribution has to be determined, for
instance, from a lattice QCD calculation. Those terms of the perturbative series, which are
analytically computable, are rapidly decreasing in magnitude at high temperatures where
the strong coupling constant is small,g � 1. This gives rise to the hope that only the first
few terms of the perturbative series are actually necessary to obtain physically reasonable
values for the QCD partition function. For temperatures of order∼150 MeV, however,
g ∼ 1 and the perturbative series is obviously not convergent. Therefore, one has tried
other ways to compute the partition function, either by expanding around a nonperturbative
ground state or by resumming certain classes of diagrams to improve the convergence
properties of the perturbative series. In both approaches, quarks and gluons are considered
as quasiparticles with a dispersion relation which is modified as compared to the one in the
vacuum. Still another approach is to construct an effective theory for QCD which can be
solved exactly or at least within a many-body approximation scheme. All these approaches
will be reviewed inSection 4.

Section 5contains an introduction to colour superconductivity at large quark chemical
potentials. In this case, analytic calculations are well under control, because corrections
can be systematically computed in terms of powers ofg. After a derivation of the
gap equation for the colour-superconducting gap function, the excitation spectrum in a
colour superconductor is presented. The solution of the gap equation is discussed and
the magnitude of the gap parameter is determined. As in ordinary superconductors, quark
Cooper pairs break up, if the thermal motion becomes too large. The critical temperature
for the transition between the normal- and thesuperconducting phase is computed. Finally,
the properties of gluons and photons in colour superconductors are discussed.Section 6
concludes this review with a brief summary of the material and an outlook towards future
directions of research in this area.
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A lot of the material in this review can also be found in other places. The standard
review for properties of hot and dense, strongly interacting matter is the seminal work
of Gross et al. [12]. The contents as well as more recent developments have found their
way into textbooks [10, 13]. For early reviews focussing on the properties of the QGP,
see [14]. An introduction to lattice QCD and recent results can be found in [15]. The
present status of lattice QCD is also reviewed in [16]. Resummation techniques which
attempt to compute the QCD partition function analytically are discussed in great detail
in [17].

The present review tries to give a balanced overview of all subfields concerned with
the equilibrium properties of the QGP. Therefore, the presentation is not as detailed as in
a more specialized review. On the other hand, I tried to explain the basics in somewhat
greater detail than usually found in the literature. My hope is that in this way, this
review will become useful for early-stage researchers working in both theory as well as
experiment, and for all researchers who would like to get an overview of the theoretical
activity related to equilibrium properties of the QGP.

The only somewhat more specialized and thus more technical part is the section on
colour superconductivity. This field has seena lot of activity only fairly recently, but there
are already a couple of excellent reviews [18]. These, however, focus mainly on the basics
of the phenomenon of colour superconductivity and its phenomenological implications.
In contrast,Section 5contains a very detailed discussion of how to compute properties
of the quasiparticle excitations in a coloursuperconductor in the weak-coupling limit. By
clarifying some of the technical details, I hope to remove the obstacles that may prevent
other researchers to enter this rapidly evolving and rather exciting new field of strongly
interacting matter physics.

Due to space restrictions this review is forced to omit many things that could (and
possibly, should) also have been said about strongly interacting matter at high temperature
and/or density. Fortunately, most of these have already been covered in review articles.
These are, for instance, nonequilibrium properties of the QGP [19] or the physics of
instantons in nonAbelian gauge theories [20]. Another important topic which is not
mentioned in this work, but for which excellent reviews exist [21], are the experimental
signatures for the QGP. Recent developmentsin the field of colour superconductivity
are mainly focussed on deriving effective theories for quarks around the Fermi surface.
These greatly simplify calculations and allow to systematically study effects of nonzero
quark masses, for details, see [22]. Finally, the list of references is, necessarily, far from
complete. I would like to apologize to all authors whose work should have been (but was
not) mentioned.

The units are� = c = kB = 1. I work in Euclidean space–time at nonzero
temperatureT , i.e., space–time integrals are

∫
X ≡ ∫ 1/T

0 dτ
∫

V d3x, where V is the
3-volume of the system. Energy–momentum integrals are

∫
K ≡ T

∑
n

∫
d3k/(2π)3; n

labels the Matsubara frequenciesωb
n = 2nπT for bosons andωf

n = (2n + 1)πT for
fermions,n = 0,±1,±2, . . .. I denote 4-vectors with capital letters, but unless mentioned
otherwise, retain a notation familiar from Minkowski space:Xµ ≡ (t, x), wheret ≡ i τ ,
and Kµ ≡ (k0,k), wherek0 = iωn, with the metric tensorgµν = diag(+,−,−,−).
3-vectorsk have lengthk ≡ |k| and direction̂k ≡ k/k.
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2. The QCD phase diagram

2.1. Basics

In order to understand the phase structure of strongly interacting matter, one has to know
its equation of state. In the grand canonical ensemble, the equation of state is determined
by the grand partition function [10, 13]

Z(T,V, µ) =
∫

Dψ̄DψDAµa exp

[∫
X
(L + µN )

]
, (1)

whereµ is the quark chemical potential associated with (net) quark number conservation.
The QCD Lagrangian is given by

L = ψ̄(i γ µDµ − m)ψ − 1
4 Fµνa Fa

µν + Lgauge. (2)

For Nc colours andNf flavours,ψ is the 4NcNf -dimensional spinor of quark fields,
ψ̄ ≡ ψ†γ0 is the Dirac conjugate spinor,γ µ are the Dirac matrices andm is the quark mass
matrix. The covariant derivative is defined asDµ = ∂µ− igAa

µTa, with the strong coupling
constantg, thegluon fieldsAµa , and the generatorsTa of the local[SU(Nc)c] symmetry.
(Throughout this paper, I indicate local, i.e., gauged, symmetries by square brackets.) The
latter are usually taken asTa ≡ λa/2, whereλa are the Gell–Mann matrices. The gluonic
field strength tensor is defined as

Fµνa = ∂µAνa − ∂νAµa + g fabcAµb Aνc, (3)

where fabc are the structure constants of[SU(Nc)c]. The termLgaugein Eq. (2) will not be
specified further. It comprises gauge fixing terms and the contribution from Faddev–Popov
ghosts. The number density operator associated with the conserved (net) quark number is
N ≡ ψ̄γ0ψ.

For any finite volumeV and nonzero temperatureT , the partition function is defined
for a compact Euclidean space–time volumeV × 1/T . For the sake of simplicity (but
without loss of generality), assume that the spatial volumeV is a box, V = L3, with
L being the length of the box in one spatial dimension. All fields are then usually
taken to be periodic in spatial directions,φ(τ,0, y, z) = φ(τ, L, y, z), whereφ stands
generically forψ, ψ̄ , andAµa . Bosonic fields, such as gluons, are periodic also in temporal
direction,Aµa (0, x) = Aµa (1/T, x), while fermionic fields, such as quarks, are antiperiodic
in temporaldirection,ψ(0, x) = −ψ(1/T, x).

From the grand partition function,one can derive other thermodynamic quantities, for
instance the pressure,

p(T, µ) = T
∂ lnZ
∂V

→ T

V
lnZ(V → ∞). (4)

In the thermodynamic limit, lnZ is an extensive quantity (∼V ) and the dependence of the
pressure onV drops out.

Phase transitions are determined by studying the derivatives of the pressure with respect
to T andµ for a given point(T, µ) in thephase diagram of the independent thermodynamic
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variables temperature and chemical potential. For a phase transition of first order, the first
derivatives

s = ∂p

∂T

∣∣∣∣
µ

, n = ∂p

∂µ

∣∣∣∣∣
T

, (5)

are discontinuous while the pressurep is continuous at the point(T, µ). Here, s is
the entropydensity andn the (net) quark number density. For a phase transition of
second order, the second derivatives are discontinuous, whilep and its first derivatives
are continuous. In this way, phase transitionsof arbitrarily high order can be defined.
One speaks of a crossover transition, if thermodynamic properties change rapidly within a
narrow range of valuesT andµ, but the pressure and all its derivatives remain continuous.
Usually, the points(T, µ) where a phase transition occurs are continuously connected
and thus determine aline of phase transitions in the phase diagram. These lines usually
start on either theT or theµ axis. They may terminate for nonzero values ofT and
µ. Two examples for this behaviour, the liquid–gas transition in nuclear matter and
the quark–hadron transition, have already been seen in the phase diagram of strongly
interacting matter,Fig. 1, and will be discussed in more detail in the following.

2.2. The liquid–gas phase transition

The liquid–gas transition in nuclear matter is a consequence of the fact that nuclear
matter assumes its ground state at a nonvanishing baryon densitynB,0 � 0.17 fm−3 at
zero temperatureT = 0. The underlying microscopic mechanism for this phenomenon is
a competition between attractive and repulsive forces among nucleons, with the attraction
winning at this particular value of the baryon density. (This is good, because otherwise
there would be no stable atomic nuclei, precluding the existence of our universe as we
know it.) In infinite, isospin-symmetric nuclear matter, nucleons in the ground state are
bound by−16 MeV (if one neglects the Coulomb repulsion), i.e., the energy per baryon
is (E/NB)0 ≡ (ε/nB)0 = mN − 16 MeV � 924 MeV,whereε is the energy density,nB

the baryon density, andmN � 939 MeV is the rest mass of the nucleon. Nuclear matter
is mechanically stable in the ground state, such that the pressure vanishes,p = 0. From
the fundamental relation of thermodynamics,ε = T s+ µn − p, one then concludes that
the baryon chemical potential in the ground state is identical to the energy per baryon,
µB,0 ≡ (ε/nB)0 � 924 MeV. Since a baryon consists of three quarks,nB = n/3 and
µB = 3µ. Hence, the ground state of nuclear matter is the point(T, µ)0 � (0,308)MeV
in the nuclear matter phase diagram.

Obviously, it costs energy to compress nuclear matter to baryon densitiesnB > nB,0.
Such an increase in energy leads to an increase in pressure. At zero temperature, this can
be immediately seen from the identityp = n2

Bd(E/NB)/dnB. Sincethe pressure is a
monotonous function of the thermodynamic variables, and since it vanishes in the ground
state, there are only two possibilities for the behaviour ofp for densitiesnB < nB,0: either
the pressure remains zero as the density decreases,p = 0, or the pressure further decreases
suchthat p < 0. The latter possibility implies that the system becomes mechanically
unstable. This can be prevented by fragmenting nuclear matter into droplets. These droplets
are mechanically stable, i.e., the density inside each droplet is equal tonB,0 and the
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pressure vanishes. The total baryon density in the system can be further reduced by
simply decreasing the droplet density. The pressure in such a system remains zero down
to arbitrarily small densities, because compression just results in a decrease of the space
between droplets. Thus,p = 0 from nB = 0 tonB = nB,0, and thenp > 0 for nB > nB,0.

At small, but nonzero temperatures, this picture remains valid, with the additional
possibility to thermally evaporate single nucleons from the surface of the droplets. At
small temperatures and densities below the ground state density, one thus has a mixed
phase of nucleons and droplets of nuclear matter. This is reminiscent of water which, at
room temperature and normal pressure, consists of a mixed phase of water molecules and
water droplets. Changing the density one can alter the relative fraction of molecules and
droplets. Beyond the density where droplets fill the entire volume one enters the liquid
phase, while below the density where the last droplet fragments into molecules one enters
the gas phase. This behaviour is typical for a first-order phase transition. In this case, this
is the so-called liquid–gas transition in water.

Nuclear matter shows a similar behaviour, featuring a “gaseous” phase of nucleons
at small chemical potentials (densities) and a “liquid” phase of nuclear matter at large
chemical potentials (densities), cf.Fig. 1. At small temperatures the transition between the
two phases is of first order. Thus, in the(T, µ) phase diagram there is a line of first-order
phase transitions extending from the nuclear ground state(0,308)MeV up towards larger
values ofT and smaller values ofµ. As for water,this line terminates at a critical point
where the transition becomes of second order. The critical temperature is of the order of
10 MeV. As for water, one cannot distinguish between the gaseous and the liquid phase
for temperatures above this critical temperature. The existence of the liquid–gas phase
transition has been confirmed in heavy-ion collision experiments at BEVALAC and GSI
energies (ELab ∼ 1 AGeV), although the precise value forthe critical temperature and the
critical exponents remain a matter of debate [9].

The liquid–gas transition is also a feature of phenomenological models for the nuclear
interaction, for instance, the Walecka model [23]. In the following section another phase
transition in strongly interacting matter is discussed, which very much resembles the
liquid–gas transition in that it (most likely) is of first order for small temperatures and
terminates in a critical point where the transition becomes of second order. This transition
is the so-called quark–hadron transition.

2.3. The quark–hadron phase transition

2.3.1. Qualitative arguments
For a noninteracting, translationally invariant system the convenient basis of states

are the single-particle momentum eigenstates. Due to the Pauli principle, the density
in a fermionic system can only be increased by successively filling states with higher
momentum. The highest filled state defines the Fermi surface of the system, and the
corresponding momentum is the Fermi momentum,kF . For noninteracting systems at zero
temperature, the single-particle densityn is given in terms of the Fermi momentum as

n = d

6π2k3
F , (6)
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whered counts the internal degrees of freedom of the fermion (like spin, colour, flavour,
etc.). Thus, at large densities the Fermi momentum becomes large.

In a cold, dense fermionic system particlescan only scatter elastically if their momenta
lie on the Fermi surface, as states below the Fermi surface are not accessible due to the
Pauli principle (the so-called “Pauli-blocking” phenomenon), and states above the Fermi
surface are not accessible due to energy conservation. If the Fermi momentum exceeds
the QCD scale parameterΛQCD ∼ 200 MeV, scattering events between nucleons start to
probe distances of the order 1 fm or less, i.e., the nucleonic substructure of quarks and
gluons becomes visible. The Fermi momentum in the ground state of nuclear matter can
be inferred from Eq. (6) to bekF,0 � 250 MeV. This is already of the order ofΛQCD.
Nevertheless, a description of nuclear matter in terms ofnucleonic degrees of freedom
is certainly feasible around the ground state.At which densities does a description in
terms ofquark and gluon degrees of freedom become more appropriate? The “volume”
occupied by a single nucleon can be estimated from its charge radius to be∼ 2 fm3. On
the other hand, the specific volume of the system in the ground state isn−1

B,0 ∼ 6 fm3. In
this sense, nuclear matter in the ground state is dilute. However, increasing the density to
about 3nB,0, thesystem becomes densely packed with nucleons. At larger densities, they
will even start to overlap. Therefore, around densities of a few times nuclear matter ground
state density, one expects that a description of the system in terms of quarks and gluons is
more appropriate.

Similar arguments also apply to a systemat nonzero temperature, even when the net-
baryon number density is small. At nonzero temperature, nuclear matter consists not only
of nucleons but also of other, thermally excited hadrons. For a noninteracting system
in thermodynamical equilibrium and neglecting quantum statistics, the hadron number
densities are proportional toni ∼ m2

i T K2(mi /T)eµi /T , wherei labels the hadron species,
mi is their mass,µi is their chemical potential, andK2(x) is a modified Bessel function
of the second kind. For nonzero temperature and small net-baryon number density, the
lightest hadrons, the pions, are most abundant. At nonzero temperature and small baryon
chemical potential, the typical momentum scale for scattering events between hadrons
is set by the temperatureT . If the temperature is on the order of or larger thanΛQCD,
scattering betweenhadrons starts to probe their quark–gluon substructure. Moreover, since
the particle density increases with the temperature, the hadronic wavefunctions will start
to overlap for large temperatures. Consequently, above a certain temperature one expects
a description of nuclear matter in terms of quark and gluon degrees of freedom to be more
appropriate.

The picture which emerges from these considerations is the following: for quark
chemical potentialsµ which are on the orderof 350 MeV or smaller, and for temperatures
T < ΛQCD ∼ 200 MeV, nuclear matter is a gas of hadrons. (At very small temperatures
T < 10 MeV, there is a gaseous and a liquid nucleonic phase, cf.Section 2.2.) On the
other hand, forT, µ 	 ΛQCD, nuclear matter consists of quarks and gluons. The natural
question which emerges is, whether the “hadron phase” and the “quark–gluon phase” (the
QGP) are separated by a phase transition in the thermodynamic sense. The rigorous way
to decide this question is by identifying an order parameter which is nonzero in one phase
and zero in the other. This will be discussed in more detail in the following.
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2.3.2. Pure gauge theory

Let us first study the pure[SU(Nc)] gauge theory, i.e., QCD without dynamical quarks
(sometimes also termed theNf = 0 case). In this theory, there is a phase transition between
a low-temperature and a high-temperature phase, cf.Section 3.2. Theorder parameter for
this transition is the expectation value〈L(x)〉 of the Polyakov loop (or Wilson line)

L(x) = 1

Nc
Tr

{
P exp

[
ig
∫ 1/T

0
dτ A0

a(τ, x)Ta

]}
, (7)

where P stands for path-ordering. The expectation value of an operatorO in the grand
canonical ensemble is defined as

〈O〉 ≡ 1

Z

∫
Dψ̄DψDAµaO exp

[∫
X
(L + µN )

]
. (8)

The expectation value〈L(x)〉 vanishes inthe low-temperature phase. If one interprets this
expectation value as∼ exp(−FQ/T), whereFQ is the free energy of an infinitely heavy
quark [24], then 〈L(x)〉 = 0 implies that the free energy is infinite, corresponding to
confinement of colour charges. In the high-temperature phase,〈L(x)〉 �= 0, which implies
that the free energy of an infinitely heavy quark is finite. This indicates the liberation of
coloured degrees of freedom, i.e., deconfinement. The expectation value of the Polyakov
loop is therefore the order parameter for the deconfinement transition.

For an [SU(Nc)] gauge theory the action has a globalZ(Nc) symmetry: the action
does not change when multiplying all time-like links at a given spatial positionx by an
elementz = exp(i 2πn/Nc) of the centreZ(Nc) of the gauge group[SU(Nc)]. In the
high-temperature phase, the nonzero expectation value of the Polyakov loop breaks this
symmetry spontaneously. In the low-temperature phase,〈L(x)〉 = 0, and this symmetry
is restored. For two colours,Nc = 2, the effective theory in the critical region around the
phase transition is given by aZ(2) spin model, i.e., it is in the same universality class as
the Isingmodel [24]. This model has a second-order phase transition. ForNc = 3, the
effective theory is that of aZ(3) spin model [25], i.e., it is in the universality class of the
3-state Potts model which has a first-order phase transition [26]. The transition temperature
was computed to beTc � 270 MeV [15, 16], see alsoSection 3.2.

2.3.3. Dynamical quarks

In the presence of dynamical quarks,Nf > 0, the picture becomes somewhat more
complicated. The fermionic term in the QCD Lagrangian (2) breaks theZ(Nc) symmetry
explicitly, and thus there is strictly speaking no order parameter for deconfinement.
Nevertheless, the QCD transition in the presence of massless dynamical quarks has
an order parameter, which is related to the chiral symmetry of QCD. While the QCD
Lagrangian (2) is chirally symmetric whenm = 0, the ground state of QCD is not, i.e.,
chiral symmetry is spontaneously broken. It is instructive to review these arguments in
more detail.
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In the chirallimit, where the quark mass matrix is zero,m = 0, the QCD Lagrangian (2)
is invariant under global chiralU(N f )r ×U(Nf )� rotations of the quark fields. To see this,
decompose the quark spinors into right- and left-handed spinors,

ψ ≡ ψr + ψ�, ψr,� ≡ Pr,�ψ, Pr,� ≡ 1 ± γ5

2
, (9)

where Pr,� are chirality projectors. Then perform aU(Nf )r,� transformation on the
right/left-handed quark spinors,

ψr,� → Ur,�ψr,�, Ur,� ≡ exp


i

N2
f −1∑

a=0

αa
r,�Ta


 ∈ U(Nf )r,�, (10)

whereαa
r,� are the parameters andTa the generators ofU(N f )r,�. The Lagrangian (2)

remains invariant under this transformation,L(ψr , ψ�) ≡ L(Urψr ,U�ψ�). The chiral
group U(N f )r × U(Nf )� is isomorphic to the groupU(Nf )V × U(Nf )A of unitary
vector and axial transformations, whereV ≡ r + �, A ≡ r − �, i.e., αV ≡ (αr + α�)/2,
αA ≡ (αr − α�)/2. Any unitary group is the direct product of a special unitary group and
a complex phase,U(Nf ) ∼= SU(Nf ) × U(1). Thus,U(Nf )r × U(Nf )� ∼= SU(N f )r ×
SU(N f )�×U(1)r ×U(1)� ∼= SU(N f )r ×SU(Nf )�×U(1)V×U(1)A. The vector subgroup
U(1)V of this symmetry group corresponds to quark number conservation. As physical
states trivially conserve quark number, this subgroup does not affect the chiral dynamics
and can be omitted from the further symmetry consideration. This leaves anSU(Nf )r ×
SU(N f )�×U(1)A symmetry. The axialU(1)A symmetry is broken explicitly by instantons
(the so-calledU(1)A anomaly of QCD) [27], leaving anSU(Nf )r × SU(N f )� symmetry
which determines the chiral dynamics. Since instantons are screened in a hot and/or dense
medium [12], theU(1)A symmetry may become effectively restored in matter. Then, the
chiral symmetry is again enlarged toSU(Nf )r × SU(N f )� × U(1)A.

Nonzero quark masses break the chiral symmetry of the QCD Lagrangian explicitly.
The quark mass term in Eq. (2) is

ψ̄ i mi j ψ
j ≡ ψ̄ i

r mi j ψ
j
� + ψ̄ i

�mij ψ
j

r , (11)

where flavour indicesi , j = 1, . . . , N f are explicitly written, a sum over repeated indices
is implied, and the propertiesPr,�γ0 = γ0P�,r ,PrP� = P�Pr = 0 of the chirality
projectors were used. Now suppose all quark masses were equal,mij ≡ mδi j . Performing
chiral SU(N f )r × SU(N f )� × U(1)A rotations of the quark fields, one observes that the
mass term (11) preserves anSU(Nf )V symmetry. All axial symmetries are explicitly
broken. If less thanNf quark masses are equal, sayM < Nf , the preserved vector
symmetry is SU(M)V . In nature, wheremu � md � ms � mc � mb � mt , one
only has the well-known (approximate)SU(2)V isospin symmetry. Consequently, exotic
hadrons with strange, charm, bottom, or top degrees of freedom are not degenerate in mass
with their nonstrange counterparts.

The mass term̄ψ i mi j ψ
j in the QCD Lagrangian is of the same form as the termH · S

in spin models, which couples the spinS to an external magnetic fieldH. Obviously, the
operatorψ̄ iψ j corresponds to the spinS, while the quark mass matrixmij assumes the role
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of the external magnetic fieldH. Thus, the expectation value〈ψ̄ iψ j 〉 is the analogue of the
expectation value of the spin, the magnetizationM ≡ 〈S〉. While the mass term explicitly
breaks the chiral symmetrySU(N f )r × SU(Nf )� × U(1)A of the QCD Lagrangian to
an (approximate)SU(2)V symmetry, the external magnetic field in spin models explicitly
breaks the rotational symmetryO(3) to O(2).

The analogy between QCD and spin models, however, extends further than this. Even
in the absence of external magnetic fields, in spin models with ferromagnetic interactions
rotational symmetry is spontaneously broken due to a nonvanishing magnetization
M �= 0 in the ferromagnetic phase. Analogously, in the QCD vacuum, chiral symmetry
is spontaneously broken by a nonvanishing expectation value〈ψ̄ iψ j 〉vac. �= 0. Let us
introduce the so-called chiral condensateΦ i j and its complex conjugate,Φ i j †, via

Φ i j ∼ 〈ψ̄ i
�ψ

j
r 〉, Φ i j † ∼ 〈ψ̄ i

rψ
j
� 〉. (12)

A nonvanishing expectation value〈ψ̄ iψ j 〉 �= 0 is then equivalent toΦ i j + Φ i j † �= 0. Just
like the mass term in the QCD Lagrangian, a nonvanishing chiral condensate breaks the
chiral symmetry. In the chiral limit,mij ≡ 0, nothing distinguishes one quark flavour from

another and, consequently,Φ i j
vac. = φ0δ

i j . (In principle, there is another possibility how
a chiral condensate could break the chiral symmetry, for a more detailed discussion see
below and [28].) This chiral condensate breaks the chiralU(Nf )r × U(Nf )� symmetry
spontaneously toU(Nf )V . To see this, note that the chiral condensate is still invariant

under vector transformations,Φ → Ur ΦU†
� ≡ Φ, if Ur = U� ≡ UV , but not under axial

transformations,Φ → Ur ΦU†
� �= Φ, if Ur = U†

� ≡ UA.
According to Goldstone’s theorem, the breaking of the global chiral symmetry leads

to the occurrence of massless modes, the so-called Goldstone bosons. The number of
Goldstone bosons is identical tothe number of broken generators. In the QCD vacuum,
where theU(1)A anomaly is present, the breaking pattern isSU(Nf )r × SU(N f )� →
SU(N f )V , i.e., in this case there areN2

f − 1 broken generators, corresponding to the
generators of the broken axial symmetrySU(Nf )A. For Nf = 1, there is no global
chiral symmetry that could be broken, and thus no Goldstone boson. ForNf = 2, the
Goldstone bosons are the three pions, the lightest hadronic species. In nature, the pions are
notcompletely massless, because the chiral symmetry is explicitly broken by the small, but
nonzero quark mass term in the QCD Lagrangian. This turns the Goldstone bosons into so-
called pseudo-Goldstone bosons. ForNf = 3, the pseudo-Goldstone bosons correspond
to the pseudoscalar meson octet, comprising pions, kaons, and the eta meson. Since chiral
symmetry is more strongly broken by the larger strange quark mass, the pseudo-Goldstone
bosons carrying strangeness are heavier than the pions. ForNf ≥ 4, the explicit symmetry
breaking by the heavy exotic quark flavours is so strong that the would-be Goldstone
bosons are actually heavier than the ordinary (i.e., nonGoldstone) nonstrange bosons.

In spin models, rotational symmetry is restored above some critical temperature and
the magnetization vanishes. The magnetization is theorder parameter for this so-called
ferromagnet–diamagnet phase transition. By analogy, one expects a similar mechanism to
occur in QCD, i.e.,Φ i j to vanish above some critical temperature. The symmetry of the
ground state is then restored to the original chiral symmetry, i.e.,SU(N f )r × SU(N f )�,
if the U(1)A anomaly is still present, orSU(N f )r × SU(N f )� × U(1)A, if instantons are
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sufficiently screened at the transition in order to effectively restore theU(1)A symmetry.
Lattice QCD calculations show that this expectation is indeed fulfilled: there is a phase
transition between the low-temperature phase where chiral symmetry is broken and the
high-temperature phase where it is restored, for details seeSection 3. Just like the
magnetization in spin models, the chiral condensateΦ i j is the order parameter for this
so-called chiral phase transition.

In the case of massless quarks,mij ≡ 0, based on universality arguments one can
analyse the order of the chiral transition in the framework of a linear sigma model for the
order parameter fieldΦ i j [29]. This linear sigma model is an effective theory, i.e., all terms
allowed by the original chiral symmetry must in principle appear,

Leff = Tr(∂0Φ†∂0Φ)− v2Tr(∇Φ† · ∇Φ)− Veff(Φ), (13)

where the effective potential

Veff(Φ) = m2Tr(Φ†Φ)+ λ1[Tr(Φ†Φ)]2 + λ2Tr(Φ†Φ)2

− c(detΦ + detΦ†)+ · · · (14)

determines the ground state of the theory. In Eq. (13) it was assumed that the first term
is canonically normalized. However, since Lorentz symmetry is explicitly broken in a
medium at nonzero temperature, the coefficientv2 in Eq. (13) may in general be different
from one. In Eq. (14), . . . denote higher-dimensional operators which are irrelevant for the
discussion of the order of the phase transition. Forc �= 0, the chiral symmetry ofLeff is
SU(N f )r × SU(N f )�, while for c = 0, it is SU(Nf )r × SU(Nf )� × U(1)A. Thus, the
U(1)A anomaly is present forc �= 0, and absent forc = 0. While these chiral symmetries
are manifest in the Lagrangian (13), the ground state of the theory respects them only for
c = 0 andm2 > 0. Forc = 0 andm2 < 0 the chiral symmetry is spontaneously broken
by a nonvanishing vacuum expectation value for the order parameter. Consequently, if
the linear sigma model is to describe the chiral transition in QCD, one has to ensure that
m2 < 0 for c = 0. There are still two possibilities how the order parameter can break the
symmetry. As shown in [28], if λ2 > 0 the ground state is given byΦ i j

vac. = φ0δ
i j , while

for λ2 < 0 the ground state is given byΦ i j
vac. = φ0δ

i1δ j 1. (The choice of the 1-direction
in right- and left-handed flavour space is arbitrary.) Nature realizes the first possibility. For
the casec �= 0, no general arguments can be made; whether the ground state of the theory
breaks chiral symmetry spontaneously depends on the particular values for the coupling
constantsc, λ1, λ2 and the number of flavoursNf .

For Nf = 1, there is no difference betweenthe two quartic invariants in Eq. (14), and
one may setλ1 + λ2 ≡ λ. In thepresence of theU(1)A anomaly,c �= 0, there is also no
chiral symmetry, and the transition is crossover, due to the linear term∼c, which tilts the
effective potential such that the (thermal) ground state〈Φ〉T �= 0. If the U(1)A anomaly
is absent,c = 0, the effective theory for the order parameter falls in the same universality
class as that of theO(2) Heisenberg magnet, and thus the transition is of second order.

For Nf = 2 and in the presence of theU(1)A anomaly, the chiral symmetry is
SU(2)r × SU(2)�, which is isomorphic to O(4). The effective theory for the order
parameter is in the universality class of theO(4) Heisenberg magnet. Consequently, the
transition is of second order [29]. If the U(1)A symmetry is effectively restored at the
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phase transition temperature, the symmetry group is larger,SU(2)r × SU(2)� × U(1)A,
which is isomorphic to O(4) × O(2), and the transition is of first order. Lattice QCD
calculations determine the transition temperature to beTc � 172 MeV [15, 16].

For Nf = 3, the chiral transition is of first order, both when theU(1)A symmetry is
explicitly broken by instantons or when it is effectively restored at the transition. In the
first case, the effective theory features a cubic invariantin the order parameter field (the
term ∼ detΦ + detΦ†), which drives the chiral transition first order [29]. In the second
case, the transition is fluctuation-induced of first order [29]. This also holds forNf ≥ 4,
irrespective of whether theU(1)A symmetry is explicitly broken or not. ForNf = 3, lattice
QCD calculations find the transition temperature to beTc � 155 MeV [16], cf. Section 3.2.
Note that nonvanishing quark masses can also be accounted for by adding a term

LH ≡ Tr[H (Φ + Φ†)] (15)

to the right-hand side of Eq. (13). As discussed above, this term is the analogue of the term
H · S in spin models. Consequently, the external “magnetic field”Hij is proportional to the
quark mass matrixmij .

2.3.4. The quark-mass diagram
Nonvanishing quark masses lead to the term (15) in the effective theory for the order

parameter field. This term is linear inΦ, such that theeffective potential is tilted. This may
render a first or second-order phase transition a crossover transition (similar to the case
Nf = 1 with U(1)A anomaly discussed inSection 2.3.3, where a tilt in the potential is
induced by the linear term∼c). For instance, the second-order transition for QCD with
Nf = 2 massless flavours is rendered crossover by a nonvanishing quark mass. The first-
order phase transition for QCD withNf = 3 massless flavourscan also become crossover,
if the quark masses are sufficiently large. In the real world, the up and down quark are
approximately of the same mass, while the strange quark is much heavier. It is customary
to put mq ≡ mu � md and identify first-order regions, second-order lines, and crossover
regions in an(mq,ms) diagram, seeFig. 2. To simplify the following discussion,only the
case where theU(1)A anomaly is present will be considered.

The origin inFig. 2 corresponds to the massless 3-flavour case, and the transition is
of first order. The upper left corner corresponds to the massless 2-flavour case, since the
strange quark is infinitely heavy. Here, the transition is of second order. The lower right
corner is the case of one massless flavour. The transition is crossover. The upper right
corner, where all quark flavours are infinitely heavy, corresponds to the pure gauge theory.
At this point the transition is of first order.

The first-order regions around the origin and the upper right corner extend somewhat
into the(mq,ms) plane and are bounded by critical lines where the transition is of second
order. Along these critical lines, the second-order phase transitions are in the universality
class of the Ising model,Z(2). In between the critical lines, the transition is crossover.
There is also a second-order phase transition line (with a phase transition in theO(4)
universality class) extending downwards from the upper left corner along thems axis.
There is a tricritical point where this line meets the second-order phase transition line
bordering the first-order region around the origin [30]. It is an interesting question whether
the real world, wheremq ∼ 5 MeV � ms ∼ 100MeV, is still inside the first-order phase
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Fig. 2. The quark-mass diagram (from [16]) .

transition region or already in the crossover region. There are ongoing lattice QCD studies
to decide this question, which at present favour the latter possibility [16], see alsoSection
3.2for more details.

2.3.5. Nonzero quark chemical potential
So far, the quark–hadron phase transition was studied atµ = 0. Let us finally discuss

the case of nonzero quark chemical potential. For many years, lattice QCD studies at
nonzero chemical potential were hampered by numerical problems related to the so-
called sign problem of the fermion determinant. Only recently there have been attempts
to compute the order of the phase transition, as well as thermodynamical properties, at
nonzero quark chemical potential; for details, seeSection 3.6. So far, thesecalculations
have been done on fairly small lattices with rather heavy quarks. Consequently, they
show a crossover transition atµ = 0. This crossover transition extends to the point
(T, µ)cr = (160± 3.5,242± 12)MeV, see alsoFig. 10.

This point is a critical point where the transition is of second order. It is in the unversality
class of the Ising model, i.e.,Z(2). For smaller temperatures and larger chemical potentials,
the transition becomes of first order. The critical point will move towards theT axis when
the quark masses are decreased. From the discussion inSection 2.3.4one cannot exclude
the possibility that, for realistic quark masses, the first-order phase transition line emerges
directly from theT axis.

Finally, the question arises whether the line of first-order phase transitions extends all
the way down toT = 0, and if so, at which point it hits theµ axis. Renormalization group
arguments [31] suggest that the behaviour at zero temperature is very similar to the one
at nonzero temperature: the transition is of first order forNf ≥ 3 as well as forNf = 2
in the absence of theU(1)A anomaly, while it could be of second order forNf = 2 in
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the presence of theU(1)A anomaly. In the latter case, however, it would remain of second
order along the whole phase transition line, and only the universality class would change
from O(4) critical behaviour at nonzero temperature to Gaussian critical behaviour at zero
temperature. Since lattice QCD calculations [32] indicate that the transition becomes of
first order for temperatures below the critical point, and since it is hard to imagine that
the transition switches back to second order as the temperature decreases further, this
possibility can most probably be ruled out. Note, however, that if quark–gluon matter is
in a colour-superconducting phase to the rightof the QCD phase transition line, other
possibilities emerge, for details, seeSection 2.4.

In any case, model calculations [33] within a Nambu–Jona–Lasinio (NJL) model [34]
support the picture that the transition remainsof first order below the critical point all the
way down to theµ axis. The value ofµ, where the first-order phase transition line meets
the µ axis, depends sensitively on the parameters used in these model calculations. Its
actual value should not be taken too seriously, because the NJL model with quark degrees
of freedom does not have a phase where matter consists of nucleons. Instead, the transition
to quark matter happens at a quark chemical potential which is of the order of the ground
statequark chemical potential,µ0 � 308 MeV. Since we know that nucleonic matter exists,
this behaviour is clearly unphysical.

The critical point has recently received a fair amount of attention [35]. For a second-
order phase transition in theZ(2) universality class, there must be one massless degree of
freedom. The fact that this degree of freedom is massless causes critical fluctuations. These
fluctuations were suggested to be an experimental signature for the critical point in heavy-
ion collisions. Which physical particle does the massless degree of freedom correspond
to? For realistic quark masses, the pions arenot massless in the vacuum, and it is unlikely
that they become massless at the critical point (the pions usually get more massive when
the temperature is increased). Moreover,since isospin is still a good symmetry at the
critical point, all pions would simultaneously become massless. Then, one would have
three massless modes instead of just one. Consequently, the pions cannot assume the role
of the massless mode. Sincethe critical point exists even when considering onlyN f = 2
quark flavours and since, forNf = 2, there is only one other degree of freedom in the
effective theory besides the pions, it must be this degree of freedom that becomes massless:
the scalarσ meson [33, 35]. In the vacuum, this meson has a mass of about 400–1200 MeV
[36]. If it becomes massless, it can be copiously produced. When theseσ mesons decouple
from the collision region, they assume their vacuum masses and rapidly decay into pions.
Besides critical fluctuations, another signature for the critical point would thus be the late
emission of a large amount of pions in a heavy-ion collision.

2.4. The colour-superconducting phases of QCD

2.4.1. Proof of existence of colour superconductivity

There are other phases in the phase diagram of nuclear matter, which have recently
received much attention in the literature, the so-called colour-superconducting phases in
sufficiently cold and dense quark matter [18]. Colour superconductivity occurs, because
there is an attractive interaction between two quarks at the Fermi surface [37, 38]. Then,
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by Cooper’s theorem, these quarks form Cooper pairs which condense in the new ground
state of the system.

At least at asymptotically large quark chemical potentials, the existence of an attractive
interaction between quarks at the Fermi surface, and thus the existence of colour
superconductivity, can be rigorously proven. Due to asymptotic freedom [1], whenµ 	
ΛQCD, the strong coupling constant of QCD, evaluated at the scaleµ, becomes small,
g(µ) � 1, such that the dominant interaction between quarks is given by single-gluon
exchange. The scattering amplitude for single-gluon exchange in an[SU(Nc)c] gauge
theory is proportional to

(Ta)ki (Ta)l j = − Nc + 1

4Nc
(δ j kδil − δikδ j l )+ Nc − 1

4Nc
(δ j kδil + δikδ j l ), (16)

wherei , j are the fundamental colours of the two quarks in the incoming channel, andk, l
their respective colours in the outgoing channel. Under the exchange of the colour indices
of either the incoming or the outgoing quarks the first term is antisymmetric, while the
second term is symmetric. In group theoretical language, for[SU(3)c] Eq. (16) represents
the coupling of two fundamental colour tripletsto an (antisymmetric) colour antitriplet and
a (symmetric) colour sextet,

[3]c × [3]c = [3̄]ca + [6]cs. (17)

The minus sign in front of the antitriplet contribution in Eq. (16) signifies the fact that
this channel is attractive, while the sextet channel is repulsive. Therefore, one expects that
quark Cooper pairs condense in thecolour-antitriplet channel.

This argument holds rigorously at asymptotically large densities. The highest densities
of nuclear matter that can be achieved in the laboratory through heavy-ion collisions, or that
occur in nature in the interior of neutron stars, are of the order of ten times nuclear matter
ground state density. At these densities, thequark chemical potential is still fairly small,
µ ∼ 0.5 GeV. Forphenomenology it is therefore important to answer the question whether
colour superconductivity also exists at the (comparatively moderate) densities occurring in
nature. There is no rigorous way to answer this question, as an extrapolation of the above
asymptotic argument becomes unreliable wheng(µ) ∼ 1. Nevertheless,calculations in
the framework of the NJL model [39] show that colour superconductivity does seem to
occur also at moderate densities. In this case, the attractive interaction could be mediated
by instanton (instead of single-gluon) exchange.

Colour superconductivity is a much more complicated phenomenon than ordinary
superconductivity. From a very qualitative point ofview, in comparison to electrons, quarks
carry additional quantum numbers such as colour and flavour. The wavefunction of a
Cooper pair has to be antisymmetric under the exchange of the two fermions forming the
pair. Consequently, the possible colour and flavour representations of the two-fermion state
have to be chosen in a way which respects this antisymmetry. This requirement helps to
classify all possible colour-superconducting condensates [40, 41]. This classification will
be presented in the following.
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2.4.2. Classification of colour-superconducting phases
The baryon density in heavy-ion collisions or in neutron stars is at most of the order

of ten times the nuclear ground state density. Therefore, the quark chemical potential is
unlikely to assume values beyondµ ∼ 1 GeV. At zero temperature, one can only have
fermions if the Fermi energyµ exceeds their mass. Thus, only the three lightest quark
flavours, up, down, and strange, play any role; charm, bottom, and top quarks are too heavy.
For small temperatures, these heavy flavours can be thermally excited, but their abundance
is exponentially suppressed∼ exp(−mf /T), cf. Section 2.3.1. Therefore, they will be
excluded from the following consideration. Forµ ∼ 1 GeV, up and down quarks can
be treated as truly ultrarelativistic particles, asmq/µ ∼ 10−3. To first approximation, also
the strange quark willbe considered to be massless. Corrections due to the strange quark
mass can be treated perturbatively, the correction factor being of orderms/µ ∼ 10−1 [22].

For ultrarelativistic particles, spinS and angular momentumL are not separately good
quantum numbers, only the total spinJ = L + S is. Therefore, possible Cooper pair
wavefunctions should be classified according to their total spinJ. Let us firstfocus on
the spin-zero channel,J = 0. The J = 0 representation of theSU(2)J spin group is
totally antisymmetric. Therefore, the remaining colour and flavour part of the Cooper pair
wavefunction has to be symmetric under the simultaneous exchange of colour and flavour
indices in order to fulfil the requirement ofoverall antisymmetry. If oneassumes that
quarks pair in the antisymmetric colour-antitriplet channel, one has no choice but to also
choose an antisymmetric flavour representation. ForN f = 1 flavour, this is impossible, as
there is no flavour symmetry group with an antisymmetric representation.

One therefore has to consider at leastN f = 2 quark flavours (for instance, up and

down), where the most simple representation is the antisymmetric flavour singlet[1] f
a

representation of the SU(2)V flavour group. Therefore, the most simpleJ = 0 quark
Cooper pair condensate has the form

Φ fg
i j = εi j k ε

f gΦk. (18)

Here,i , j = 1, . . . , Nc are the colour indices of the quarks forming the Cooper pair, while
f, g = 1, . . . , Nf are the corresponding flavour indices. The two totally antisymmetric
tensors on the right-hand side ensure that the condensate belongs to the[3̄]ca in colour,

as well as the[1] f
a representation in flavour space. The colour-superconducting phase

represented by the condensate (18) is commonly called the “2SC” phase (for “2-flavour
colourSuperConductor”).

Condensation of quark Cooper pairs occurs if the quantityΦk on the right-hand side of
Eq. (18) is nonzero,Φk �= 0. Thus, the quark Cooper pair condensate carries a fundamental
colour indexk. This indicates that the local[SU(3)c] colour symmetry is spontaneously
broken by the quark Cooper pair condensate, similarly to the spontaneous breaking of the
global chiral symmetrySU(N f )r × SU(Nf )� by the chiral condensate (12) in the QCD
vacuum discussed inSection 2.3.3. In this sense,Φk is the order parameter for colour
superconductivity. It is zero in the phase of unbroken[SU(3)c] symmetry, and nonzero in
the broken phase where condensation of quark Cooper pairs occurs.

Of course, a local symmetry can never be truly broken spontaneously [42].
However, after fixing the gauge, spontaneous breaking does occur, just like in ordinary
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superconductivity or in the standard model of electroweak interactions. In ordinary
superconductivity, the condensation of electron Cooper pairs breaks the[U(1)em] gauge
symmetry of electromagnetism, while in the standard model, the Higgs field breaks
[SU(2)�] × [U(1)Y] to [U(1)em]. Analogously, the quark Cooper pair condensate (18)
breaks the[SU(3)c] colour gauge symmetry.

Since quarks carry baryon and electric charge, the Cooper pair condensate (18) in
principle also breaks the globalU(1)V of baryon number conservation and the local
[U(1)em] of electromagnetism. In the discussion of chiral symmetry breaking, these
symmetries were never broken because the chiral condensate consists of a quark and an
antiquark which carry opposite baryon and electric charge. The chiral condensate is thus
a singlet underU(1)V and[U(1)em] and consequently preserves these symmetries. This
is different for a colour-superconducting condensate which consists of two quarks. It turns
out, however, that there exists a “rotated” baryon numberŨ(1) symmetry and a “rotated”
electromagnetic[Ũ(1)] symmetry, which are formed from the original baryon number and
electromagnetic symmetries and the eighth generator of[SU(3)c] [43]. This is similar to
electroweak symmetry breaking, where the[U(1)em] symmetry of electromagnetism is a
combination of the[U(1)Y] hypercharge symmetry and the third generator of[SU(2)�].
Thus, theU(1)V and [U(1)em] symmetries are not really broken in the 2SC phase, but
“rotated”. The rotation angle is the analogue of the Weinberg angle in the standard model
of electroweak interactions; for more details, seeSection 5.4.

Spontaneous symmetry breaking in gauge theories does not lead to Goldstone bosons.
Rather, what would have been a Goldstone mode will be “eaten” by a gauge boson which
in turn becomes massive and thus acquires an additional longitudinal degree of freedom.
There are as many massive gauge bosons as there would have been Goldstone modes
due to spontaneous symmetry breaking. In ordinary superconductors, the electromagnetic
[U(1)em] symmetry is broken, which has only one generator. Consequently, there is a
single Goldstone mode which is “eaten” by the single gauge boson present in this case,
the photon. The photon acquires a so-called Meissner mass. What happens physically
is that magnetic fields are damped on length scales of the order of the inverse Meissner
mass, which in turn leads to the Meissner effect, the expulsion of magnetic flux from the
superconductor. In the standard model of electroweak interactions,[SU(2)�] × [U(1)Y] is
broken to[U(1)em], i.e., there are three Goldstone modes which in turn lead to the massive
gauge bosons of the weak interaction,W± andZ. The photon is massless. This is required,
since it is the gauge boson of the residual[U(1)em] symmetry of electromagnetism.
Analogously, in a colour superconductor one expects some of the gluons to become
massive. Exactly how many gluons acquire a mass depends on the pattern of symmetry
breaking. For the condensate (18), one can clarify this via the following argument.

By a global colour rotation, one can always orient the order parameterΦk to point in the
3-direction in colour space (more precisely, theanti-3-direction, as condensation occurs in
the colouranti-triplet channel),

Φk ≡ δk3Φ. (19)

Physically, this means that if we call colour 1 red, colour 2 green, and colour 3 blue,
red up (or down) quarks and green down (or up) quarks condense to form an anti-blue
Cooper pair condensate. Blue up and down quarks do not participate in condensation.
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The condensate (19) does not break the colour[SU(3)c] gauge symmetry completely.
The residual symmetry is a local[SU(2)c] symmetry in the space ofthe first two colours
(in our conventions, red and green). Including electromagnetism, the symmetry breaking
pattern for the condensate (19) is therefore[SU(3)c] × [U(1)em] → [SU(2)c] × [Ũ(1)].
Consequently, there are 8− 3 = 5 broken generators, which lead to five massive gluons.
The remaining three gluons must remain massless as they correspond to the gauge bosons
of the residual local[SU(2)c] symmetry. This is also borne out by an explicit calculation of
the gluon Meissner masses in the 2SC phase [44, 45]. The gauge boson of the local[Ũ(1)]
symmetry (the “rotated” photon) is also massless. For more details, seeSection 5.4.

For Nf = 3 flavours, condensation of quark Cooper pairs becomes considerably more
interesting. First, to preserve the antisymmetry of the Cooper pair wavefunction the two
quarks have to be in the[3̄] f

a representation of the globalSU(3)V flavour symmetry.
Consequently, the quark Cooper pair condensate has the form

Φ fg
i j = εi j k ε

f ghΦh
k . (20)

The difference to Eq. (18) is that, to ensure antisymmetry in flavour space, one is
required to use the totally antisymmetric tensor of rank 3,ε f gh, rather than its rank-2
counterpart. Consequently, an additional flavour indexh appears in the order parameter,
Φh

k . A nonvanishing order parameter automatically implies that not only the local[SU(3)c]
colour, but also the globalSU(3)V flavour symmetry is broken. The situation is not unlike
the one encountered in superfluid helium-3 [46]. Superfluid helium-3 forms Cooper pairs
with spin S = 1 and angular momentumL = 1. (Both spin and angular momentum
are good quantum numbers, as helium-3 is a nonrelativistic system.) Consequently, the
order parameter breaks the globalSO(3)S of spin aswell as the globalSO(3)L of angular
momentum. This breaking can occur in many possible ways, giving rise to a plethora of
phases in superfluid helium-3.

Similarly, one would expect many different phases to occur in a 3-flavour colour
superconductor. However, in fact there are only two possibilities, one of which is likely
to be realized in nature [41]. To see this, note the formalsimilarity between the order
parameterΦh

k and the one encountered in chiral symmetry breaking,Φ i j , in Section 2.3.3.
WhileΦ i j transforms underSU(N f )r ×SU(N f )� (in the presence of theU(1)A anomaly),
Φh

k transforms under[SU(3)c]×SU(3)V . Consequently, the effective Lagrangian forΦh
k is

of the same form (13) as forΦ i j . The twopossible patterns of symmetry breaking occurring
in such an effective theory were already mentioned above.

If the coupling constantλ2 > 0, the order parameter assumes the form

Φh
k = δh

kΦ. (21)

In contrast to the 2SC case, where blue quarks remained unpaired, now all quark colours
and flavours participate in the pairing process. The order parameter (21) is similar to the one
for chiral symmetry breaking, whereΦ i j = δi j Φ. (In the ground state,Φvac. ≡ φ0.) Similar
to the chiral symmetry breaking patternSU(Nf )r × SU(Nf )� → SU(N f )V , V = r + �,
the condensate (21) breaks[SU(3)c] × SU(3)V to the vectorial subgroupSU(3)c+V .
The condensate is still invariant under vectortransformations in colour and flavour space,
or in other words, a transformation in colourrequires a simultaneous transformation in
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flavour to preserve the invariance of the condensate. Therefore, the discoverers [47] of
this 3-flavour colour-superconducting state termed it the “Colour-Flavour-Locked”, or in
short, “CFL” state. The residual SU(3)c+V symmetry is no longer a local symmetry, so
that there are no massless gluons. The complete pattern of symmetry breaking, including
theU(1)V symmetry of baryon number and the[U(1)em] symmetry of electromagnetism
is [SU(3)c] × SU(3)V × U(1)V × [U(1)em] → SU(3)c+V × [Ũ(1)]. (This notation is
slightly ambiguous: the[U(1)em] symmetry is generated by the quark charge operator
Q = diag(2/3,−1/3,−1/3) which is traceless. Thus, theglobal part of the[U(1)em]
symmetry is actually a subgroup of theglobal SU(3)V flavour symmetry. However, the
local part of [U(1)em] is not. Therefore, here and in the following I choose to explicitly
denote the[U(1)em] symmetry group.) In the CFL case, unlike the 2SC case, baryon
number is broken, but a rotated electromagnetic[Ũ(1)] is again preserved. The symmetry
breaking pattern leads to nine Goldstone bosons, eight of which are “eaten” by the gluons,
i.e., all gluons acquire a Meissner mass. There is one Goldstone boson from the breaking
of theU(1)V symmetry.

In the chiral limit, the flavour symmetry of QCD is actually not justSU(3)V but
SU(3)r × SU(3)�. Assuming that also theU(1)A symmetry of QCD iseffectively
restored at large quark densities, quarkCooper pair condensation of the form (21) breaks
[SU(3)c] × SU(3)r × SU(3)� × U(1)V × U(1)A × [U(1)em] to SU(3)c+V × [Ũ(1)], i.e.,
not only thelocal colour, but also the global chiral symmetry is broken. In addition to the
eight massive gluons, there are also ten real Goldstone bosons, eight from the breaking of
theSU(3)A chiral symmetry, and one each from the breaking ofU(1)V andU(1)A.

Closer inspection [48] shows thatthe excitation spectrum in the CFL state bears a
striking resemblance to the one in the hadronic phase. Let us first focus on the fermionic
sector. In the CFL phase, there are nine gapped fermionic quasiparticles (cf. alsoSection
5.2), eight of which are degenerate in mass. These correspond to the baryon octet in the
QCD vacuum. (For this argument we have to assume that there is no explicitSU(3)V
flavour-symmetry breaking in the QCD vacuum.) The ninth quasiparticle is twice as heavy
and does not have a counterpart in hadronic matter, but this is not a reason to worry,
as such a particle would have a large decay width into lighter particles. In the bosonic
sector, there are nine Goldstone bosons from the breaking of the axialSU(3)A × U(1)A

symmetry, which correspond to the pseudoscalar nonet in the hadronic phase. Only the
tenth Goldstone boson from the breaking ofU(1)V does not have a counterpart in the
QCD vacuum. Such a boson exists, however, in dense nuclear matter, where a superfluid
ΛΛ condensate may form, which also breaks theU(1)V baryon number symmetry. The
preceding arguments have led to the conjecture of “continuity” between hadron and quark
matter [48]. This conjecture states that, since there is no difference in symmetry between
quark matter in theCFL state and (SU(3)V flavour-symmetric) hadronic matter, there need
not be any phase boundary between these two phases at all. Of course, this requires that
there is no other colour-superconducting phase, for instance the 2SC state, which separates
CFL matter from hadronic matter.

Forλ2 < 0, the order parameter is given by

Φh
k = δh3δk3Φ, (22)
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where the 3-direction is arbitrary. This condensate breaks[SU(3)c] × SU(3)V to
[SU(2)c] × SU(2)V . In thiscase,[SU(2)c] is still a local symmetry. Consequently, like in
the 2SCcase only five gluons become massive, and blue up, down, and strange quarks do
not participate in the formation of Cooper pairs. Additionally, there are also five Goldstone
bosons from the breaking of the flavour symmetry. There is a more technical and a more
physical argument, why the CFL state is most likely realized in nature. From the more
technicalpoint of view, one can show [41] that, to one-loop order, in QCDλ1 = 0 and
λ2 > 0. From the more physical point of view, the CFL state is energetically favoured
becauseall quark colours and flavours (instead of just a few) acquire a gap at the Fermi
surface. The gain in condensation energy is thus expected to be larger than for a state with
a condensate of the form (22).

Although a single quark flavour cannot form Cooper pairs with total spinJ = 0, it
can pair in theJ = 1 channel. (An exhaustive discussion of possible pairing channels for
a single quark flavour is given in [49].) This channel corresponds to the symmetric[3]J

s
representation of theSU(2)J spin group. If one still assumes pairing to occur in the colour
[3̄]ca channel, the Cooper pair wavefunction is, as required, overall antisymmetric. The
condensate is a 3-vector in space which points in the direction of the spin of the Cooper
pair. It hasthe form [38, 40, 50, 51]

Φa
i j = εi j k Φa

k , (23)

wherea = x, y, z denotes the spatial component of the spin vector. Condensation breaks
the local colour[SU(3)c] symmetry and the globalSO(3)J spin symmetry. This is similar
to superfluid helium-3 where condensation breaksSO(3)S × SO(3)L (see discussion
above). While many different phases arise, let us just mention two which are quite similar
to the ones discussed in thecontext of three and two quark flavours, the so-called “Color-
Spin-Locked” or CSL phase, where the order parameter assumes the form

Φa
k = δa

kΦ, (24)

and the so-called polar phase, where

Φa
k = δk3δ

azΦ. (25)

In the CSL phase, the order parameter (24) is strikingly similar to the one in the CFL
phase, cf. Eq. (21). All quark colours participate in the formation of Cooper pairs. Also
the symmetry breaking pattern is similar,[SU(3)c] × SO(3)J × U(1)V × [U(1)em] →
SO(3)c+J . The maindifference is that now there isno rotated electromagnetism[Ũ(1)],
cf. Section 5.4. Consequently, all eight gluonsandthephoton become massive [52]. In the
polar phase, the order parameter resembles that of Eq. (22). Neglecting electromagnetic
interactions for the moment, the symmetry breaking pattern is[SU(3)c] × SO(3)J ×
U(1)V → [SU(2)c]×SO(2)J ×Ũ(1). Like in the2SC phase, the residual[SU(2)c] colour
symmetry is a local symmetry, and there are three massless and five massive gluons. The
breaking of the rotationalSO(3)J symmetry toSO(2)J also leads to two real Goldstone
bosons. Baryon number is not broken, but merely rotated. Including the[U(1)em] of
electromagnetism there is a small subtlety which is explained in more detail inSection
5.4: if there isonly a single flavour present, or if all flavours carry the same electric charge,
a rotated electromagnetic[Ũ(1)] symmetry exists. If there areat least two flavours which
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Table 1
Colour-superconducting phases in dense quark matter. For the polar phase, there is an additional[Ũ(1)]
symmetry, if all flavours in the system carry the same electric charge

Phase Condensate Order parameter Residual symmetry

2SC Φ
f g

i j = εi j k ε
f gΦk Φk = δk3Φ [SU(2)c] × Ũ (1)× [Ũ (1)]

CFL Φ
f g

i j = εi j k ε
f ghΦh

k Φh
k = δh

kΦ SU(3)c+V × [Ũ(1)]
CSL Φa

i j = εi j k Φa
k Φa

k = δa
kΦ SO(3)c+J

Polar Φa
i j = εi j k Φa

k Φa
k = δk3δ

azΦ [SU(2)c] × Ũ (1)

differ in charge, the[U(1)em] symmetry is broken.Table 1summarizes the results of this
section for the 2SC, the CFL, the CSL, and the polar phase of colour-superconducting
quark matter.

2.4.3. Colour-superconducting phases in the nuclear matter phase diagram
How does colour superconductivity affect thephase diagram of nuclear matter? Let us

first assume that the temperature is sufficiently small to favour a colour superconducting
over the normal-conducting state. As long asµ 	 ms, the CFL state is likely to be the
ground state of quark matter. Since one has (approximately) equal numbers of up, down,
and strange quarks of colours red, green, and blue, the system is (approximately) neutral
with respect to colour and electric charge. However, when one extrapolates down to smaller
quark chemical potentials, say of the order ofµ ∼ 500 MeV, the strange quark mass is
no longer negligibly small and causes, for a givenµ, a mismatch in the Fermi surfaces
between nonstrange and strange quarks [53]. In general, a nonzero strange quark mass
reduces the number of strange quarks as compared to the massless species. This, in turn,
leads to nonzero electric andcolour charge in the system. Consequently, one is forced
to introduce chemical potentials for electric and colour charge, which have to be tuned
to again ensure overall electric and colour neutrality. The chemical potential for a quark
species of colouri and flavourf thus reads

µ
f
i = µ− q f µe + t3

i µ3 + t8
i µ8, (26)

whereq f is the electric charge of flavourf (qu = 2/3, qd,s = −1/3),µe is the electron
chemical potential,t3

i and t8
i are the colour charges associated with the third and eighth

generator of[SU(3)c], respectively (t3
r = 1/2, t3

g = −1/2, t3
b = 0, t8

r,g = 1/(2
√

3),

t8
b = −1/

√
3), andµ3, µ8 are the associated colour chemical potentials. (One could also

introduce individual chemical potentials for red, green, and blue quarks, but these can be
written as linear combinations ofµ,µ3, andµ8.) The mismatch in the Fermi surfaces of
different quark species forming Cooper pairs is then

δkF
f g
i j ≡ kF

f
i − kF

g
j � −(q f − qg)µe + (t3

i − t3
j )µ3 + (t8

i − t8
j )µ8

− m2
f

2µ f
i

+ m2
g

2µg
j

, (27)
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where only the first correction inmf /µ
f
i � 1 was taken into account. Eq. (27) shows that

the mismatch in the Fermi surface between different quark species is proportional to the
electric and colour chemical potentials, as well as their mass difference.

The formation of Cooper pairs occurs at the Fermi surface. Typically, a Cooper pair
consists of fermions with momenta which are in magnitude close to the Fermi momentum,
but which have opposite directions, such that the total momentum of the Cooper pair
is zero. However, when the mismatchδkF

f g
i j increases, it becomes increasingly more

difficult to form such pairs with zero total momentum. For the species with the smaller
Fermi surface one may take a fermion right at its Fermi surfaces, but in order to match
the momentum, one has to go deeper into the Fermi sea of the other species. Pictorally
speaking, forming a Cooper pair becomes energetically disfavoured once the cost of
“diving” into the Fermi sea to find such a matching fermion is higher than the gain in
condensation energy by forming a Cooper pair.Whether this condition is fulfilled depends
on the magnitude of the colour-superconducting gap at the Fermi surface,φ0, compared
to the mismatch in the Fermi surfaces,δkF

f g
i j . As long asφ0 	 δkF

f g
i j , the Cooper-

paired state remains the ground state of the system. However, whenδkF
f g
i j becomes of the

order ofφ0, or even considerably exceeds it, the Cooper-paired state becomes energetically
disfavoured as compared to normal-conducting state [54].

It was recently realized, however, that instead of a transition to the normal-conducting
state many other possibilities can be envisioned. For instance, imagine being in the CFL
state and for the moment neglectµe, µ3, andµ8 in Eq. (27). Then, the CFL state will
become energetically disfavoured whenm2

s/2µ exceedsφ0 [53]. Nevertheless, quark
matter will not simply become normal-conducting, because there is nothing to prevent
the up and down quarks to form a 2SC state. Of course, one cannot simply discard
µe, µ3, andµ8 from the consideration. Taking these chemical potentials into account
to ensure overall neutrality with respect to colour and electric charges, the 2SC state
may become unstable with respect to the formation of a gapless superconductor [55], a
crystalline colour superconductor [56], or some other state with an even more exotic pairing
scenario [57, 58].

However, also a more conventional pairing scenario is conceivable [52]: the dominant
terms in the mismatch (27) are theones∼µe and the mass difference (the colour chemical
potentialsµ3 andµ8 are parametrically of orderφ2

0/µ � φ0). Consequently, instead of
realizing one of the more exotic pairing scenarios, it could be energetically favourable
to simply pair quarks with the same charge and the same mass, i.e., of the same flavour.
As discussed above, these Cooper pairs must have spin one. Although spin-one gaps are
orders of magnitude smaller than spin-zero gaps [50, 51, 59], the gain in condensation
energy�Econd. is parametrically larger than for some of the aforementioned exotic
pairing scenarios, for instance�Econd. ∼ µ2φ2

0 for spin-one pairing vs.�Econd. ∼
µ2φ2

0(φLOFF/φ0)
4 for the crystalline colour superconductor [56]. (Here, φLOFF is the

value of the gap in the LOFF phase, whileφ0 is the gap in a superconductor with equal
Fermi surfaces for the particle species forming Cooper pairs.) Whether, and if yes, which
of these pairing scenarios are realized in nature, can only be decided by a quantitative
comparison of the pressure in the various cases. This has not been done so far and to
draw definite conclusions about the structureof the phase diagram of nuclear matter at
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small temperatures and chemical potentials of the order ofµ ∼ 500 MeV appears to be
premature at this point.

On the other hand, it is far simpler to decide what happens to a particular colour-
superconducting phase when one increases the temperature at a given chemical potential.
Like in any other superconducting system, thermal motion will break up quark Cooper
pairs. In BCS theory, the transition between superconducting and normal-conducting
phases is usually of second order and occurs at a temperatureTBCS

c proportional to the
size of the superconducting gap parameterφ0,

TBCS
c = eγ

π
φ0 � 0.567φ0, (28)

where γ � 0.577 is the Euler–Mascheroni constant. At least in the mean-field
approximation, in all colour-superconducting phases studied so far,Tc either rigorously
obeys this relation or differs only by a factor of order one from it, for details seeSection
5.3 and [51]. The value of the colour-superconducting gap parameterφ0 is therefore of
great importance in order to locate the transition line between the normal and the colour-
superconducting quark matter phases in the nuclear matter phase diagram. InSection 5
it will be discussed how to compute this gap parameter. Here it suffices to know that
an extrapolation of the result of solving a gap equation in weak coupling QCD down to
moderate densities suggests gap parameters of the order of 10 MeV for pairing in the spin-
zero channel. NJL model calculations suggest somewhat larger values around 100 MeV.
With Eq. (28), this would lead to transition temperatures of the order of 6–60 MeV. In the
spin-one channel, the gaps and critical temperatures are typically smaller by two to three
orders of magnitude [50, 51, 59].

3. Lattice QCD

3.1. Basic concepts

The most fundamental approach to compute thermodynamic properties of strongly
interacting matter and, in particular, its equation of state, are lattice QCD calculations
[60]. In these calculations, one directly computes the grand partition function (1) on a
discretized space–time lattice,V × 1/T = (aσ Nσ )3aτ Nτ , whereaσ ≡ L/Nσ is the
lattice spacing in spatial direction,aτ ≡ 1/(NτT) is the lattice spacing in Euclidean time
(i.e., temperature) direction, andNσ andNτ are the number of lattice points in spatial and
temporal direction, respectively. Any space–time point inV ×1/T is then parametrized as
xµ ≡ (τ, x) = (aτ l ,aσ i ,aσ j ,aσk), with 0 < l ≤ Nτ , and 0< i , j , k ≤ Nσ . Commonly,
one uses symmetriclattices, whereaσ = aτ ≡ a. A space–time point on the lattice,
a lattice site, is thenuniquely determined by the 4-vectornµ = (l ,n), n = (i , j , k).
Quantities with the dimension of energy are measured in units of the inverse lattice spacing
a−1, and different lattices are simply characterized by their extensionN3

σ × Nτ . The
smallest length scale on a lattice is the lattice spacinga, corresponding to a maximum
momentum scaleΛUV ∼ a−1. This scale serves as ultraviolet cut-off which regulates the
ultraviolet divergences commonly appearing in quantum field theories. The largest length
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scale on the lattice is the lattice extensionaNσ . It determines the minimum momentum
scaleΛIR ∼ (aNσ )−1.

The next step is to define the QCD actionS ≡ ∫
X L, with L given by Eq. (2), on the

discretized space–time lattice. As a first guess, one could replace all derivatives with finite
differences between lattice points. For reasons explained below, this naive prescription is,
however, not particularly suitable, neither for the gauge field (gluon) nor the matter (quark)
part of the action. To find an alternative, note that the only condition a discretized version
of the QCD action has to fulfil is to reproduce the continuum action in the limita → 0.
The choice of a discretized QCD action is therefore not unique. This apparent shortcoming
can, however, be turned into an advantage by choosing a form of the action which reduces
or even completely eliminates discretization errors (so-calledimprovedor perfectactions,
respectively).

To find a suitable discretized version of the gauge field part of the action, one first
observes [61] that, on a finite-size lattice, the gauge fixing termLgaugein Eq. (2) is no
longer necessary, as the integration over gauge fields becomes convergent. Nevertheless,
a naive discretization of the gauge field part of the action is still not gauge-invariant, and
will remain so even when taking the continuum limita → 0. It is therefore advantageous
to formulate the gauge field part of the action in a gauge-invariant form. A suitable choice
was proposed by Wilson [61],

SA =
∑

n

∑
0≤µ<ν≤3

[
1 − 1

Nc
Re Tr

(
Un,µUn+µ̂,νU†

n+ν̂,µU†
n,ν

)]
. (29)

The sumovern runsover all lattice sitesnµ and thelink variableUn,µ is defined as

Un,µ = P exp

[
ig
∫ x+µ̂a

x
dyσ Aa

σ (y)T
a

]
, xµ ≡ anµ. (30)

The link variable describes the parallel transport of the gauge field between two
neighbouring lattice sitesnλ andnλ + µ̂λ, whereµ̂λ ≡ δµλ is the 4-dimensional lattice
unit vector pointing inµ-direction.

Visualizing the product of the four link variables on the right-hand side of Eq. (29), one
realizes that this product transports the gauge field around an elementary lattice plaquette;
it is therefore also called theplaquetteoperator. The trace of the plaquette operator, and
thus also the Wilson action (29), is gauge-invariant. The Polyakov loop (7) is related to the
link variables via

L(x) ≡ 1

Nc
Tr

Nτ∏
l=1

Un,0, nµ = (l ,n), x ≡ an. (31)

Expanding the Wilson action (29) for small lattice spacinga, one obtains the continuum
limit

−βSA �
∫

X
(−1

4 Fa
µν Fµνa )+ O(a2), (32)
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whereβ ≡ 2Nc/g2 ≡ 6/g2 is the so-calledbare coupling. The correction terms to the
continuum result are of orderO(a2). The construction principle behind an improved action
[62] is to addfurther terms toSA in Eq. (29) in order toeliminate corrections of order
O(a2). The improved action then reproduces the continuum limit up to corrections of order
O(a4). Repeating this procedure, one can systematically eliminate discretization errors up
to a given power ofa2. Extending this procedure in order to eliminateall corrections leads
to so-calledperfectactions [63].

The naive discretization of the fermionic part of the QCD action is not particularly
suitable because of the so-calleddoubling problemfor massless fermions on the lattice
[60]. Fermion doubler states originate from the periodicity of the fermion dispersion
relation within the Brillouin zone. One obtains one extra doubler state per space–time
dimension, such thatthere are in total 24 = 16 instead of a single fermion species. One
way out is to break chiral symmetry explicitlyby introducing a mass term. This leads
to the so-calledWilson fermion prescription [61]. Wilson fermions eliminate the doubler
states completely, but they have the disadvantage that one can in principle no longer
study the restoration of chiral symmetry at the QCD transition. Another possibility is to
distribute components of the fermion Dirac spinor over several lattice sites. These so-called
staggeredor Kogut–Susskindfermions [64] do not completely solve the fermion-doubling
problem: the number of doubler states is merely reduced to four. However, the solution
to this problem is to interpret the doubler fermions as different flavour states. Hence, the
standard staggered fermion action is interpreted as describing QCD withN f = 4 flavours.
The advantage of the staggered fermion prescription is that it preserves a subgroup of
the original chiral symmetry. The chiral condensate is thus an order parameter for chiral
symmetry restoration at the QCD transition. Other attempts have been made to solve the
fermion-doubling problem, while at the same time improving (or even preserving) the
chiral symmetry of the lattice action. To name a few, there are the so-called overlap [65],
domain-wall [66], fixed-point [67] or chirally improved [68] fermions.

Let us take a closer look into the staggered fermion prescription, where the fermionic
part of the QCDaction reads

SKS
F =

∑
n,m

ψ̄nMKS
n,mψm, (33)

with the inverse staggered fermion propagator

MKS
n,m(m̃, µ̃,U) = 1

2

3∑
µ=1

(−1)n
0+···+nµ−1

(δn+µ̂,mUn,µ − δn,m+µ̂U†
m,µ)

+ 1
2(δn+0̂,mUn,0eµ̃ − δn,m+0̂U†

m,0e−µ̃)+ δn,mm̃. (34)

Here, the fermion mass (in units of the inverse lattice spacing) is denoted asm̃ ≡ am. This
notation prevents confusion of the fermion mass with the lattice site vectorm ≡ mµ. The
chemical potential (in units of the inverse lattice spacing) isµ̃ ≡ aµ. As shown in [69], the
correct prescription to introduce the chemical potential in the discretized fermion action is
as indicated in Eq. (34), i.e., in exponential form on a temporal link.
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The fermionic part of the QCD action is bilinear in the Grassmann fieldsψ̄ andψ. The
fermion fields can thus be integrated out exactly. The result for the QCD partition function
(1) on a discretized, 4-dimensionalN3

σ × Nτ lattice is

Z(Nσ , Nτ , β, m̃, µ̃) =
∫ ∏

n,µ

dUn,µ[detMKS(m̃, µ̃,U)]N f /4e−βSA. (35)

The integration is over all link variablesUn,µ. ThepowerNf /4 of the fermion determinant
takes into account that, in the continuum limit, the standard staggered fermion prescription
leads toNf = 4 fermion species. In order to obtain results with less thanN f = 4 flavours,
one has to take the appropriate root in Eq. (35). In this way, one can also obtain results for
fermions with different masses. For instance, in order to compute the partition function for
two light (say, up anddown) and one heavy (say, strange) quark flavour (also called the
“2 + 1” flavour scenario) one replaces the fermion determinant in Eq. (35) by the product
[detMKS(m̃q, µ̃q,U)]1/2[detMKS(m̃s, µ̃s,U)]1/4.

For vanishing quark chemical potential,̃µ = 0, the fermion determinant in Eq. (35)
is real and positive, and standard Monte Carlo methods [60] can be applied to evaluate
the integral over the link variablesUn,µ. However, for nonzero quark chemical potential,
the fermion determinant becomes complex. It is clear that the partition function itself
cannot have an imaginary part, thus the imaginary part of the fermion determinant has
to cancel when integrating overUn,m. However, for a particular configuration of the gauge
field, or equivalently, the link variablesUn,µ on the space–time lattice, the real part of the
fermion determinant is no longer strictly positive. This so-calledsign problemprevents
the application of standard Monte Carlo techniques to evaluate the partition function. For
this reason, most lattice QCD calculations have been performed at zero quark chemical
potential, with data reaching an impressive level of quality. Results for the QCD phase
transition and the equation of state, i.e., the pressure as a function of temperature, are
presented inSections 3.2and3.3, respectively. Only recently, attempts have been made
to compute the partition function also for nonzero values of the quark chemical potential.
This will be discussed inSection 3.6.

Finally, let us note that, in order to extractcontinuum physics from lattice calculations,
onehas to extrapolate the results to the case of vanishing lattice spacing,a → 0. In order
to change the value ofa, one has to change the value of the bare couplingβ = 6/g2. Since
QCD is an asymptotic theory, the strong coupling constant at the momentum scalea−1

vanishes asa goes to zero,g(a) → 0 for a → 0. This, in turn, implies thatβ(a) → ∞
as a → 0. Asymptotically, the relation betweena andβ is given by the leading-order
renormalization group result

aΛL �
(

6b0

β

)−b1/(2b2
0)

exp

(
− β

12b0

)
, b0 = 11− 2Nf /3

16π2
,

b1 = 102− 38Nf /3

(16π2)2
, (36)

whereΛL is the lattice scale parameter that can be unambiguously related to the scale
parameter in other regularization schemes, for instanceΛMS in theMS scheme.
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In principle, this allows one to convert thevalue of a physical quantity, say the pressure,
which on the lattice is computed in units ofa−4, i.e., as p̃ ≡ a4p, into physical units,
i.e., MeV4. However, as Eq. (36) is strictly valid only for asymptotically small values of
a, in practice one uses a different prescription. Consider a physical quantity, for instance
a hadronic massmH , which is well-known in the continuum. Compute this quantity on
the lattice, where its value is given in units of the inverse lattice spacing,m̃H = amH .
Then, any other quantity with the dimension of energy can be determined in units ofmH ,
say the temperature, which isT/mH = (aNτ )−1/(m̃H/a) ≡ 1/(m̃H Nτ ).

When decreasing the lattice spacinga (by increasing the value of the bare couplingβ),
the temperatureT = 1/(aNτ ) increases, if one keeps the number of lattice points in
temporal directionNτ fixed. (Simultaneously, for a fixed number of lattice points in spatial
direction Nσ , the volumeV = (aNσ )3 decreases.) Therefore, in order to determine the
temperature dependence of a quantity, one simply has to compute it on a lattice with a
fixed number of temporal pointsNτ , but for different values ofa, respectivelyβ. Thus,
oneoften finds lattice data presented as a function ofβ rather than asa function of T .
Both presentations are equivalent, but note that the temperatureincreaseswith the bare
couplingβ. One should therefore never confuse the bare couplingβ with the quantity
β ≡ (kBT)−1 from thermodynamics and statistical mechanics, whichdecreaseswith
temperature. (The wayβ appears in Eq. (35) certainly does not help to avoid this mistake.)

When extrapolating lattice results to the continuum limita → 0, one does not
simultaneously want to increase the temperatureT or decrease the volumeV of the system.
Rather, one has to ensure that these quantities are kept fixed. In other words, the continuum
limit a → 0 is obtained by simultaneouslyincreasingthe number of lattice points in
space and time direction,Nσ , Nτ → ∞, such that aNσ = V1/3 and aNτ = 1/T
are constant. This is obviously quite costly numerically. There is, however, also another
problem of numerical nature with this limit. Consider, for instance, a lattice computation of
the pressure, which yields values for the quantityp̃ ≡ a4p ≡ (p/T4)N−4

τ . A given value
for the physical temperature corresponds to some value for the physical pressure, such
that p/T4 assumes a certain value. Consequently, asNτ → ∞ thenumericalvalue for p̃
on the lattice rapidly decreases asN−4

τ whena → 0. Since lattice QCD calculations are
subject to statistical errors, it therefore becomes increasingly more difficult to extract the
physically relevant quantity from the statistical noise. It is thus important to use improved
actions (see discussion above), which reduce the discretization errors and allow one to
perform calculations for moderate values ofNτ where p̃ is still significantly larger than
the statistical noise.

Finally, not only is one interested in the continuum limit for afinite volumeV , butone
would like to extrapolate to the thermodynamic limitV = (aNσ )3 → ∞ as well. At
a givennonzero temperature, however, 1/T = aNτ remains finite (in fact, it decreases
as T increases). Therefore, simulations at nonzero temperature, which aim towards the
thermodynamic limit, requireNσ 	 Nτ , which represents another numerically expensive
condition. Nowadays, typical “hot” lattices have space-like extensionsNσ ∼ 16−32 while
the time-like extension isNτ ∼ 4−8. The only situation where one also has to have a large
extension of the lattice in the time direction is the zero-temperature case,T = 0. “Cold”
lattices typically haveNσ = Nτ ∼ 16− 32.
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How close to the thermodynamic limit are present-day lattice QCD calculations?
Suppose one is doing a simulation at the critical bare coupling, i.e., where the QCD
transition occurs (seeSection 3.2). Physical values for the transition temperature are
of the order ofTc ∼ 150 MeV, cf. Section 2.3.3. Consequently, the lattice spacing at
the critical bare couplingβc is ac = 1/(TcNτ ). For temporal lattice extensions of the
order of Nτ ∼ 4 − 8, this corresponds to valuesac ∼ 0.15 − 0.3 fm. For typical
spatial lattice extensionsNσ ∼ 16 − 32 on a “hot” lattice, the physical volume is then
V ∼ (2.5 − 10)3 fm3 ∼ (15 − 1000) fm3. Is such a system sufficiently close to the
thermodynamic limit? The answer is not necessarily “no”, as this depends on how large
the system is in comparison to the size of its constituents. The latter can be estimated
via their Compton wavelengthλC = m−1. For nucleons, the Compton wavelength is
λC ∼ 0.2 fm, so thatmany nucleons would comfortably fit into the system. (Of course,
this is an optimistic estimate: taking the nuclear charge radiusr ∼ 0.8 fm instead of the
Compton wavelength drastically worsens the situation.) For a pion,λC ∼ 1.4 fm, such
that the lattice volume for these light particles appears to be on the verge of being too
small (unless the pion becomes much heavier at the phase transition, cf.Section 4.6). In
any case, not more than a few pions would fit into the physical volume, which certainly
casts doubts on whether one is able to reach the thermodynamic limit with present-day
lattice sizes.

In the following, results from lattice calculations at zero and nonzero quark chemical
potential will be reviewed. Forµ = 0, a wealth of data is available; for the purpose of this
introductory review, I only focus on the QCDphase transition, the equation of state, the
heavy quark free energy, and mesonic spectral functions. The caseµ �= 0 has only recently
received a fair amount of attention. The mainactivity is still to find solutions of (or ways
around) the sign problem of the fermion determinant. For more details, see [15, 16].

3.2. The QCD phase transition

As already discussed inSection 2.3, lattice QCD calculations have numerically
established the existence of the quark–hadron transition.Fig. 3(a) shows the expectation
value of the Polyakov loop,〈L(x)〉, with L(x) as defined in Eq. (31), as a function of the
bare couplingβ (i.e., as explained inSection 3.1, as a function of temperature) forNf = 2
quark flavours. For the pure gauge theory, i.e., for quark massesm̃ → ∞, the Polyakov
loop is an order parameter for the deconfinement transition: it changes its value from zero
in the confined phase belowTc to a nonzero value in the deconfined phase aboveTc, cf.
discussion inSection 2.3.2. However, the presence of dynamical quarks in the calculation
of Fig. 3breaks theZ(3) symmetry of the pure gauge theory explicitly. Thus, the transition
is no longer of first order, but crossover. This is also observed in the data.

In Fig. 3(b) the chiral condensate〈ψ̄ψ〉 is shown as a function of the bare couplingβ.
For vanishing quark masses, the chiral condensate serves as an order parameter for chiral
symmetry breaking: it is nonzero belowand vanishes aboveTc, cf. discussion inSection
2.3.3. Sincethe calculations ofFig. 3 have been done for a nonzero quark mass, chiral
symmetry is explicitly broken. Consequently, the chiral transition is not of second order,
as expected forNf = 2 flavours, but crossover, which is also seen inFig. 3(b).
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Fig. 3. Deconfinement and chiral symmetry restoration in QCD withN f = 2 dynamical quark flavours. (a) The
expectation value of the Polyakov loop and the corresponding susceptibility as functions of the bare coupling. (b)
The chiral condensate and the corresponding susceptibility as functions of the bare coupling. From [15].

Also shown inFig. 3(a) and (b) are the susceptibilities corresponding to the Polyakov
loop and the chiral condensate. These are defined as

χL ≡ N3
σ (〈L2〉 − 〈L〉2), χm ≡ ∂

∂m̃
〈ψ̄ψ〉. (37)

These quantities have a maximum at the value ofβ where the Polyakov loop and the
chiral condensate change most rapidly. This value is the critical bare couplingβc, which
corresponds to the critical temperatureTc for the QCD transition. In this way, one can
define a critical temperature, even if the transition is not of first or second order, but
only crossover. The interesting observation one can make fromFig. 3 is thatβc assumes
the samevalue for the deconfinement transition as for the chiral symmetry restoration
transition. A possible explanation for this strong correlation between deconfinement and
chiral transition is provided by the Polyakov-loop model of [70], see alsoSection 4.5.
Current results for the phase transition temperature in the pure[SU(3)]c gauge theory, as
well as in QCD with different flavours, extrapolated to vanishing quark mass (for details,
see [71]) are summarized inTable 2.

Lattice QCD calculations have also begun to explore the quark-mass diagram discussed
in Section 2.3.4in order to decide the question about the order of the QCD transition.
The present knowledge is summarized inFig. 4. Theopen triangles are results from [72]
and correspond to the line of second-order transitions separating the first order from the
crossover region inFig. 2. The other data points confirm that the transition is of first
order below the second-order line and crossover above. It is somewhat difficult to locate
the physical point on this diagram. Naively, one would think that it suffices to determine
the lattice spacinga in physical units, after which onefinds the physical point in lattice
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Table 2
The critical temperatureTc for QCD with different quark flavours (extrapolated to the chiral limit) and the pure
[SU(3)c] gauge theory (N f = 0). For the “2+ 1” case,Tc is close to the 2-flavour case. From [15, 16]

N f Tc (MeV) Remarks

2 171± 4 Wilson fermions
2 173± 8 Kogut–Susskind fermions
3 154± 8 Kogut–Susskind fermions
0 271± 2 Pure gauge theory

units via multiplying the physical quark masses by this value ofa, m̃phys.
q,s ≡ amphys.

q,s . This
deceptively simple method does not work in practice, because the physical mass in lattice
units m̃phys.

q,s also receives contributions from renormalization, which violate this simple
relationship. Present estimates seem to indicate, however, that the physical point is deep in
the crossover region [76].

3.3. Equation of state

The equation of state is determined by the pressurep(T, µ) as a function of temperature
T and chemical potentialµ. Hence, according to Eq. (4) one has to compute(T/V) lnZ.
From the pressure, other thermodynamic quantities can be derived via differentiation, cf.
Eq. (5), and the fundamental relation of thermodynamics,ε = T s + µn − p. For any
quantum field theory in the continuum as wellas on the lattice, the calculation of the
absolute value of(T/V) lnZ is plagued by ultraviolet divergences [10]. These arise from
vacuum fluctuations and have to be subtracted in order to obtain a finite value forp(T, µ).
The simplest way to achieve this is to subtract the value of(T/V) lnZ in the vacuum, i.e.,
at T = µ = 0,

p(T, µ) = T

V
lnZ −

(
T

V
lnZ

)
T=µ=0

. (38)

In this way, the value of the pressure in the vacuum is normalized to zero,p(0,0) ≡ 0.
A direct computation of the pressure using this formula is still cumbersome, because

it requires the calculation of the absolute values of lnZ(T,V, µ) and lnZ(0,V,0) which
then have to be subtracted from each other. On the lattice, it is much simpler to compute
average values of quantities. Therefore, one uses the following method to determine the
pressure. First, note that

p

T4
≡ 1

T4

[
T

V
lnZ −

(
T

V
lnZ

)
T=µ=0

]

≡ N4
τ

(
lnZ(Nσ , Nτ , β, m̃, µ̃)

N3
σ Nτ

− lnZ(Nσ , Nσ , β, m̃, µ̃)

N4
σ

)
. (39)

The assumption underlying this identityis that one can approximate the vacuum
subtraction by the value of(T/V) lnZ computed on a “cold” lattice withNτ ≡ Nσ , but
at the same value of the bare couplingβ (i.e., with the same lattice spacinga) as for the
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Fig. 4. The quark-mass diagram as computed in lattice QCD. Below the line of open triangles, the transition is of
first order, above it is crossover. The data points labelled “Columbia” are from [73], the ones labelled “JLQCD”
arefrom [74]. The other points are from [72, 75].

“hot” lattice (whereNτ � Nσ ), (T/V) lnZ|T=µ=0 ≡ (aNσ )−4 lnZ(Nσ , Nσ , β, m̃, µ̃).
Now introduce the expectation value of the (dimensionless) Wilson actiondensity〈s̃A〉 ≡
a4 T

V 〈SA〉 ≡ (N3
σ Nτ )−1〈SA〉,

〈s̃A〉 ≡ − 1

N3
σ Nτ

∂

∂β
lnZ(Nσ , Nτ , β, m̃, µ̃), (40)

and its zero-temperature value〈s̃A〉0, which is computed on a “cold” lattice, i.e., by setting
Nτ ≡ Nσ on the right-hand side of Eq. (40). The quantityp/T4 in Eq. (39) can now be
obtained through an integration of Eq. (40) with respect to the bare couplingβ,

p

T4
− p1

T4
1

= −N4
τ

∫ β

β1

dβ ′(〈s̃A〉 − 〈s̃A〉0). (41)

In order to determine the second term on the left-hand side,p1/T4
1 , one would like to

choose a rather low value for the temperatureT1. For temperaturesT1 � mH , where
mH is the lightest hadronic particle, the pressure is exponentially small,p1/T4

1 ∼
exp(−mH/T1). This argument holds to very good approximation in the pure gauge theory,
since the lightest glueball state has a mass of order 1 GeV. It does not hold in full QCD
in the chiral limit, where there areN2

f − 1 massless Goldstone particles,cf. discussion in
Section 2.3.3. For lattice QCD calculations, however, chiral symmetry is always broken
by a nonvanishing dynamical fermion mass, thusmH is always positive. To very good
approximation one may therefore setp1/T4

1 ≡ 0. Once the pressure is known, other
thermodynamic quantities can be determined from thermodynamic identities, for more
details see [15].

As discussed inSection 3.1, before one can draw definite conclusions about the
thermodynamic properties of hot quark–gluon matter, one has to extrapolate the lattice
data to the continuum limit (and hope that present-day lattices are sufficiently large to be
close to the thermodynamic limit). This has been done inFig. 5which shows the pressure
(normalized toT4) as afunction of temperature (in physical units) for the case of two light
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Fig. 5. Left panel: pressure (divided byT4) as a function of temperature for the pure gauge theory and for QCD
with two and three light flavours, as well as with two light and a four times heavier quark flavour (curve labelled
“2 + 1”). Arrows denote the corresponding Stefan–Boltzmann values. For the “2+ 1” case, the arrow is slightly
below the three-flavour case, due to the nonzero strange quark mass. Right panel: pressure normalized to its
corresponding Stefan–Boltzmann value as a function of temperature normalized to the corresponding transition
temperatureTc for the four cases shown in the left panel. From [15].

flavours, three light flavours, and the “2+ 1” case, i.e., two light plus one heavy flavour
[77], in comparison to the pressure for the pure[SU(3)c] gauge theory [78].

Oneobserves that the pressure is rather small at low temperatures. This is to be expected,
as the contributions from hadronic resonances (or, in the pure gauge theory, from glueballs)
to the pressure are exponentially suppressed,pH/T4 ∼ exp(−mH/T) for a hadron
(glueball) of massmH . However, at the critical temperatureTc for the QCD transition
(cf. Table 2), the pressure increases rapidly, approaching the so-called Stefan–Boltzmann
limit pSB for a system of quarks and gluons asT → ∞. The Stefan–Boltzmann limit
is the pressure for an ideal (i.e., noninteracting) ultrarelativistic gas of particles. For an
ultrarelativistic gas atµ = 0, the temperatureis the only scale with the dimension of
energy, consequentlypSB/T4 = const. The value of this so-called Stefan–Boltzmann
constant only depends on the number of degrees of freedom in the system. For an
[SU(Nc)]c gauge theory withNf massless quark flavours one obtains

pSB

T4
=
[
2(N2

c − 1)+ 2NcNf
7

4

]
π2

90
. (42)

Here, the first term in brackets is the contribution from the gauge fields, while the second
corresponds to that from the matter fields. The factors of 2 in these terms arise from the
spin degrees of freedom of massless gauge fields and fermions. The factorN2

c − 1 counts
thenumber of gauge fields which are in the adjoint representation of the gauge group. The
factor NcNf counts the number of colours and flavours of the fermions which are in the
fundamental representation of the gauge group. The factor 7/4 accounts for the difference
between Bose–Einstein and Fermi–Dirac statistics and for the fact that atµ = 0 there are as
many antifermions as fermions. Finally, the factorπ2/90 is the value of the (dimensionless)
Bose–Einstein integral(1/6π2)

∫∞
0 dx x3(ex − 1)−1 occurring inthe calculation of the

pressure.
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In all cases, the functionp/T4 approaches the Stefan–Boltzmann value for a gas of
quarks and gluons, whichindicates that there is indeed a transition from hadronic degrees
of freedom to quark and gluon degrees of freedom, i.e., from hadronic matter to the
QGP. From the behaviour of the Polyakov loop and the chiral condensate discussed in
Section 3.2, in theQGP colour charges become deconfined and chiral symmetry is restored.
However, the approach of the pressure to the corresponding Stefan–Boltzmann value is
rather slow; even at temperatures∼3Tc, deviations are typically of the order of 20%. This
indicates that at such temperatures the QGP cannot really be considered as a noninteracting
gas of massless quarks and gluons.

In order to understand the deviations from the Stefan–Boltzmann values, one has to
resort to analytic calculations of the pressure, taking into account interactions between
quarks and gluons. In an analytic approach, deviations from the ideal-gas behaviour
are well under control and can be physically interpreted. For instance, in a perturbative
calculation of the QCD pressure, deviations from the Stefan–Boltzmann limit are due
to corrections proportional to powers of the strong coupling constant, seeSection 4.1.
Another possible explanation for the deviation of the pressure frompSB/T4 is that quarks
and gluons are actually quasiparticles, i.e., they are not massless, but assume a thermal
mass due tointeractions with the hot environment, seeSections 4.3and4.4.

An important step to understand the deviations from ideal-gas behaviour might be the
observation that, when normalizing the pressure to the corresponding Stefan–Boltzmann
value andthe temperature to the critical temperature, the curvesp/pSB as a function
of T/Tc exhibit a universal behaviour for the pure gauge theory and for QCD with
various dynamical quark flavours, see right panel ofFig. 5. A possible explanation for
this behaviour is provided by the Polyakov-loop model of [70], seeSection 4.5, where
the dynamics of chiral symmetry restoration is exclusively driven by the dynamics of the
deconfinement transition.

3.4. Heavy quark free energy

The behaviour of the heavy quark free energy as a function of temperature is another
indication for deconfinement in the QGP. The heavy quark free energyFQ̄Q(R, T) is the
free energy of a heavy quark and an antiquark, separated by a spatial distanceR, at a
temperatureT [24]. It is related to the Polyakov-loop correlation function via

exp

(
− FQ̄Q(R, T)

T

)
= 〈L(0)L†(x)〉, R ≡ |x|, (43)

whereL(x) is the Polyakov-loop operator defined in Eq. (31). At T = 0, the heavy quark
free energy is identical to the heavy quark potential,VQ̄Q, which is expected to have a form
motivated by the string model,

VQ̄Q(R) = −α(0)
R

+ σR + const. (44)

The second term ensures confinement of colour charge due to the linear increase ofVQ̄Q
with distance.The constantσ is the string tension. The first term is an attractive Coulomb-
like contribution arising from fluctuations of the string.
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Lattice QCD data [79] confirm these expectations, cf.Fig. 6. BelowTc (top panel ofFig.
6), at small distances the heavy quark free energy is dominated by an attractive Coulomb-
like part, while at large distances it linearly rises with the distance, indicating confinement.
The linear rise becomes less pronounced with increasing bare couplingβ, indicating that
the string tension decreases with temperature.

At temperatures aboveTc, colour charges are deconfined, i.e., the linearly rising part
of the potential in Eq. (44) has to vanish, leaving only a Coulomb-like part. The latter
is, however, screened due to the presence of a hot medium. This is confirmed by lattice
QCD data aboveTc (bottom panel ofFig. 6). It turns out [79] that a fit to the numerically
computed potential can be achieved by the formula

FQ̄Q(R, T)

T
= − c(T)

(RT)d(T)
e−µ(T )R, (45)

whereµ(T) is the temperature-dependent screening mass (or inverse screening length).
This function is shown inFig. 7.

While the qualitative picture of deconfinement and screening of colour charges is
certainly applicable, the deconfined gluon-plasma phase cannot be described perturbatively
at temperatures in the range fromTc to a few timesTc. This is indicated by the fact that
the fit functiond(T) in Eq. (45) is temperature-dependent [79] and always smaller than
�1.5 in the range of temperatures considered here, while from perturbation theory one
expectsdpert. = 2. Furthermore, the screening massµ(T) deviates from the perturbative
valueµpert.(T) = 2mD(T), wheremD(T) = gT is the Debye mass in a hot gluonic
medium. The solid line inFig. 7represents a fit inspired byµpert.(T) to the two datapoints
corresponding to the highest temperatures, for details see [79]. One observes that while the
qualitative behaviour of the data follows the perturbative expectation at large temperature,
nearTc the data strongly deviate from the perturbative result. They even suggest that the
screening mass goes to zero whenT → Tc. This is an indication for critical behaviour and
is naturally explained by the Polyakov-loop model of [70], seeSection 4.5.

More recent developments in the study of the heavy quark free energy include a
calculation in full QCD with dynamical quark flavours [71]. Below Tc, the string breaks
when creation of dynamical quark–antiquark pairs becomes energetically favourable.
Consequently, the heavy quark free energy saturates at larger distances instead of
increasing linearly. In another recent paper [80] the colour-singlet and colour-octet
contributions to the heavy quark free energy were studied separately within the pure gauge
theory, using a novel prescription to renormalize the expectation value of the Polyakov
loop. It was found that the singlet and octet contributions only deviate at smaller distances.
As expected, the colour-octet channel is repulsive, while the colour-singlet channel is
attractive.

3.5. Mesonic spectral functions

The correlation function of a mesonic stateGH (τ, x) is defined as

GH (τ, x) ≡ 〈ψ̄(0)ΓHψ(0)ψ̄(τ, x)ΓHψ(τ, x)〉, (46)
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normalized to〈|L(0)|2〉. Calculations are done for pure[SU(3)c] gauge theory on a 323 × 4 lattice. The critical
bare coupling for this lattice isβc = 4.0729(3). From [79].
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a fit of Eq. (45) to the lattice data ofFig. 6. The solid line is a fit inspired by the perturbative expectation
µpert.(T) = 2mD(T). From [79].

i.e., it is the overlap of a mesonic state with quantum numbers determined by the 4× 4
Dirac matrixΓH at the origin with the same mesonic state at(τ, x). Fourier-transforming
Eq. (46) with respect to the spatial variable, one obtains the mixed correlation function
GH (τ,p), whichhas the spectral representation

GH (τ,p) =
∫ ∞

0

dω

2π
σH (ω,p)

cosh
[
ω
(
τ − 1

2T

)]
sinh

(
ω

2T

) . (47)

Here,σH (ω,p) is the spectral density in the quantum number channel under consideration.
Suppose the spectral density is dominated by a single, stable, mesonic state with massmH .
In this case,σH (ω,0) = πλ2δ(ω − mH )/ω, whereλ2 is a constant with the dimension
[MeV4]. Then, the susceptibility

χH ≡ V

T

∫ 1/T

0
dτ
∫

V
d3x GH (τ, x) (48)

assumes the valueχH = (V/T)λ2m−2
H , i.e., it is proportional to the inverse mass (squared)

of the meson. In a lattice QCD calculation, one can thus infer the mass of a mesonic state
in a given quantum number channel from the corresponding susceptibility.

The masses for the pion, theσ meson, and thea0 meson computed in this manner
are shown inFig. 8 as a function of the bare coupling (i.e., the temperature). The results
indicate restoration of chiral symmetry, i.e., the mass of the pseudoscalar meson (pion)
becomes degenerate with those of the scalar mesons (σ anda0) at large temperature. The
fact that the pion and theσ meson become degenerate in mass at smaller temperatures than
the pion and thea0 meson indicates that theSU(2)r × SU(2)� symmetry is restored prior
to theU(1)A symmetry when increasing the temperature.

Instead of the susceptibility, one could also try to compute the complete spectral density
σH (ω,p) of a mesonic state from lattice QCD data. An important motivation for such a
calculation is the fact that the spectral density in the vector channel,σV (ω,p), is directly
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proportional to the rate of dilepton emission [81], which is an experimentally observable
quantity [82],

dN�+�−

d4X dω d3p
= 5α2

27π2

1

eω/T − 1

σV (ω,p)
ω2

. (49)

To determineσV (ω,p), one would have to perform an inverse Laplace transformation of
Eq. (47). This requires complete knowledge of the correlation functionGV (τ,p) on the
left-hand side. On the lattice, however, this function is only known at a few discrete points
in theτ -direction. Moreover, its value at these points is subject to statistical fluctuations.
Consequently, a computation ofσV (ω,p) via inversion of Eq. (47) with lattice data for
GV (τ,p) is impossible.

Nevertheless,a solution of this problem is provided by the so-called “Maximum Entropy
Method” (MEM). The basic idea is to construct that particular spectral densityσH (ω,p)
under the integral in Eq. (47), which is themost probableone to yield a given correla-
tion functionGH (τ,p) on the left-hand side of that equation; for details see [83]. Fig. 9
shows the spectral function in the vector meson channel computed with this method [81]
(left panel) and the corresponding dilepton rate (49) (right panel). One observes that the
peak in the spectral density broadens and shifts towards larger energies as the tempera-
ture increases. Consequently, the dilepton rate is depleted for small dilepton energies. This
behaviour is in stark contrast to the dilepton emission rate computed in the Born approxi-
mation and in the so-called HTL-resummation scheme, which are also shown inFig. 9.

Finally, the low-energy behaviour of the spectral density determines the value of
transport coefficients in a hotmedium [84]. I do not elaborate further on this point, as
it concerns the nonequilibrium properties of the QGP, which are beyond the scope of the
present review.

3.6. Nonzero chemical potential

As discussed inSection 3.1, for nonzero values of the quark chemical potential,µ �= 0,
a straightforward evaluation of the QCD partition function on the lattice is not possible due
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Fig. 10. The QCD phase transition as computed in lattice QCD [32]. To the left of the critical point the transition
is crossover, to the right it is of first order. At the critical point, the transition is of second order and in the
universality class of the Ising model. Note thatµB = 3µ.

to the sign problem of the fermion determinant. However, for sufficiently smallµ progress
has recently been made by applying methodswhich explicitly avoid the sign problem.
Most notably among these are multiparameter reweighting [32], Taylor expansion around
µ = 0 [85], and analytic continuation from imaginary values ofµ, where the fermion
determinant is real-valued and positive, to real values ofµ [86]. For the sake of brevity,
here I only discuss the multiparameter-reweighting method; for a detailed comparison of
all approaches see the review [16].

The multiparameter-reweighting method is based on the so-called Glasgow method
[87]. The idea of the Glasgow method is to treat the fermion determinant at nonzeroµ in
the partition function (35) as anobservablerather than as a part of the integration measure.
The integration measure itself is computed with a fermion determinant atµ = 0, which is
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real-valued and positive and thus causes no problems when applying standard Monte Carlo
methods to sample gauge field configurations,

Z(Nσ , Nτ , β, m̃, µ̃) =
∫ ∏

n,µ

dUn,µ
detM(m̃, µ̃,U)

detM(m̃,0,U)
detM(m̃,0,U)e−βSA

≡
〈
detM(m̃, µ̃,U)

detM(m̃,0,U)

〉
µ̃=0

. (50)

Here, the expectation value〈O〉µ̃=0 of an operatorO is defined with respect to an ensemble
of gauge fields and fermions at zero quark chemical potential.

This method is limited to small values ofµ. In order to understand this, one has to
remember the principle behind a Monte Carlocomputation of the functional integral (50)
[60]. A Monte Carlo computation assumes that in order to obtain a reasonable approximate
value of the functional integral in Eq. (50) it suffices to sum only over (a few 102 to 104

of) the “most probable” gauge field configurations, rather than performing the integrals
over the link variablesUn,µ explicitly. The “most probable” gauge field configurations are
obviously those which minimize the actionSA. However, themost probable configurations
atµ �= 0 arenot the same as the ones atµ = 0. Thus, approximating the partition function
atµ �= 0 by configurations obtained forµ = 0 becomes increasingly worse asµ increases.
In other words, the “overlap” between the ensemble of most probable configurations at
µ = 0 and the ensemble that consists of the configurations which are actually most
probable atµ �= 0 diminishes.

It has been recently realized [32] that a way to increase this overlap is to also include
the exponential of the action into the operator which is averaged over the ensemble,

Z(Nσ , Nτ , β, m̃, µ̃) ≡
〈

e−βSA detM(m̃, µ̃,U)

e−β0SA detM(m̃,0,U)

〉
µ̃=0,β0

, (51)

i.e., the ensemble one averages over is generated atµ = 0 and a valueβ0 for the bare
coupling. In this way, one not only reweights the ensemble in the parameterµ̃, as in the
Glasgow approach (50), but also in the bare couplingβ (hence the name “multiparameter
reweighting”).

How does one choose the second reweighting parameterβ? This depends on which
physical question one asks. Suppose one wants to compute the QCD phase transition line
for nonzero values ofµ. One firstgenerates an ensemble atµ̃ = 0 andβ0 ≡ βc. This
ensemble is “maximally” critical in the sense that it is generated at the phase transition
point(β, µ̃) = (βc,0) (which corresponds to the point(T, µ) = (Tc,0) in the continuum).
For each nonzero value of̃µ one then determinesβ such that one remains on the phase
transition line.

The criterion for “remaining on the phase transition line” is the position of the Lee–Yang
zerosβ∗

1, β
∗
2, . . . of the partition functionZ in the complexβ-plane [88]. For a given set

of parametersNσ , Nτ , m̃, µ̃, there are many Lee–Yang zeros, i.e., roots of the equation
Z(Nσ , Nτ , β∗, m̃, µ̃) = 0. (In fact, the total number of Lee–Yang zeros,M, increases
linearly with the volume of the system,M ∼ N3

σ .) In the case of a first-order phase
transition,one root, sayβ∗

1, has a vanishing imaginary part, i.e., it lies on the positive
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realβ axis. Then the value ofβ which corresponds to the phase transition line in the(β, µ̃)

plane isβ ≡ Reβ∗
1.

Note that in a finite system, such as the space–time lattice considered in lattice QCD,
all Lee–Yang zeros have nonzero imaginary parts. Then one has to study lattices of
different sizes and extrapolate to the infinite-volume limit. In [32], this is done via linear
extrapolation in the variable 1/V , β∗

1(V) = β∗
1(∞) + α/V . In the case of a crossover

transition, the imaginary parts of the extrapolated Lee–Yang zeros never vanish. In this
case, the value ofβ corresponding to the phase transition line is determined by the real
part of the Lee–Yangzero with the smallest imaginary part.

The phase transition line calculated in this way is shown inFig. 10. It agrees with
the expectations discussed in Sections2.3.4and3.2: there is aline of first-order phase
transitions, ending at the point(T, µ)cr = (160 ± 3.5,242± 12) MeV, at which the
transition is of second order. To the left of thispoint, the transition is crossover. One should
mention that the lattice QCD calculation underlyingFig.10wasdone on fairly small lattice
sizes, with probably unrealistically large quark masses. As discussed inSection 2.3.4, for
smaller quark masses the endpoint should move towards the temperature axis. For three
massless flavours, it should reach the temperature axis, since in thiscase the transition is
of first order. For realistic quark masses, however, as discussed inSection 3.2the transition
is crossover atµ = 0, and the line of first-order transitions should always end at some
nonzero value ofµ.

The position of the phase transition line determined by multiparameter reweighting is in
good agreement with that computed by the other approaches mentioned previously, namely
the Taylor expansion method, and the method of analytic continuation from imaginary
values ofµ [16]. Recent developments [89] are the application of the multiparameter-
reweighting method to compute the equation of state at nonzero quark chemical potential.
Fig. 11shows the results for thepressure difference�p ≡ p(T, µ)− p(T,0), normalized
to T4, as a function ofT for various values ofµ. There isa strong increase of�p around
the phase transition temperature. This increase is larger for larger values ofµ.

Multiparameter reweighting, as well as the other aforementioned methods, is restricted
to values of the quark chemical potential,which are not too large as compared to the
temperature. In order to compute the partition function of QCD for large quark chemical
potential at small or even zero temperature, and possibly study the colour-superconducting
phases of quark–gluon matter, one has to resort to other methods. A promising approach is
the so-called meron-cluster algorithm which has been shown to solve the sign problem of
the fermion determinant for the Hubbard and the Potts model [90]. For QCD, as of yet no
solution has been found.

Another possibility is to study a model for QCD which does not have the sign
problem. Such a model is, for instance, the NJL model which has been investigated on
the lattice atT = 0 andµ �= 0 in [91]. Although this model has no colour gauge
symmetry which could be spontaneously broken, and thus strictly speaking cannot exhibit
colour superconductivity, quarks can still form Cooper pairs and the system may become
superfluid.Fig. 12 shows the chiral condensate, the baryon density, and the superfluid
diquark condensate as a function of the baryon chemical potential, computed on the lattice
and then extrapolated to the thermodynamic limit. One observes that, as the baryon density
increases, the chiral condensate vanishes andthe diquark condensate increases, signalling
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Fig. 12. The chiral condensate, the baryon density, and the diquark condensate as a function of baryon chemical
potentialµB. The solid line is the chiral condensate computed analytically within the Hartree approximation.
From [91].

theonset of superfluid behaviour. These results are in agreement with analytic calculations
[39] for the NJL model in the mean-field approximation, which stimulated recent interest
in colour superconductivity.

4. Analytic approaches

4.1. Perturbation theory

The QCD partition function (1) can be expanded in a power series in the strong coupling
constantg. In the following, I present the general idea behind this approach, neglecting
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contributions from gauge fixing and from Fadeev–Popov ghosts. Of course, these have to
be properly accounted for in order to obtain the correct answer; for more details, see [10].
I also focus on the caseµ = 0. The first step is to split the QCD Lagrangian (2) into two
terms, the noninteracting part,L0 ≡ Lg=0, and the interaction part,LI ≡ L − L0. Then,
the QCD actionS ≡ ∫

X L can be written as

S = S0 + SI ≡
∫

X
(L0 + LI ), (52)

L0 = ψ̄G−1
0 ψ + 1

2 Aa
µ�

−1
0
µν
ab Ab

ν, (53)

LI = gψ̄γ µTaψAa
µ + g f abc∂νAa

µAµb Aνc − g2

4
f abc f adeAb

µAc
νAµd Aνe. (54)

Here G−1
0 ≡ i γ µ∂µ − m is the free inversequark propagator and�−1

0
µν
ab ≡ (�gµν −

∂µ∂ν)δab is the free inverse gluon propagator (which will eventually receive another
contribution from the gauge fixing terms neglected here). The next step is to introduce
source terms for fermions and gauge fields (which eventually have to be set to zero).
One can then replace all fields inSI in terms of functional derivatives with respect to
the sources, and thus extract eSI from the functional integral. The functional integration
over the exponential of the noninteracting part and the source terms is a Gaussian integral
and can be performed exactly. The result is

Z = Z0 exp

{
SI

[
δ

δη̄
,
δ

δη
,
δ

δJa
µ

]}

× exp

[∫
X

(
−η̄G0η − 1

2
Ja
µ�0

µν
ab Jb

ν

)]∣∣∣∣
η̄=η=J=0

, (55)

whereZ0 is the partition function for a system of noninteracting quarks and gluons.
Obviously, the pressurep0 ≡ (T/V) lnZ0 is identical to the Stefan–Boltzmann pressure
defined through Eq. (42), p0 ≡ pSB. The full pressure in QCD also receives contributions
from the remaining two terms in Eq. (55). After introducing Feynman rules for propagators
and vertices [10], these terms have a graphical representation as an infinite series of
diagrams with no external legs. The diagrams can be sorted according to powers in the
strong coupling constantg associated with the vertices. Thus, one obtains a perturbative
series inpowers ofg.

Inspecting the topology of these diagrams, one would naively conclude that this
perturbative series is an expansion in powers ofg2. In fact, it turns out that this is only true
at zero temperature [92]. At nonzero temperature, the expansion is in powers ofg, rather
thang2, due to the different infrared behaviour of a field theory containing massless modes
(such as gauge fields) at nonzero temperature. Roughly speaking, the difference arises
from the infrared behaviour of single-particle phase space, which, at zero temperature, is
∼dk k3, while at nonzero temperature it is∼Tdk k2. The missingpower ofk at nonzero
temperature leads to a completely different infrared behaviour as compared to the zero-
temperature case.

At zero temperature the theory is well-behaved in the infrared and the terms of the
perturbative series are probably computable to all orders ing2 [41]. Freedman and
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McLerran computed the series up to terms of orderg4, for details see [92]. I do not
present a more detailed discussion of their results at this point, as quark matter at zero
temperature is a colour superconductor, cf. Sections2.4.3and5. Colour superconductivity
is a nonperturbative phenomenon, which cannot be described in a purely perturbative
calculation of the pressure.

At nonzero temperature, the infrared behaviour of the theory leads to terms proportional
to odd powers ofg in the perturbative expansion (55) of thepartition function. Technically,
they arise from a resummation of an infinite subset of diagrams describing the screening of
long-range electric fields. Moreover, there are infinitely many diagrams at orderO(g6), and
the perturbative expansion breaks down [10]. Thisis sometimes called theLinde problemof
QCD, after its discoverer [11]. Nevertheless, what is perturbatively computable has been
evaluated. These are all terms up toO(g5), and the terms of orderO(g6 ln g). How to
obtain the latter is discussed in greater detail inSection 4.2. While the terms which are
genuinely of orderO(g6) cannot be computed perturbatively, they can in principle be
evaluated via a lattice calculation.

At zero chemical potential, the pressure assumes the form

p = T4[c0 + c2g2 + c3g3 + (c′
4 ln g + c4)g

4 + c5g5 + c6g6]. (56)

The coefficientc0 is equal to the Stefan–Boltzmann constant (42). The coefficientc2 arises
from the lowest-order perturbative correction to the pressure of an ideal gas. It consists of
two-loop diagrams, and was first computed by Shuryak [93]

c2 = − N2
c − 1

144

(
Nc + 5

4
Nf

)
. (57)

The computation of the coefficientc3 requires a nonperturbative resummation of plasmon
ring diagrams in the infrared limit. This was first done correctly by Kapusta [94], with the
result

c3 = N2
c − 1

36
√

3π

(
Nc + 1

2
N f

)3/2

. (58)

The coefficientc′
4 has been computed by Toimela [95],

c′
4 = N2

c − 1

48π2
Nc

(
Nc + 1

2
Nf

)
. (59)

The coefficientc4 is due to three-loop diagrams and has been computed by Arnold and
Zhai [96],

c4 = − N2
c − 1

(48π)2

{
−24Nc

(
Nc + 1

2
Nf

)
ln

(
Nc + Nf /2

12π2

)

+ N2
c

[
22

3
ln

µ̄

4πT
+ 38

3

ζ ′(−3)

ζ(−3)
− 148

3

ζ ′(−1)

ζ(−1)
− 4γE + 64

5

]

+ NcNf

[
47

6
ln

µ̄

4πT
+ 1

6

ζ ′(−3)

ζ(−3)
− 37

3

ζ ′(−1)

ζ(−1)
− 4γE + 1759

120
+ 37

10
ln 2

]
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+ N2
f

[
−5

3
ln

µ̄

4πT
+ 2

3

ζ ′(−3)

ζ(−3)
− 4

3

ζ ′(−1)

ζ(−1)
− γE − 1

12
+ 22

5
ln 2

]

+ N2
c − 1

Nc
N f

[
−105

16
+ 6 ln 2

]}
. (60)

Here,ζ(x) is Riemann’szeta function,γE is the Euler–Mascheroni constant, and̄µ is the
renormalization scale in theMS scheme, for details see [96]. The coefficientc5 arises
from corrections to the three-loop diagrams due to Debye screening of electric gluons. It
has been computed by Zhai and Kastening [97] andby Braaten and Nieto [98],

c5 = N2
c − 1

9216
√

3π3

×
(

Nc + 1

2
Nf

)1/2 [
N2

c

(
176 ln

µ̄

4πT
+ 176γE − 24π2 − 494+ 264 ln 2

)

+ NcNf

(
56 ln

µ̄

4πT
+ 56γE + 36− 64 ln 2

)

+ N2
f

(
−16 ln

µ̄

4πT
− 16γE + 8 − 32 ln 2

)
− 36

N2
c − 1

Nc
Nf

]
. (61)

The coefficientc6 contains terms∼ ln g and constant terms. The former contribute to
order O(g6 ln g) and can be evaluated perturbatively, while the latter are genuinely of
order O(g6) and can only be computed e.g., via a lattice calculation, for more details,
seeSection 4.2. At finite temperature andnonzero chemical potentialµ, the contributions
of orderO(1), O(g2), andO(g4 ln g) to the pressure have been computed by Toimela [99].

To be more explicit, consider pure[SU(3)c] gauge theory, i.e.,Nc = 3, Nf = 0.
The pressure up to terms of a given order ing is shown in the left panel ofFig. 13.
The strong coupling constantg is taken to be running and evaluated at the scaleµ̄. After
applying the principle of fastest apparent convergence to minimize the two-loop corrections
to the running ofg, this scale is chosen as̄µ � 6.742T; for more details see [100]. The
scaleµ̄ also enters under the logarithms in Eqs. (60) and (61). In principle, the complete
result for the pressure, being a physically observable quantity, must be independent of the
renormalization scaleµ̄. The way this works out is that̄µ under some logarithm, such as
that occurring in Eqs. (60) and (61), is cancelled by a similar logarithm from the running of
the coupling constant in a lower-order contribution. Nevertheless, while terms∼ ln µ̄must
cancel, there still exist physical terms∼ ln g, andhereg has to be evaluated at the scaleµ̄.
The cancellation of thēµ-dependence holds for the complete result forp, but this does
not happen if one terminates the perturbative expansion at some given order. This is the
reason why, for instance, theO(g2) contribution to the pressure inFig. 13 is not flat. Here
the curvature arises from the logarithmic running of the strong coupling constant with the
scaleµ̄ � 6.742T.

The perturbative series (56) converges badly. The second-order term∼c2g2 gives a
negative contribution to the Stefan–Boltzmann pressure, which is less than 10% ofpSB at
T ∼ 103ΛMS and at most 40% ofpSB at T ∼ ΛMS (∼Tc). However, the next contribution
∼c3g3 is positive and so large that the pressure overshootspSB up tothe largest values of
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Fig. 13. Left panel: pressure (divided byT4) as a function of temperature for the pure[SU(3)c] gauge theory.
Several perturbative contributions (up to a given power ing) are shown, as well as lattice QCD data from [78].
Right panel: sensitivity of the pressure to the value of the constantδ in the term∼g6. From [100].

T shown inFig. 13. The terms of orderg4 are again small, but also positive, such that, to
orderO(g4), thepressure is larger thanpSB. The terms of orderO(g5) are negative and so
large in magnitude, that the pressure even vanishes atT � ΛMS. Thus, naive perturbation
theory is clearly not applicable for temperatures of orderTc.

In the sections following Section 4.2, several ways to improve the situation will be
explained. All of them are based on the observation that theodd powers ofg in the
perturbative expansion (56) are responsible for the bad convergence properties, i.e., the
latter are caused by theinfraredproperties of QCD. Note that there have also been attempts
to improve the convergence properties of perturbation theory by using mathematical
devices such as Pad´e approximates [101] and Borel resummation [102]. Here, I do not
discuss these methods in more detail, because the physical problem of improving the
description of the infrared sector of QCD cannot be solved in this way. For the sake of
completeness, one should also mention [103], where a phenomenological solution to the
problem of convergence of the perturbative series was presented.

4.2. Dimensional reduction

Consider a quantum field theory at nonzero temperature in the limitT → ∞. In this
limit, the Euclidean time interval in the partition function (1) shrinks to zero, 1/T → 0.
Consequently, the original 3+ 1-dimensional theory reduces to a theory in three spatial
dimensions. This is calleddimensional reduction[104]. What are the degrees of freedom
in the dimensionally reduced theory? Recall that the compactification of the Euclidean time
interval[0,1/T] at nonzero temperature leads to discrete energies for the field modes, the
so-called Matsubara frequencies [10]. Bosonic degrees of freedom have periodic boundary
conditions in Euclidean time, and thus their Matsubara frequencies are even multiples of
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πT , ωb
n = 2nπT , n = 0,±1,±2, . . .. On theother hand, fermionic degrees of freedom

are antiperiodic in Euclidean time, and consequently their Matsubara frequencies are odd
multiples of πT , ωf

n = (2n + 1)πT , n = 0,±1,±2, . . .. As T → ∞, all modes with
nonzero Matsubara frequency become infinitely heavy, and are thus removed from the
spectrum of physical excitations. These areall fermionic modes, and allnonstaticbosonic
modes. Consequently, dimensional reduction leads to a theory of static bosonic fields in
three spatial dimensions.

The dimensionally reduced theory can be viewed as aneffectivetheory at energy scales
much lessthan the temperature. Consider, for example, QCD in weak coupling,g � 1,
where there is a distinct separation of energy scales,g2T � gT � T . Thedimensionally
reduced theory is then the effective theory for modes at energies of orderO(gT) which one
obtains from the underlying theory, i.e., QCD, by integrating out modes at energy scales of
orderO(T). Onecan then take this idea one step further and integrate out modes at energies
of order O(gT) and obtain an effective theory at an energy scale of orderO(g2T). In
[105] i t was suggested to apply this principle of constructing a series of effective theories
to compute the pressure in QCD. This task was recently carried out to orderO(g6) in
a succession of papers [100]. In the following, I outline the idea and discuss the results,
which are also shown inFig.13. Note that the idea of constructing an effective theory valid
on a certain energy scale has also been applied to nonAbelian transport theories [106].
As transport theory concerns nonequilibrium situations, a discussion of these aspects are
beyond the scope of the present review.

After the first step of integratingout modes at energy scales of orderO(T), thepressure
in QCD takes the form (atµ = 0)

p(T) = pT (T)+ T

V
ln

[∫
DAa

i DAa
0 exp(−SE)

]
, (62)

wherepT (T) is the pressure of the modes at energy scales of orderO(T) and the remaining
term is the contribution from modes at energy scales of orderO(gT). The argument of
the logarithm is the partition function of the effective theory for these modes. Since the
energy scalegT is that of the Debye mass,mD = gT, which determines the screening
length of static colour-electric fields, quantities appearing in this partition function will
be labelled with a subscript “E”. The actionSE of the effective theory is that of a three-
dimensional nonAbelian gauge theory (i.e., consisting of the colour-magnetic fields of the
original theory) coupled to a Higgs field in the adjoint representation of the gauge group
(corresponding to the static colour-electric fields of the original theory) [100],

SE =
∫

V
d3xLE, (63)

LE = 1
2TrF2

i j + Tr[Di ,A0]2 + m2
ETrA2

0 + λ
(1)
E (TrA2

0)
2 + λ

(2)
E TrA4

0 + · · · . (64)

Here,Fi j ≡ (i /gE)[Di , Dj ] = Fa
i j Ta, Di = ∂i − igEAi , andAµ ≡ Aa

µTa. There are five
unknown quantities on the right-hand side of Eq. (62): the pressurepT , the massmE of
the adjoint Higgs fieldA0 and the coupling constantsgE, λ

(1)
E , λ

(2)
E . Their valueshave to

be determined by “matching” the effective theory to the original theory at some matching
energy scale. At this point, however, one canalready determine their scaling behaviour
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from counting dimensions. The pressurepT is that of a 3+1-dimensional theory of modes
with momenta of orderO(T). Thus, at nonzero temperature (see above)pT ∼ T

∫
dk k2 ∼

T4. Sincethe actionSE has to be dimensionless, one can deduce the dimensionality of the
fieldsAi from the kinetic term∼F2

i j . As lengths have dimensionT−1, the fields have to

scale asAi ∼ T1/2. The adjoint Higgs field must have the same dimension,A0 ∼ T1/2.
From this one deduces that the mass term scales asmE ∼ mD = gT, the coupling constant
gE scales∼gT1/2, and the four-point couplings behave asλ(i )E ∼ g4T . Thedots in Eq. (64)
denote higher-dimensional operators. One can show by power counting that they are not
relevant if oneis interested in a calculation of the pressure to orderO(g6) [100].

The next step consists of integrating out modes at energy scales of orderO(gT). Since
physics at this scale is determined by static colour-electric fields, or in other words, by the
adjoint Higgs fieldA0, one has to integrate out this field,

T

V
ln

[∫
DAa

i DAa
0 exp(−SE)

]
= pE(T)+ T

V
ln

[∫
DAa

i exp(−SM )

]
. (65)

The termpE is the pressureof modes with energy of orderO(gT). The argument of the
logarithm on the right-hand side defines the partition function of an effective theory at
energy scales of orderO(g2T). Sincethe energy scaleg2T is associated with the scale
of the magnetic screening massmM ∼ g2T in nonAbelian gauge theories at nonzero
temperature, quantities appearing in this partition function are labelled with a subscript
“M”. The actionSM entering the partition function of the effective theory at an energy
scale O(g2T) is simply that for a three-dimensional nonAbelian field theory for colour
magneticfields,

SM =
∫

d3xLM , (66)

LM = 1
2TrF2

i j + · · · , (67)

whereFi j ≡ (i /gM )[Di , Dj ], Di = ∂i − igMAi , andAi ≡ Aa
i Ta. The two constants

pE, gM on the right-hand side of Eq. (65) have to be determined by matching the
effective theory at the energy scaleg2T to that at the energy scalegT. However, their
scaling behaviour can already be determined by powercounting. The pressurepE is again
∼T

∫
dk k2, butnow the integral runs only over modes with momenta of orderO(gT), thus

pE ∼ (gT)3T ∼ m3
ET . Thedimensionality of the fieldsAi is the same as in theprevious

effective theory, thusgM ∼ gT1/2 ∼ gE. Thedots in Eq. (67) denote higher-dimensional
operators which are again irrelevant if one isinterested in a computation of the pressure to
orderO(g6).

The final step is to compute the pressure of modes with energies of orderO(g2T),

pM (T) ≡ T

V
ln

[∫
DAa

i exp(−SM )

]
. (68)

From power counting one deduces thatpM ∼ T
∫

dk k2 ∼ (g2T)3T ∼ g6T4 ∼ g6
M T ,

since the integral runs over modes with momenta of orderO(g2T). Due to the Linde
problem, this contribution cannot be obtained perturbatively. What one can evaluate [100]
is the contribution of orderO(g6 ln g) to pM , sincethis arises from ultraviolet divergences
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∼ ln(µ̄/mM ) and not from the nonperturbative infrared sector which yields a genuine
O(g6) contribution to the pressure. The latter has to be evaluated e.g., via a lattice
calculation.

The final answer for the pressure in QCD is thenp(T) = pT (T) + pE(T) + pM (T).
If one wants to determine the pressure to orderO(g6 ln g), one has to compute all
terms appearing to this order inpT , pE, and pM . This can be done perturbatively. The
contributions topT constitute a power series ing2, andnot ing. They areneeded explicitly
only to orderO(g4), sincethe full O(g6) contribution to the pressure is nonperturbative
in any case. One then evaluates all four-loopdiagrams in the effective theory at scalesgT,
in order to determinepE up to orderO(g6 ln g) [100]. As expected from power counting
(see above), the lowest-order terms inpE are∼m3

ET ∼ g3T4. Finally one adds everything
to the O(g6 ln g) term from pM . Oneobtains a well-defined expression for the pressure
up to orderO(g6 ln g). The termwhich is genuinely of orderO(g6) remains unknown.
The result for the pressure in QCD is then given by Eq. (56) with the O(g6) contribution
(Nc = 3, Nf = 0)

c6 = N3
c

N2
c − 1

(4π4)

[(
215

12
− 805

768
π2
)

ln
1

g
+ 8δ

]
, (69)

whereδ is an unknown constant.
In the right panel ofFig. 13 the result for the pressure as a function of temperature is

shown forvarious values ofδ. Comparingto lattice QCD data for the pure[SU(3)c] gauge
theory, the optimum value appears to be�0.7, since then the perturbative calculation nicely
matches onto the results from the lattice computation, see left panel ofFig. 13. One also
observes that for the optimum value, the pressure up toO(g6) is rather close to the result
to orderO(g2), unless the temperature is very close toTc. This provides a certain amount
of confidence that this perturbative evaluation of the pressure is reasonable.

Finally, note that the above framework of constructing a sequence of effective theories
via dimensional reduction was recently extended to include quark degrees of freedom
at nonzero chemical potential [107]. At nonzero temperature, the quark Matsubara
frequenciesωf

n = (2n + 1)πT are always of orderO(T), consequently quark degrees of
freedom have to be integrated out in the first step (62) in the construction of the sequence
of effective theories.

4.3. Quasiparticle models

In Section 4.2, thepressure of QCD was computed by evaluating the partition functions
of various effective theories. This considerably improved the somewhat unsatisfactory
situation of a purely perturbative evaluation of the pressure up to terms of orderO(g5)

as discussed inSection 4.1. Another way to improve the situation is based on the
following observation. The results ofSection 3.4suggest that nonperturbative effects
still influence the physics at temperatures in the range fromTc to a few timesTc.
Consequently, a perturbative expansion of the pressure around theperturbativevacuum
in terms ofmasslessquarks and gluons seems inappropriate. What is obviously missing
in a perturbative description of the QCD partition function are nonperturbative effects
which, when decreasing the temperature fromT > Tc, are responsible for the phase
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transition atTc. This was realized a while ago and attempts were made to incorporate
them into the properties of the physical degrees of freedom. In the following, I discuss two
such attempts, the so-called “cut-off model” and a model which treats quarks and gluons
as massive quasiparticles.

4.3.1. The cut-off model
Let us again restrict the discussion to the pure[SU(3)c] gauge theory. The cut-off model

is motivated by the fact that QCD is an asymptotically free theory [1], i.e., only gluons
with large momenta can be considered to be perturbative, while those with small momenta
are subject to confinement. Quite similar to the effective-theory approach discussed in
Section 4.2, one then introduces a cut-off momentumΛ to separate these two regions
[108, 109]. Gluons with momenta larger thanΛ are treated perturbatively, while gluons
with momenta smaller thanΛ are assumed to remain bound inside colourless objects (glue-
balls in the case of pure[SU(3)c] gauge theory). The dispersion relation for perturbative
gluons then changes from the one for free massless particles,ω(k) = |k| = k to

ω(k) = Θ(k − Λ)k. (70)

Gluons with momentak < Λ are bound inside glueballs. The glueball mass scaleM is of
the order of 1 GeV. The contribution of glueballs to the thermodynamic functions is then
exponentially suppressed∼ exp(−M/T), andcan thus be neglected for the temperature
range of interest.

The leading-order contribution to the pressure arises from noninteracting gluons with
momentak > Λ,

pcut
0 (T) = −2(N2

c − 1)T
∫

d3k
(2π)3

Θ(k − Λ) ln

[
1 − exp

(
− k

T

)]
. (71)

One can also compute perturbative corrections to this leading-order result. To this end,
one has to evaluate the standard diagrams of the perturbative expansion of the pressure as
discussed inSection 4.1, but with additional theta-functions like in Eq. (70) to restrict the
phase space of the internal gluon lines. In [109] this has been done up to orderO(g2).
Due to the restricted phase spacein the loop integrals, the perturbative corrections become
relatively small compared to the zeroth-order contribution. In this sense, the perturbative
series for particles with the dispersion relation (70) is better behaved than the original
perturbative series when the cut-offΛ = 0.

Besides the cut-off Λ, the cut-off model has another parameter, the MIT bag constant
B [110], which describes the energy difference between the perturbative and the
nonperturbative vacuum. Fitting the parameters of the cut-off model to lattice QCD data
for the pure[SU(3)c] gauge theory, quite reasonable agreement could be obtained. I
do not explicitly show results from [109], because lattice data at that time were not
yet extrapolated to the continuum limit. Consequently, the values forΛ and B obtained
previously will quantitatively change once continuum-extrapolated data are used for the fit.

Nevertheless, on a qualitative level, the values forΛ necessary to fit the data were on
the order a typicalglueball massΛ ∼ M ∼ 1 GeV. This value forΛ nicely confirms
the consistency of the assumption underlying the cut-off model, namely that gluons with
momentak < Λ ∼ M are bound into glueballs of massM. Moreover, ifone interprets
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the cut-off model as an effective theory in the sense ofSection 4.2, the physics cannot
depend on the precise value ofΛ. In other words, if one properly matches the effective
theory for gluons with momentak > Λ to the effective theory for glueballs (i.e., gluons
with momentak < Λ), the cut-off would drop out. This matching procedure has not been
done for the cut-off model. However, one may expect that a proper matching calculation
would just confirm the resultΛ ∼ M obtained from the fit to lattice QCD data. One may
thus simply replace the unphysical parameterΛ by the physical value of the glueball mass
M to obtain a model which is independent of the arbitrary (and thus unphysical) cut-off
scaleΛ. Thecut-off model has not been applied to lattice data for full QCD, because then
the assumption that all colourless objects are heavy and are negligible when computing
thermodynamic functions breaks down (the pion mass is of the order ofTc).

The gluon dispersion relation (70) can be interpreted in the way that gluons with
momenta below the cut-off momentumΛ have infinite mass, while those with momenta
above Λ have zero mass. It is hardto believe that the true dispersion relation of
gluons as computed in Yang–Mills theory would sustain the oversimplified and rather
radical assumptions of the cut-off model. A more conservative model to improve our
understanding of the thermodynamic properties of the QGP is explained in the following
section.

4.3.2. Models with massive quasiparticles
In a hot and dense medium, particles attain a self-energyΠ (ω,k), which (due tothe

breaking of Lorentz invariance) depends separately on energyω and 3-momentumk, as
well as on the properties of themedium (i.e., its temperatureT and chemical potentialµ).
If the imaginary part of the self-energy on the dispersion branch of the physical excitations
is not too large compared to the real part, these excitations are called quasiparticles [111].
The simplest situation is when the self-energy is independent of energy and momentum,
i.e., constant and real, corresponding to a mass term, which depends onT andµ, butnot
on the energy and the momentum of the particle. In this case, the dispersion relation for
quasiparticles of massm reads

ω(k) =
√

k2 + m2. (72)

The self-energies of quarks and gluons in QCD are certainly not constant (see also
Section 4.4). Nevertheless, one can still simplyassumethat they are constant and explore
the consequences. These so-called “massive quasiparticle models” have been investigated
in great detail in the literature as a means to describe and interpret lattice QCD data on
thermodynamic functions of QCD [112–116]. The advantage of these models is that it is
straightforward to extend them to nonzero quark chemical potential [117].

Here, as in theprevious section let us only focus on a quasiparticle model for pure
[SU(3)c] gauge theory. For the generalization to QCD with dynamical quarks, see [115–
117]. For the pure gauge theory, there are only massive gluon degrees of freedom and the
pressure reads

pmqp(T) = −DT
∫

d3k
(2π)3

ln

[
1 − exp

(
−ω(k)

T

)]
− B, (73)
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with ω(k) given by Eq. (72). As in the cut-off model, an MIT bag constant is introduced
to account for the difference between the perturbative and the nonperturbative vacuum.

Two comments regarding the pressure (73) are in order. First, while massless
gluons have two transverse polarizations, massive gluons have an additional longitudinal
polarization degree of freedom. Therefore, one would naively argue that the constantD
in Eq. (73) should assume the valueD = 3(N2

c − 1), instead of D = 2(N2
c − 1),

as for massless gluons. This is, however, not quite correct. First, the pressure (73) has
to approach the correct Stefan–Boltzmann limit whenT → ∞. For three polarization
degrees of freedom, the Stefan–Boltzmann pressure is a factor 3/2 larger than the correct
value. Another reason why this is incorrect is the following. InSection 4.4we shall see
that gluons indeed acquire a longitudinal degree of freedom in a hot or dense medium, but
that the respective longitudinal spectral density vanishesrapidly for energies and momenta
larger thangT. Thus, in a calculation of the pressure, which is dominated by modes with
momenta of orderT , one should in principle not count the longitudinal degrees of freedom.
We shall therefore setD = 2(N2

c − 1) in the following. (Note that [115] also investigated
a scenario whereD is a function of temperature.)

The second comment concerns the possibility to fit lattice QCD data with Eq. (73). It
turns out that for constant mass and bag parameters, the quality of the fit is not satisfactory.
Consequently, one needs to generalize the model (73) to allow for a temperature-
dependent gluon mass,m → m(T). A convenient parametrization is motivated by the
dispersion relation for transverse gluons at large momenta, which takes the formωt (k) =√

k2 + m2
t∞, see Eq. (100). Consequently,

m(T) = g(T)T√
2
, g2(T) = 8π2

11 ln[F(T/Tc, Tc/ΛMS)]
, F(x, y) = K (x)xy. (74)

For a fixed value ofTc/ΛMS � 1.03 ± 0.19 for pure[SU(3)c] gauge theory [118], one
only needs to know the functionK (T/Tc) in order to determine the mass,m(T), and
thus the kinetic term in the pressure (73). In [115] the functionK (T/Tc) is simply fit to
reproduce lattice QCD data. A surprisinglygood fit is obtained with the functional form
K (x) = 18/[18.4 exp(−0.5x2) + 1], seeFig. 14. Once the gluon mass is a function of
temperature, thermodynamical consistency requires the bag parameter to depend on the
temperature as well,B → B(T). The functional form ofB(T) can be uniquely determined
from m(T); for details see [115].

4.4. HTL /HDL-resummed perturbation theory

Apparently, the idea that quarks and gluons are quasiparticles works rather well to
describe the thermodynamic functions of the QGP. Therefore, it seems appropriate to
put this concept onto a more formal basis. In fact, the quasiparticle excitations in the
QGP are well-known in the weak-coupling limit,g � 1, and for temperatures and/or
chemical potentials much largerthan the quasiparticles’ energies and momenta. At nonzero
temperature, these quasiparticles form the basis of the so-called HTL-resummation scheme
[13, 119]. At zero temperature, but large quark chemical potential, there is an equivalent
approach, the so-called HDL-resummation scheme [13, 120]. From the quasiparticle
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Fig. 14. The temperature dependence of 3p/T4 andε/T4 in pure [SU(3)c] gauge theory. Symbols are lattice
QCD data from [78]. The dashedlines are a fit within the massive gluon model. The dash–dotted lines represent
the contribution of the kinetic term in Eq. (73). The horizontal line is the Stefan–Boltzmann limit. (Since for an
ultrarelativistic ideal gasε ≡ 3p, this limit is the same for the functions 3p/T4 andε/T4.) From [115].

excitation spectrum, one can also construct the equation of state. All this will be discussed
in detail in the following.

4.4.1. The excitation spectrum in a hot and dense medium
How does one determine the spectrum of physical excitations in a hot and/or dense

medium? I shall illustrate this explicitly for the case of gluons. The case of quarks can
be considered analogously, I only briefly report the results at the end of this section.
The outline of the procedure is the following. First, one computes the gluon self-
energy,Π µν

ab (ω,p). From the self-energy, one then determines the full gluon propagator,
�
µν
ab(ω,p). From thegluon propagator, one then deduces the spectral density, which

provides all information about the excitation spectrum in a hot and/or dense medium.
Quite surprisingly, it turns out that one can follow this procedure in complete generality,
without actually specifyingΠ µν

ab until the very end. Although the derivation is somewhat
formal, it is nevertheless a rather instructive exercise and will therefore be discussed in
more detail [121]. Note that, in a medium, Lorentz symmetry is explicitly broken, and all
quantities depend separately on energyω and momentump. Nevertheless, to abbreviate the
notation, I shall frequently use the 4-vectorPµ ≡ (ω,p) to characterize this dependence.
Note also that, at nonzero temperature, one usually computesin Euclidean space time, i.e.,
all energies are discrete Matsubara frequencies on theimaginaryenergy axis. However,
in order to determine the physical excitation spectrum, one has to analytically continue
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to real energies,iωn → ω + i η. This i η prescription produces theretarded Greens
functions [111]. When writing real energiesω in the following, thei η prescription will
be suppressed.

The self-energyΠ µν
ab can be decomposed according to itstensor structure. First of all,

if the colour [SU(3)c] gauge symmetry is not broken, one may assume that the gluon self-
energy is diagonal in adjoint colour,Π µν

ab ≡ δabΠ µν . (In a colour superconductor, this is in
general no longer the case, for examples seeSection 5.4.) It thus suffices to considerΠ µν .
The next step is to decomposeΠ µν in terms of tensors, multiplied by scalar functions of
ω andp [13, 122]. Let us define

Eµν ≡ PµPν

P2
(75)

as the projector onto the subspace parallel toPµ. Then one chooses a vector orthogonal to
Pµ, for instance

Nµ ≡
(
ωp2

P2
,
ω2p
P2

)
≡ (gµν − Eµν) fν, (76)

with f µ = (0,p). Now one defines the tensors

Bµν = NµNν

N2
, Cµν = NµPν + PµNν , Aµν = gµν − Bµν − Eµν. (77)

With the help of these tensors one can write the gluon self-energy as

Π µν = Π aAµν + Π bBµν + Π cCµν + Π eEµν. (78)

The scalar functionsΠ a,b,c,e can be obtained by suitable projections ofΠ µν onto the
respective tensor structures.

Using the explicit form ofNµ, one convinces oneself that the tensor Aµν projects onto
the spatially transverse subspace orthogonal toPµ,

A00 = A0i = 0, A i j = −(δi j − p̂i p̂ j ). (79)

This means that the self-energy functionΠ a determines the excitation spectrum of the
spatially transverse gluon fields

A⊥a
µ(P) ≡ AνµAa

ν(P). (80)

As Aµν projects onto a two-dimensional subspace, there are two degrees of freedom
associated withA⊥a

µ. In the vacuum, these are the only physical degrees of freedom, since
gluons are massless.

The tensor Bµν projects onto the spatially longitudinal subspace orthogonal toPµ,

B00 = − p2

P2
, B0i = −ωpi

P2
, Bi j = −ω

2

P2
p̂i p̂ j . (81)
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Consequently, the polarization functionΠ b determines the excitation spectrum of the
longitudinal gluon degree of freedom,

Aa
N(P) ≡ NµAa

µ(P)

N2
, (82)

which becomes a physical degree of freedom in a medium.
The spatially transverse and spatially longitudinal gluon fieldsA⊥a

µ andAa
N are the only

physical degrees of freedom. There is an unphysical degree of freedom associated with the
projection ontoPµ,

Aa
‖(P) ≡ PµAa

µ(P)

P2 . (83)

The scalar functionΠ e is the self-energy of this unphysical degree of freedom. It will
be seen that gauge fixing ultimately removes this degree of freedom from the theory. A
nonvanishingΠ c indicates that the spatially longitudinal, physical gluon degree of freedom
Aa

N mixes with the unphysical degree of freedomAa‖ . Before extracting the physical
excitation spectrum, one has to remove this mixing term, as will be discussed below.

Now use the tensor decomposition (78) to determine the full gluon propagator�µνab .
Since the free inverse gluon propagator

�−1
0
µν
ab ≡ δab(P

2gµν − PµPν ) ≡ δabP2(Aµν + Bµν) (84)

is diagonal in adjoint colours, so is the full inverse gluon propagator,�−1µν
ab ≡ δab�

−1µν .
Oneobtains

�−1µν ≡ �−1
0
µν + Π µν

≡ (P2 + Π a)Aµν + (P2 + Π b)Bµν + Π cCµν + Π eEµν. (85)

In an effective action, this inverse propagator is the coefficient of the term quadratic in the
gauge fields. In momentum space (andchoosing a normalization such thatAa

µ(P) retains
dimensions of energy),

S2 = −1

2

V

T

∑
P

N2
c −1∑

a=1

{Aa
⊥µ(−P)[P2 + Π a(P)]AµνAa

⊥ν(P)

− Aa
N(−P)[P2 + Π b(P)]N2 Aa

N(P)

− Aa‖(−P)Π c(P)N2P2Aa
N(P)− Aa

N(−P)Π c(P)N2P2Aa‖(P)

− Aa‖(−P)Π e(P)P2Aa‖(P)}, (86)

where
∑

P ≡ (V/T)
∫

P. The physical excitation spectrum can be most easily extracted
from a diagonalized inverse gluon propagator, i.e., the term which mixes the physical
field componentAa

N with the unphysical componentAa
‖ has to be eliminated. This can

be done as follows. Remember that in the partition function one functionally integrates the
exponential of the action (a part of which isS2 in Eq. (86)) over all gauge field components,
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including Aa‖. For the purpose of diagonalizing the inverse gluon propagator one may
simply redefine the integration variable

Aa
‖(P) → Âa

‖(P) ≡ Aa
‖(P)+ Π c(P)N2

Π e(P)
Aa

N(P). (87)

This redefinition does not change the physics (as it only involves the unphysical component
of the gauge field) and diagonalizes the actionS2 in the components of the gauge field,

S2 = −1

2

V

T

∑
P

N2
c −1∑

a=1

{Aa⊥µ(−P)[P2 + Π a(P)]AµνAa⊥ν(P)− Aa
N(−P)

× [P2 + �̂b(P)]N2Aa
N(P)− Âa

‖(−P)Π e(P)P2 Âa
‖(P)}, (88)

where

�̂b(P) ≡ Π b(P)− [Π c(P)]2N2P2

Π e(P)
. (89)

From Eq. (88) one can read off the inverse gluon propagator in diagonal form. However, in
order to be able to invert it, it is necessary to fix the gauge. (To see this, consider the case
whereΠ e = 0. Then, the inverse propagator has azero eigenvalue and is not invertible).
For the sake of simplicity, let us choose the covariant gauge, where the gauge fixing term
in theaction only involves the unphysical components of the gauge field,

Sgf = 1

2λ

V

T

∑
P

N2
c −1∑

a=1

Âa‖(−P)P2P2 Âa‖(P). (90)

AddingSgf to S2, one reads off the (gauge-fixed) inverse gluon propagator

�−1µν(P) = [P2 + Π a(P)]Aµν + [P2 + �̂b(P)]Bµν +
[

1

λ
P2 + Π e(P)

]
Eµν,

(91)

which can be straightforwardly inverted, since Aµν , Bµν , and Eµν are projectors,

�µν(P) = �t (P)Aµν −��(P)
p2

P2
Bµν + λ

P2 + λΠ e(P)
Eµν, (92)

where the transverse and longitudinal propagators are defined as

�t (P) ≡ 1

P2 + Π a(P)
≡ 1

P2 − Πt (P)
,

��(P) ≡ − P2

p2

1

P2 + �̂b(P)
= − 1

p2 − Π�(P)
, (93)

with the transverse and longitudinal polarization functionsΠt ≡ −Π a and Π� ≡
−(p2/P2)�̂b. The last term in Eq. (92) can be removed from the spectrum of physical
excitations by the gauge choiceλ = 0. The physical excitations are described by the
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Fig. 15. The one-loop diagramscontributing to the gluon self-energy (possible ghost contributions are not shown).

transverse and longitudinal propagators defined in Eq. (93). From these one can derive
the corresponding spectral densities in the usual way [13]

ρt (ω,p) ≡ 1

π
Im�t (ω + i η,p), ρ�(ω,p) ≡ 1

π
Im��(ω + i η,p). (94)

All that is left is to actually specifythe form of the polarization functionsΠt and
Π�. In the weak-coupling limit,g � 1, this can be done via a one-loop calculation of
these functions. To this end, one has to compute the diagrams shown inFig. 15 using
standard methods [10, 13]. Note, however, that the result depends in general on the choice
of gauge and thus cannot determine the physical excitation spectrum, which is by definition
independent of the choice of gauge. However, it was noticed many years ago [123], that
the high-temperature limitT 	 ω, p of the polarization functions is actually independent
of the choice of gauge,

ReΠt (ω,p) = 3

2
m2

g

[
ω2

p2 +
(

1 − ω2

p2

)
ω

2p
ln

∣∣∣∣ω + p

ω − p

∣∣∣∣
]
, (95)

Im Πt (ω,p) = −π 3

4
m2

g
ω

p

(
1 − ω2

p2

)
Θ(p − ω), (96)

ReΠ�(ω,p) = −3m2
g

(
1 − ω

2p
ln

∣∣∣∣ω + p

ω − p

∣∣∣∣
)
, (97)

Im Π�(ω,p) = −π 3

2
m2

g
ω

p
Θ(p − ω), (98)

where thegluon mass parameter at a givenT andµ is

m2
g = g2

[
2Nc + Nf

18
T2 + Nf

6π2µ
2
]
. (99)

This result is not restricted to the high-temperature limit, in fact it holds as long as eitherT
orµ is much larger thanω and p. Thus, it also describes gluonic quasiparticle excitations
at T = 0 andhigh density. It is only this gauge-invariant high-T (or high-µ) limit of the
one-loop polarization functions, which is relevant for the HTL- (or HDL-) resummation
scheme discussed inSection 4.4.2.

What is the physical meaning of the result (95)–(98)? The conditionT, µ 	 ω, p
implies that there is a separation of scales, just like in the construction of the effective
theories inSection 4.2. The temperature (or the chemical potential) sets a “hard” energy
scale, while the external energy and momentum are “soft”. As will be seen inSection 4.4.2,
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this separation of scales forms the basis of the HTL- (or HDL-) resummation scheme.
In this scheme, energies of ordergT (or gµ, in the HDL-resummation scheme) are
“soft”, while energies of orderT (or µ, respectively) are “hard”. In the loops inFig. 15,
one integrates over the internal loop momentum,k, but the result must be finite, as
there are no other ultraviolet divergences at nonzeroT and/orµ than those already
known from the vacuum. Therefore, the ultraviolet regularization must be provided
by the distribution functions of quarks and gluons, which decrease exponentially with
temperature. (AtT = 0 andµ �= 0, the gluon distribution function vanishes, while the
quark distribution function is a step function∼Θ(µ− k), whichcuts off momentak > µ).
On the other hand, the phase space in the loop integral grows∼ ∫ dk k2. One thus expects
that thedominantcontribution to the loop integral comes from “hard” momenta of order
T (or, at T = 0 andµ �= 0, from momenta close to the Fermi surface,k ∼ µ).
For dimensional reasons, and including factors ofg from the vertices,Π ∼ g2T2 (or
∼g2µ2, at T = 0 andµ �= 0). This gives rise to the prefactor∼m2

g in Eqs. (95)–(98).
The “soft” external energy and momentum cannot significantly alter the kinematics in the
loop, where the dominant contribution comes from “hard” momenta. In fact, it suffices to
expand the integrands of the loop integrals to leading order in these external quantities.
This gives rise to the particular dependence onω and p of the result (95)–(98). The
essential approximation which leads to this result is the assumption that internal momenta
are exclusively “hard”. Therefore, the loops computed under this assumption are called
“hard thermal loops” (or “ hard dense loops”, at T = 0 andµ �= 0).

From the self-energies one can construct the propagators (93) andthe spectral densities
(94), respectively. Following [124] it turns out that the propagators have poles above the
light-cone,ω > p, and a cut below,ω < p. In the spectral densities, the poles become
δ-functions. These determine the excitation branchesω(p). Since aδ-function has no
width, the quasiparticles corresponding to these excitation branches arestable, i.e., they
have an infinite lifetime. (This changes if one computes beyond one-loop order.) The
excitation branches are above the light-cone, i.e., they correspond to time-like, propagating
gluons. In the left panel ofFig. 16 they are shown for transverse and longitudinal
gluon modes. For large momenta, the longitudinal mode has an exponentially vanishing
residue [124]. In contrast, the transverse mode has a finite residue and a dispersion relation
which approaches the form

ωt (p) →
√

p2 + m2
t∞, m2

t∞ ≡ 3
2m2

g. (100)

The cuts in the propagator become continuous distributions in the spectral density. They
provide Landau-damping for space-like gluons.

Performing a similar exercise for quarks [125], one obtains the spectrum of fermionic
quasiparticle excitations. It turns out that there are twice as many excitation branches as
expected. There are in facttwo solutions for positive energies,ω±(p), determined by the
equation

ω±(p) = ±p ± m2
f

p

[
1 − ω±(p)∓ p

2p
ln

(
ω±(p)+ p

ω±(p)− p

)]
, (101)
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Fig. 16. The excitation branches for gluons (left panel) and quarks (right panel) in a hot and/or dense medium.
For gluons, energy and momenta are shown in units of the gluon mass parameter,mg. For quarks, energy and
momenta are shown in units of the fermion mass parameter,m f .

where the fermionic mass parameter (squared) is

m2
f = g2 N2

c − 1

16Nc

(
T2 + µ2

π2

)
. (102)

These two solutions are shown in the right panel ofFig. 16. (The two solutions for
negative energies mirror the above solutions below thep axis.) The solutionω−(p)
corresponds to a quasiparticle with the oppositechirality than the oneassociated with the
solutionω+(p). This peculiar quasiparticle is commonly called the “plasmino”. Note that,
while the ordinary quasiparticle dispersion branchω+(p) has a positive group velocity
dω+(p)/dp > 0, the plasmino branch has negative group velocity at small momenta. For
large momenta, the residue of the plasmino branch becomes exponentially small, while the
one for the ordinary quasiparticle remains finite and its dispersion relation approaches the
form

ω+(p) →
√

p2 + m2
f ∞, m2

f ∞ = 2m2
f . (103)

The quark propagator also features a cut below the light-cone, which gives rise to Landau
damping. Finally, note that the fermionic quasiparticle spectrum inFig. 16 is shown for
energies and momenta much smaller than either temperature and/or chemical potential.
However, atT = 0 and largeµ, this kinematic region is irrelevant, as it reflects the situation
at the bottom of the Fermi sea. AtT = 0 and largeµ, therelevant fermionic excitations
are those around the Fermi surface, wherep � µ. The excitation spectrum for this case
will be discussed in more detail in Section 5.2.
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4.4.2. HTL /HDL-resummation scheme
The HTL-resummation scheme and its counterpart atT = 0 andnonzeroµ, theHDL-

resummation scheme, are explained in great detail in textbooks on field theory at nonzero
temperature anddensity (see, for instance, [13]). Therefore, for more details, I refer the
interested reader to the literature and restrict myself here to a short discussion of the general
idea behind these methods.

As already discussed inSection 4.1, due to the infrared behaviour of gauge theories at
nonzero temperature, naive perturbation theory breaks down. We have seen inSection 4.4.1
that loop calculations involve propagators of the form

�(ω,p) ∼ 1

ω2 − p2 + Π (ω,p)
. (104)

The leading-order terms in the one-loop self-energy arise from “hard” particles with
momentak ∼ T inside the loop. Together with factors of the coupling constant arising from
the vertices, the self-energy isΠ ∼ g2T2. Therefore, as long as eitherω or p are “hard”,
i.e., of orderT , the self-energyΠ in the propagator (104) can beneglected. However, for
“soft” ω and pof ordergT, the self-energy is of the same order of magnitude as the first
two terms in the denominator andcannotbe neglected.

This observation forms the basis of the so-called HTL-resummation scheme [13, 119]
in field theories at nonzero temperature. In simple words it states that whenever the energy
and the momentum of a propagator in a given diagram is “soft”, one has to use the
“dressed” propagator (104) including the self-energyΠ , and if either energyor momentum
is “hard”, one may use the “bare” propagator�0(ω,p) = 1/(ω2 − p2) without the self-
energyΠ . Howdoes the name “HTL-resummation scheme” arise? The dressed propagator
is the solution of the Dyson–Schwinger equation

� = �0 −�0Π�. (105)

Iterating this equation, one realizes that it stands for an infinite series of diagrams;
consequently the solution (104) is a resummedpropagator. As explained inSection 4.4.1,
the quantity which is resummed is the self-energyΠ computed in the HTL approximation,
i.e., one resums HTL’s.

It is now also easy to see why naive perturbation theory breaks down at nonzero
temperature. Imagine a diagram withn vertices, such that naive perturbation theory would
tell us that this diagram is of orderO(gn). Now imagine that there is a loop in this diagram
with propagators of the type (104) and thatthe dominant contribution to this loop arises
not from the “hard” region of phase space, i.e., from momenta of orderT , as in HTL’s,
but from the “soft” region, i.e., from momentak ∼ gT. The contribution of the propagator
(104) to thediagram is then∼1/(g2T2), instead of∼1/T2. Thiscancels two powers of the
coupling constant in the naive perturbative counting scheme. The diagram is thus actually
of orderO(gn−2) (or even of lower order, if other propagators contribute additional powers
of g−2). The occurrence of the additional energy scaleT (orµ, atT = 0) compared to the
vacuum invalidates the naive perturbative counting scheme.

For gauge theories, the Ward identities require to extend the HTL-resummation scheme
from propagators to vertices as well. Forphysical quantities which are determined
by computing diagrams with at least one loop, depending on whether the dominant
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contribution in the loop arises from the hard or the soft region of phase space, one
may be required to use only bare propagators, resummed propagators, or both resummed
propagators and resummed vertices. The major success of the HTL-resummation scheme
was the proof that the leading-order result for the gluon-damping rate is independent of the
gauge and positive [126].

4.4.3. The equation of state for quasiparticles in HTL /HDL approximation
The objective of this section is to apply our knowledge fromSection 4.4.1about

the quasiparticle excitation spectrum in QCD to determine the equation of state at high
temperature and/or density. What one obviously needs is a thermodynamically consistent
way to construct the pressure including information about the spectral density of the
quasiparticles. Obviously, classical statistical mechanics, such as applied inSection 4.3.2,
is of no use; we need a field-theoretical approach. The method of choice is the so-called
“Cornwall–Jackiw–Tomboulis” (CJT) formalism [127]. The CJT formalism determines
the effective action of a theory as a functional of the one- and and two-point functions.
The stationary values of the effective action yield the expectation value of the field and
the full propagator. The stationarity conditions are Dyson–Schwinger equations for these
quantities. The CJT formalism is particularly useful for theories with spontaneously broken
symmetries, seeSection 4.6. For unbroken symmetries, the CJT formalism is equivalent to
the so-calledΦ-functional approach [128].

Let us elaborate on this in somewhat greater detail. In the CJT formalism the effective
action of a theory with bosonic fieldsφ and corresponding propagators�, as well as
fermionic fieldsψ̄, ψ with propagatorsG reads

Γ [φ, ψ̄, ψ,�,G] = I [φ, ψ̄, ψ] − 1
2Tr ln �−1 − 1

2Tr(D−1�− 1)

+ Tr ln G−1 + Tr(S−1G − 1)+ Γ2[φ, ψ̄, ψ,�,G]. (106)

Here,I [φ, ψ̄, ψ] is the classical action and all traces are taken in the functional sense. The
quantities D−1 and S−1 are the inverse tree-level propagators for bosons and fermions,
respectively,

D−1(X,Y) ≡ − δ I [φ, ψ̄, ψ]
δφ(X)δφ(Y)

, S−1(X,Y) ≡ − δ I [φ, ψ̄, ψ]
δψ̄(X)δψ(Y)

. (107)

The functionalΓ2 is the sum of all two-particle irreducible (2PI) diagrams without
externallegs and with internal lines given by the propagators� andG. The stationarity
conditions which determine the expectation value of the bosonic field,ϕ, as well as the full
propagators for bosons,D, and for fermions,G, read

δΓ [φ, ψ̄, ψ,�,G]
δφ(X)

= δΓ [φ, ψ̄, ψ,�,G]
δ�(X,Y)

= δΓ [φ, ψ̄, ψ,�,G]
δG(X,Y)

= 0. (108)

In principle, there are also stationarity conditions for the fermionic fieldsψ̄ andψ, but
their solution is always trivial, as fermionic fields are Grassmann-valued and thus cannot
assume a nonzero expectation value.
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Inserting the explicit form of Γ from Eq. (106) into the last two equations of (108),
one obtains the Dyson–Schwinger equations for the full propagators for bosons,D, and
fermions,G,

D−1 = D−1 + Π , G−1 = S−1 + Σ , (109)

where thebosonic and fermionic self-energies are

Π ≡ −2
δΓ2[φ, ψ̄, ψ,�,G]

δ�
, Σ ≡ δΓ2[φ, ψ̄, ψ,�,G]

δG
. (110)

The right-hand sides of these equations have to be taken at the stationary pointφ = ϕ, ψ̄ =
ψ = 0,� = D,G = G. According to their definition (110), the self-energies are obtained
from the set of 2PI-diagramsΓ2 by opening one internal line.

For translationally invariant systems,φ(X) ≡ φ = const, �(X,Y) ≡ �(X − Y),
G(X,Y) ≡ G(X −Y), and itis advantageous to work in energy–momentum space instead
of in space–time. The effective action is, up toa sign and a factor of the four-dimensional
volumeof the system,V/T, equal to the effective potential,

V [φ, ψ̄, ψ,�,G] ≡ − T

V
Γ [φ, ψ̄, ψ,�,G]. (111)

At the stationarypoint, the effective potential is, again up to a sign, equal to the
thermodynamic pressure. Utilizing the stationarity conditions (109) and the definitions
(110),

p ≡ −V [ϕ,D,G] = −U(ϕ)− 1
2Tr lnD−1 + 1

2Tr ΠD + Tr lnG−1

− Tr ΣG − V2[ϕ,D,G]. (112)

Here,U(ϕ) is the tree-level potential,V2 ≡ −(T/V)Γ2, and TrA ≡ ∫
K tr A(ωn,k), where

tr runs over possible internal indices (Lorentz, Dirac, colour, flavour, etc.) ofA.
Eq. (112) is thedesired result. All one has to do is to apply it to QCD. In QCD, there

is no spontaneously broken symmetry (unless one considers colour superconductivity, see
Section 5), and thusU(ϕ) ≡ 0. The bosons are the gluons and the fermions are the quarks.
Of course, one also has to account for ghost degrees of freedom. These look like another
fermion contribution in Eq. (112), but the corresponding Matsubara sum in Tr has to run
overevenmultiples ofπT [10].

This sounds much simpler than it is to realize in practice. The difficulty obviously lies
in solving the Dyson–Schwinger equations for the gluon and quark propagators. It is clear
that, asV2 consists of an infinite set of diagrams, one can never aspire to solve the problem
exactly. However, a great advantage of the CJT formalism is that the solutions of the
Dyson–Schwinger equations (109) are self-consistent and conserving, even if one truncates
this infinite set. Any truncation defines a meaningful many-body approximation scheme
(for a well-known example, the Hartree approximation, seeSection 4.6). Let us therefore
imagine we only take a finitesubset of all diagrams inV2, for instance the one consisting
of the two-loop diagrams shown inFig. 17. This subset is particularly interesting, because
when computing the self-energies according to Eq. (110) one obtains these self-energies to
one-loop order. As discussed inSection 4.4.1, the high-temperature (high-density) limit
of the one-loop self-energies defines the HTL (HDL) approximation, which is already
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Fig. 17. The two-loop approximation toΓ2 (possible ghost contributions are not shown).

known to provide a physically interesting, meaningful, and gauge-invariant quasiparticle
excitation spectrum. Another advantage of restrictingV2 to a set of two-loop diagrams is
that the entropy densitys ≡ ∂p/∂T and the quark number densityn ≡ ∂p/∂µ assume the
particularly simple form [129]

s = −tr
∫

d4K

(2π)4
∂n(ω)

∂T
[Im lnD−1 − Im Π ReD] − 2tr

∫
d4K

(2π)4
∂ f (ω)

∂T

× [Im lnG−1 − Im ΣReG], (113)

n = −2tr
∫

d4K

(2π)4
∂ f (ω)

∂µ
[Im lnG−1 − Im ΣReG], (114)

whereKµ ≡ (ω,k) andn(ω) ≡ (eω/T − 1)−1 is the Bose–Einstein distribution function,
while f (ω) ≡ [e(ω−µ)/T + 1]−1 is the Fermi–Dirac distribution function. While one has
to compute two-loop diagrams to obtain the pressure (112), the entropy and quark number
densities (113) and (114) are essentially one-loop quantities and thus much simpler to
calculate.

However, even when restrictingV2 to the simple subset ofFig. 17, the solution of the
Dyson–Schwinger equations is highly nontrivial (see alsoSection 4.6). Let us suppose,
however, that it can be achieved. Then there is still the issue whether the propagators thus
obtained obey the Ward identities. In general, this is not the case [130], and a cure of this
problem would most likely require a self-consistent calculation of the three- and four-point
functions on top of the two-point functions. An extension of the CJT formalism in this
direction was proposed in [131], but since that work considers only scalar field theories, it
is not clear whether this approach also applies to gauge theories in a way which preserves
the Ward identities. Another question is the gauge invariance of the solution. Fortunately,
as shown in [130], the gauge dependence always enters at an order which is higher than
the truncation order. Finally, there is the issue of renormalizability. For scalar theories,
renormalizability was demonstrated in [132]. For gauge theories, it still remains an open
question.

In order to make progress, one has to simplify the solution of the problem. Instead
of a completely self-consistent solution of the Dyson–Schwinger equations (109), as a first
educated guess one might simply use the self-energies in the HTL (or HDL) approximation
to compute the propagators entering the pressure (112). Since this approximation is
independent of the choice of gauge, gauge invariance is not an issue anymore. There is also
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labelled “BIR” is the result from [133]. Bands arise from varying the renormalization scaleµ̄ within certain
limits. Lattice data from [78, 136] are shown as grey bands.

another advantage: since the HTL- (HDL-) approximated self-energies are just the high-T
(high-µ) limit of the one-loopself-energies, Eqs. (113) and (114) for the entropy and quark
number densities apply. These expressions are completely ultraviolet safe and thus do not
require normalization. They are one-loop quantities and thus simpler to compute than the
pressure which contains two-loop diagrams. From the entropy and quark number densities
one can always deduce the pressure via an integration with respect toT andµ.

This approach has been followed in [133], where a detailed discussion of the results and
their interpretation can be found. In particular, since the self-consistent approach is based
on a partial resummation of a subset of perturbative diagrams, i.e., a reorganization of the
perturbative series, it is possible to compare with standard perturbation theory (Section 4.1)
by re-expanding the results in powers ofg; for moredetails, see [17, 133]. Here, I restrict
myself to a discussion of one of the main results, namely the pressure for pure[SU(3)]c
gaugetheory as computed in this approach in comparison to lattice QCD data, cf.Fig. 18.
One observes that the agreement at large temperatures is quite good, and that deviations
occur only belowT � 2.5Tc. The quality of reproducing lattice QCD data is comparable
to that in the perturbative approach ofSection 4.2. However, a distinct advantage of the
self-consistent approximation scheme is that the physical interpretation of the results in
terms of a gas ofquasiparticles is much more appealing.

Note that a very similar approach has been pursued in [134], utilizing directly the
expression (112) for the pressure, with propagators in the HTL approximation and a
suitably modifiedV2. Another related approach is so-called “HTL-resummed perturbation
theory” [135]. Here, the pressure of the pure gauge theory is computed to two-loop
order with HTL-resummed propagators. Avariational procedure like that of [137]
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is applied to determine the gluon mass parameter. The pressure computed from this
approach is closer to the Stefan–Boltzmann limit and fails to agree with lattice QCD
datain the region of temperatures fromTc to several timesTc, cf. Fig. 18. The reason
for the differences between this approach and the one of [133] lies in the way the
perturbative series is reorganized when resumming certain subsets of diagrams. The
differences can be explained by comparing to a dimensionally reduced version of HTL-
resummed perturbation theory [138]. Finally, note that the CJT formalism [133] as well as
HTL-resummed perturbation theory [139] were also applied to compute thermodynamic
properties of the QGP atT = 0 andnonzeroµ.

4.5. Polyakov-loop model

The pressure, normalized to the appropriate Stefan–Boltzmann limit, as a function
of temperature, normalized to the appropriate critical temperature, shows a universal
behaviour, see right panel ofFig. 5. Sincethe normalizedpressure for full QCD with
dynamical fermions looks the same as for the pure gauge theory (i.e., without dynamical
fermions), a natural conclusion would be to assume that the dynamics of the gluons drives
the QCD phase transition, not that of the fermions. Consequently, the order parameter
for the transition in full QCD should be the same as in the pure gauge theory, i.e., the
Polyakov loop, seeSection 2.3.2. For an[SU(Nc)c] gauge symmetry, the Polyakov loop
(7) is invariant under[SU(Nc)c] gauge transformations, up to an element of the centre
of the gauge group,Z(Nc), L(x) → exp(2π in/Nc)L(x). The effective theory for the
Polyakov loop consists of all possible terms invariant underZ(Nc) transformations [70],

Leff = c0|∇L|2 + c2|L|2 + c3[L3 + (L∗)3] − c4(|L|2)2 + · · · , (115)

where thedots denote higher-order terms (which will be neglected in the following). For
Nc = 2, one would havec3 = 0, becauseL3 is not Z(2)-symmetric. For Nc = 3, it is
precisely this cubic term which drives the transition first order [25], see alsoSection 2.3.2.

The ground state of the theory,L0 ≡ 〈L(x)〉 (which is assumed to be real), is determined
by the global minimum of the effective potential

Veff(L) = −c2|L|2 − c3[L3 + (L∗)3] + c4(|L|2)2. (116)

The Polyakov loopL is dimensionless, therefore all coupling constants in Eq. (116) carry
dimension[energy]4. Sincethe only dimensionful scale is set by the temperature, one may
pull out a factorT4 from the right-hand side of Eq. (116) and after appropriately renaming
the constants write

Veff(L) = b4T4{−b2|L|2 − b3[L3 + (L∗)3] + (|L|2)2}, (117)

where thenew coupling constants are dimensionless. In order to have a potential that is
bounded from below for large values ofL, one has to assumeb4 > 0. For the moment
take b3 = 0 (for Nc = 2, b3 ≡ c3/(b4T4) must always vanish). Then the sign ofb2
drives the transition.Below the transition,T < Tc, there is confinement, which can only
be achieved if the curvature ofVeff at the origin is positive,b2 < 0, such thatthe global
minimum is atL0 = 0. Above the transition,T > Tc, there isdeconfinement, which is
achieved by a negative curvature ofVeff at the origin,b2 > 0, giving rise to a nonvanishing
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L0 = ±√
b2/2. The constantb2 is therefore a function of temperature,b2 = b2(T), while

in the simplest version ofthe Polyakov-loop model,b3 andb4 are assumed to be constant.
Through the temperature dependence ofb2, L0 also becomes a function of temperature,
L0 ≡ L0(T). At T = Tc, one must haveb2(Tc) = 0, i.e., L0 vanishes continuously at
Tc, and one has a second-order phase transition. A nonvanishingb3 (which is allowed for
Nc = 3) turns this second-order transition into afirst-order transition. Lattice QCD data
indicate that the transition for pure[SU(3)c] gauge theory has a comparatively small latent
heat, i.e., the transition is onlyweaklyof first order. This suggests that the constantb3 is
small.

Now remember that the pressure is, up to sign, equal to the value of the effective
potential atits minimum

p

T4 ≡ −Veff(L0)

T4 = b4

2
L2

0(b2 + b3L0). (118)

For Nc = 2, whereb3 = 0, one hasp/T4 = b4b2(T)2/4, where the explicit value of
L0 was used. The physical interpretation of this result is quite astonishing: the pressure
in QCD, as calculated on the lattice, cf.Fig. 5, is not determined by thekinetic energy
of a gas of weakly interacting quasiparticles, as advocated inSections 4.3and4.4, but
is simply given by thepotential for the Polyakov loop (at the respective minimum).
All that one has to know isL0(T) (or, equivalently, b2(T), under the assumption that
this is the only coupling constant which depends on temperature), and the pressure in
QCD can be immediately computed from Eq. (118). ComparingFigs. 3 and 5, this
conjecture is at least qualitatively correct. Quantitatively, it is not as simple: not only
is the absolute value ofL0 as calculated on the lattice subject to renormalization, also
the constantsb2,b3, andb4 are not known. In the meantime, one can at least convince
oneself that there are no principal obstacles for this interpretation: one may insert the value
of L0 (which is only a function ofb2 and b3) into Eq. (118) and simply fitb3, b4, as
well as b2(T) to lattice QCD data. The result of this fit isb3 = 4/3, b4 � 0.1515,
b2(x) = 2(1 − 1.11/x)(1 + 0.265/x)2(1 + 0.300/x)3 − 0.974, wherex ≡ T/Tc. The
pressure and the energy density obtained from this fit are shown inFig. 19.

The Polyakov-loop model also allows to predict other physical observables, for instance,
the ratio of screening masses related to the correlation function of the real and the
imaginary part of the Polyakov loop [70]. Decompose the Polyakov loop into its real and
imaginary part,L ≡ R + i I . In analogy to Eq. (43), the correlation functions for the real
and imaginary part are then defined as〈R(0)R(x)〉 and 〈I (0)I (x)〉, respectively. In the
deconfined phase, one expects them to decrease exponentially with the distance,

〈R(0)R(x)〉 ∼ exp(−mR|x|), 〈I (0)I (x)〉 ∼ exp(−mI |x|), (119)

where mR, mI are the corresponding screening masses. In weak coupling, one can
make a definite prediction for these masses. To this end, expandL in powers of g to
leading nontrivial order. One obtainsR ∼ 1 − g2/(T2Nc)TrA2

0. Thus, the correlation
function for the real part involves the exchange of two staticA0 fields, which are
Debye screened. One therefore expects〈R(0)R(x)〉 ∼ exp(−2mD|x|). Analogously,
〈I (0)I (x)〉 ∼ exp(−3mD|x|). Thus, the perturbative prediction for the screening masses
is mR = 2mD, mI = 3mD, andmI /mR = 3/2.
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Fig. 19. The functions 3p/T4 (lower curve) andε/T4 (upper curve) as a function ofT/Tc. Fit of the
thermodynamic functions of the Polyakov-loop model to lattice data (shown as circles and boxes) for the pure
[SU(3)c] gauge theory.

In general, because of the renormalization of the Polyakov loop it is not as simple to
obtain an answer for the absolute values ofmR andmI . However, in theratio mI /mR one
expects unknown factors to cancel out [70]. The Polyakov-loop model makes a definite
prediction for this ratio. First, write the potential (116) in terms ofR and I . As usual, the
curvature of the effective potential in the ground state provides the masses. Consequently,
computing the curvature in theR- and inthe I -direction, one obtains

m2
R ∼ −b2 − 6b3L0 + 6L2

0, m2
I ∼ −b2 + 6b3L0 + 2L2

0. (120)

I have refrained from writing the constant of proportionality, which also provides the
correct dimension formR,I , because this constant will drop out anyway in the ratio
mI /mR. Let uscompute the ratio close toTc. In the case of a first-order transition, at
T = Tc the effective potentialVeff has two minima, one at the origin and one atL0 �= 0,
which are degenerate and separated by an energy barrier. The conditionVeff(0) = Veff(L0)

givesL0 = −b2/b3, which together with the condition thatL0 is the nontrivial minimum
of Veff, L2

0 = (3b3L0 + b2)/2, allows to express all quantities in Eq. (120) in termsof, say
b3L0. This yieldsmI /mR = 3. This value differs from the perturbative expectation by a
factor of two, and is a definite prediction of the Polyakov-loop model which can be tested,
for instance,on the lattice.

Another particularly appealing aspect of the Polyakov-loop model is that it correctly de-
scribes the behaviour of the screening masses when approachingTc from above, cf.Fig. 7.
Near Tc, the temperature dependence ofb2 and L0 cause the screening massesmR,mI

to decrease, in agreement with lattice QCD data. The fact that the perturbative prediction
completely fails to reproduce this behaviour was already mentioned inSection 3.4.
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Finally, let us remark that the Polyakov-loop model may also naturally explain why the
chiral symmetry restoration transition occurs at the same temperature as the deconfinement
transition. There isnothing to prevent the effective theory (115) from having a term
∼c|L|2TrΦ†Φ, whereΦ is the chiral condensate andc > 0 a constant. Thus, when|L|
condenses (in the deconfined phase),this term suppresses condensation ofΦ on account
of the positive coupling constantc, effectively restoring the chiral symmetry. Thus, chiral
symmetry restoration anddeconfinement occur at the same temperature.

4.6. Linear sigma models with hadronic degrees of freedom

In Section 3.2we have seen that the QCD transition is most likely crossover for small
values ofthe chemicalpotentialµ. Therefore, there is no real distinction between hadronic
degrees of freedom on the one side and quark and gluon degrees of freedom on the other
side of the transition. Consequently, there is no compelling reason why the thermodynamic
properties of QCD around the phase transition should be described in terms of quarks
and gluons; a hadronic description should be equally adequate. (For a more complete
discussion of this argument, see [140].)

Let us assume that, somewhat contrary to the idea behind the Polyakov-loop model
discussed inSection 4.5, the QCD transition is driven by chiral symmetry restoration
instead of deconfinement. In this case, the order parameter for the transition is the chiral
condensate, seeSection 2.3.3, and the effective theory is given by the linear sigma model
(13). The degrees of freedom in this effective theory are the fluctuations of the order
parameter fieldΦ around the ground state,〈Φ〉. Physically, these fluctuations correspond to
the scalar and pseudoscalar mesons. Following the above line of arguments, this effective
theory could therefore not only serve to understand the dynamics of chiral symmetry
restoration, it could equally well be used todescribe the thermodynamic properties of QCD
around the phase transition.

Of particular interest is the question how chiral symmetry restoration is exhibited in the
meson mass spectrum. In the framework of lattice QCD, this was discussed inSection 3.5.
Here, I explain how to answer this question using the effective theory (13) at nonzero
temperature. The standard definition of a particle mass is via the pole of the propagator at
zero momentum. Consequently, the goal is to determine the mesonic propagators. The
method of choice is obviously the CJT formalism discussed inSection 4.4.3, because
this approach allows to compute the full propagator from the stationary points of the
effective actionΓ , cf. Eq. (108), or in other words, from the Dyson–Schwinger equations
(109). Of course, the solution of these equations requiresΓ2, i.e., the complete set of 2PI
diagrams. For practical purposes, a solution of the Dyson–Schwinger equations is therefore
impossible. However, as already discussed inSection 4.4.3, one may truncateΓ2 at some
given order. Such a truncation defines a many-body approximation, within which a solution
of the Dyson–Schwinger equations becomes feasible.

The most simple, nontrivial truncation ofΓ2 is to include only the set of double-
bubble diagrams shown on the left inFig. 20. The self-energies (110) computed from
these diagrams consist only of the tadpole diagrams shown on the right-hand side of
Fig. 20. This is the well-known Hartree approximation [111]. In general, all particle species
in a particular effective theory contribute via tadpole diagrams to the self-energy of a



D.H. Rischke / Progress in Particle and Nuclear Physics 52 (2004) 197–296 267

Fig. 20. Double-bubble diagrams (left-hand side), where full lines denote scalar mesons and dashed lines denote
pseudoscalar mesons. Cutting the bubbles produces the tadpole-diagram contributionsto the self-energies shown
on the right-hand side. The tadpole diagrams constitute the so-called Hartree approximation.

given particle species. Since the tadpole diagrams do not have any dependence on the
external momentum, the self-energies are (temperature-dependent) constants in the Hartree
approximation. They simply shift the meson masses as compared to their vacuum values.
In principle, the Dyson–Schwinger equations (109) for the propagators are coupled integral
equations, but in the Hartree approximation,they reduce to a system of coupled fix-point
equations for the meson masses. While numerically much simpler than solving integral
equations, the solution can still be a formidable task, if the underlying chiral symmetry
group is large. For anO(4) chiral symmetry, this problem was solved in [141, 142].
The U(3)r × U(3)� case was discussed in [143]. The casesU(2)r × U(2)� as well as
U(4)r ×U(4)� were investigated in [144]. (TheU(1)V of baryon number is always trivially
respected in these models, cf. the discussion inSection 2.3.3. Nevertheless, in order to
simplify the notation I include it in characterizing the symmetry of a particular chiral
effective theory.)

In Fig. 21 the masses for the scalar and pseudoscalar mesons are shown as a function of
temperature, calculated within the framework of linear sigma models withO(4), U(2)r ×
U(2)�, U(3)r ×U(3)�, andU(4)r ×U(4)� chiral symmetry. The different subpanels show
the masses of the respective chiral partners. In the nonstrange sector, these are (a) theσ

meson and the pion, and (b) thea0 and theη meson. In the strange sector, these are (c) the
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Fig. 21. Scalar and pseudoscalar meson masses as a function of temperature in the Hartree approximation,
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U(4)r ×U(4)�. Chiral partners are shown in the same panel to demonstrate that their masses become degenerate
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κ meson and the kaon, and (d) thef0 and theη′ meson. Finally, in the charmed meson
sector one has (e) the scalarD0 and Ds0 meson and the pseudoscalarD and Ds meson,
and (f) theηc andχc0 meson. One observes that in all cases the chiral transition occurs
at temperatures of the order of 200–300 MeV. For the results shown inFig. 21 realistic,
nonzero values for the quark masses were assumed, and consequently the transition is
crossover, cf. the discussion inSection 2.3.4. Fig. 21 also allows to compare the results
for models with different chiral symmetry. For instance,Fig. 21(a) nicely demonstrates
the effect of enlarging the symmetry group. In general, the higher the symmetry, the more
particle species contribute via tadpole diagrams to the mass of a particular species, and
consequently the larger is its mass at a given temperature. Furthermore, one can learn
from all subpanels that the difference between theU(3)r × U(3)� and theU(4)r × U(4)�
model is at best marginal. The reason is that the additional charmed meson degrees of
freedom in the latter are so heavy that the contribution of the respective tadpole diagrams
is exponentially suppressed∼ exp(−m/T). Consequently, they only minimally influence
the behaviour of the noncharmed mesons in the temperature range considered here. In
turn, in this temperature range the charmed meson masses change little from their vacuum
values, cf.Fig. 21(e) and (f).

Lattice QCD calculations cannot be done in the chiral limit, because as the quark mass
decreases, the computation of the fermion determinant becomes more and more difficult.
The only way to make predictions about the chiral limit is to extrapolate data obtained
for nonzero quark masses. This is computationally expensive, as it requires calculations
at several different values of the quark mass. In contrast, in the framework of linear
sigma models, taking the chiral limit actually simplifies the calculation. A comparison
between quantities computed in lattice QCD and extrapolated to the chiral limit with the
corresponding values obtained in linear sigma models is therefore straightforward. Let us
discuss two examples. The first is the critical temperature for the chiral transition. The
way to identify the critical temperature is the following. For a first-order phase transition,
look for the temperature where two minima of the effective potential become degenerate.
For asecond-order transition, the criterion is a vanishing second derivative of the potential
in one direction in order parameter space (indicating a massless degree of freedom and
critical behaviour). It should be mentioned that the Hartree approximation does not always
reproduce the correct order of the transition as predicted from universality arguments.
(Aside from that, being a mean-field type approximation, it always fails to predict the
correct critical exponents.) For instance, for theO(4) model and theU(2)r × U(2)�
model with U(1)A anomaly, the transition should be of second order, but the Hartree
approximation predicts a first-order transition. For theU(2)r × U(2)� model without
U(1)A anomaly, as well as for theU(Nf )r × U(N f )� modelswith Nf ≥ 3, the Hartree
approximation predicts a first-order transition in agreement with universality arguments.
In chiral effective theories, one can simply “switch off” theU(1)A anomaly by setting
the constantc = 0 in Eq. (14). This is not possible for lattice QCD: theU(1)A anomaly
may or may not be present, depending on how strongly instantons are screened atTc. This
question has been studied on the lattice [145], with the result that theU(1)A anomaly is
not completely absent at the critical temperature, but at least rapidly decreasing.

The critical temperatures obtained in various chiral models, with and without theU(1)A

anomaly, are shown inTable 3 in comparison to the results from lattice QCD, cf.Table 2.
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Table 3
The critical temperatureTc for the chiral transition, computed for various chiral effective theories in the chiral
limit with and without U(1)A anomaly [144], in comparison to results from lattice QCD, extrapolated to the
chiral limit. For N f = 2 flavours, the QCD results for Wilson and Kogut–Susskind fermions fromTable 2have
been averaged, assuming uncorrelated statistical errors

Chiral model Tc with U(1)A anomaly (MeV) Tc without U(1)A anomaly (MeV) LQCD (MeV)

O(4) 159.5 ± 0.2 N/A 172± 9

U(2)r × U(2)� 154.5 ± 0.2 149.2 ± 0.2 172± 9

U(3)r × U(3)� 165.5 ± 0.2 147.5 ± 0.2 154± 8

Two things are noteworthy. First, the values of the critical temperature obtained in chiral
models are rather close to the ones computed in lattice QCD. This is surprising given the
fact that chiral effective theories only contain acertain subset of the degrees of freedom of
full QCD, do not describe confinement, and moreover are treated here in the framework of
a very simple many-body approximation. Second, the ordering of the critical temperatures
as a function of quark flavours is the same in lattice QCD and chiral modelswithout U(1)A

anomaly, but the opposite in chiral modelswith U(1)A anomaly. This also lends support
to the above mentioned results [145] regarding the rapid decrease of theU(1)A anomaly
nearTc.

The second example is the investigation of the quark-mass diagram.Fig. 22 shows this
diagram as determined within aU(3)r × U(3)� linear sigma model [146]. Of course,
the linear sigma model does not have quark degrees of freedom. Nonzero quark masses
correspond to a term of the form (15) in the Lagrangian, where the matrixH is proportional
to the quark mass matrix. Since the vacuum expectation value ofΦ is a diagonal matrix,
the matrix H must also be diagonal. If one assumesSU(2)V isospin symmetry,H =
h0T0 + h8T8. Consequently,mq = a(h0 + h8/

√
2), ms = b(h0 − √

2h8). The fieldsh0,
h8 can be determined from the vacuum values for the pion and kaon masses, as well as
the pion and kaon decay constants. Then, settingmq = 10 MeV,ms = 150 MeV fixes the
values for the constants of proportionalitya andb; for details see [146].

Oneobserves inFig. 22 that the position of the line of second-order phase transitions
between the first-order region around the origin and the crossover region depends sensi-
tively on the value of theσ meson mass in vacuum. However, the physical point is always
in the crossover region, if theU(1)A anomaly is present. Without theU(1)A anomaly, the
transition could be of first order, if theσ meson is sufficiently heavy.

Recently, there have been attempts to go beyond the Hartree approximation by
including diagrams with more complicated topologies inΓ2 [132, 147]. In this case, a
self-consistent calculation becomes technically rather difficult, because these topologies
lead to momentum-dependent self-energies, so that the Dyson–Schwinger equations
turn from simple fix-point equations for the masses into integral equations for the
full propagators. Moreover, momentum-dependent self-energies have in general nonzero
imaginary parts, such that quasiparticles, which are stable in the Hartree approximation,
develop a finite decay width. The spectral density carries the complete information of the
spectral properties of the quasiparticles in the system. It is therefore natural to solve the
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Fig. 22. The quark-mass diagram computed in aU(3)r × U(3)� chiral model [146], with or without U(1)A
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Dyson–Schwinger equations for the full propagators as self-consistency equations for the
respective spectral densities. Work in this direction is in progress [148].

5. Colour superconductivity

5.1. Derivation of the gap equation

As discussed inSection 2.4.3, quark matter at high density and sufficiently low
temperature is most probably a colour superconductor [38, 39]. While the colour quantum
numbers of a Cooper pair are determined by the attractive gluon interaction in the colour-
antitriplet channel, there are still many different ways to combine flavour and spin quantum
numbers, giving rise to a plethora of possible colour-superconducting phases. In general,
the energetically most favourable phase will prevail at a givenT andµ. In orderto decide
which is the most favourable phase one has to compute the gain in condensation energy
when forming Cooper pairs. To this end, one has to calculate the colour-superconducting
gap parameter. In general, the larger the gap, and the more degrees of freedom participate in
forming Cooper pairs, the larger the gain condensation energy. The gap is computed from
a so-called gap equation. In this section, I shall outline the derivation of this equation.
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Consider the QCD action

S ≡ SA + SF + g
∫

X
ψ̄(X)γ µTaψ(X)A

a
µ(X), (121)

whereSA is the gauge field action (including ghost and gauge fixing contributions) and

SF =
∫

X
ψ̄(X)(i γ · ∂X + µγ0 − m)ψ(X) (122)

is the action for noninteracting fermion fields in the presence of a chemical potential. For
reasons which will becomeclear in the following,SF and the quark–gluon coupling are
rewritten in terms of ordinary quark fields,̄ψ ,ψ, and theircharge-conjugatecounterparts,
ψ̄C ≡ ψTC, ψC ≡ Cψ̄T, whereC ≡ i γ 2γ0 is the charge conjugation matrix. To this
end, introduce the so-called Nambu–Gor’kov basis, with the 2· 4NcNf -dimensional quark
spinors

Ψ ≡
(
ψ

ψC

)
, Ψ̄ ≡ (ψ̄, ψ̄C). (123)

For the fermion action one then obtains

SF = 1
2

∫
X,Y

Ψ̄ (X)S−1
0 (X,Y)Ψ (Y), (124)

where

S−1
0 ≡

( [G+
0 ]−1 0

0 [G−
0 ]−1

)
,

[G±
0 ]−1(X,Y) ≡ −i (i γ · ∂X ± µγ0 − m)δ(4)(X − Y),

(125)

is the free inverse fermion propagator in the Nambu–Gor’kov basis. The quark–gluon
coupling becomes

ψ̄(X)γ µTaψ(X)A
a
µ(X) = 1

2Ψ̄ (X)Γ
µ
a Ψ (X)Aa

µ(X), (126)

where

Γµ
a ≡

(
γ µTa 0

0 −γ µTT
a

)
(127)

is the Nambu–Gor’kov matrix which couples the corresponding quark spinors to gluon
fields.

Now add a bilocal source term to the QCD action,

S[K] ≡ S+
∫

X,Y
Ψ̄ (X)K(X,Y)Ψ (Y), (128)

where, in the Nambu–Gor’kov basis,

K ≡
(
σ+ ϕ−
ϕ+ σ−

)
. (129)

Here,σ+ andσ− are sources which couple to adjoint quark spinors and quark spinors,
while ϕ+ couples to two quark spinors (remember thatψ̄C ∼ ψT) andϕ− couples to
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two adjoint quark spinors, respectively (ψC ∼ ψ̄T). Charge-conjugation invariance of the
action relates the sourcesσ+ andσ−: σ− ≡ C[σ+]TC−1. The action must also be real-
valued, which leads to the conditionϕ− ≡ γ0[ϕ+]†γ0.

The next step is to derive the effective action from the partition function of QCD in the
presence of the external sourceK,

Z[K] =
∫

DAa
µDΨ̄DΨ expS[K]. (130)

The details of this derivation are beyond the scope of this review, but the interested reader
can readily convince himself that, in the presence of bilocal sources, this problem is solved
precisely by the CJT formalism [127] discussed inSection 4.4.3. Consequently, if one
takes into account that there is no nonvanishing expectation value for a fermionic one-
point function, and if one adapts Eq. (106) to the notation of this section, the effective
action reads

Γ [A,�,S] = I [A] − 1
2Tr ln �−1 − 1

2Tr(�−1
0 �− 1)+ 1

2Tr lnS−1

+ 1
2Tr(S−1

0 S − 1)+ Γ2[�,S], (131)

where�0 is the free and� the full gluon propagator, andS is the full fermion propagator
in the Nambu–Gor’kov basis. The factors of 1/2 in front of the fermionic terms account for
the double-counting of fermionic degrees of freedom in the Nambu–Gor’kov formalism.
The full propagators for the physical situation (whereK = 0) are obtained from the
stationarityconditions (108). These conditions are Dyson–Schwinger equations of the type
(109),

�−1 = �−1
0 + Π , S−1 = S−1

0 + Σ . (132)

(In a slight abuse of notation, I also denote thefull gluon propagator at the stationary point
of Γ [A,�,S] by� and, similarly, the full quark propagator byS.)

In order to proceed one has to make an approximation forΓ2. As in Section 4.4.3,
the discussion will be restricted to the set of diagrams shown inFig. 17, however, with
the quark propagators in the quark loop now given by the Nambu–Gor’kov propagator
S. The gluon self-energy is computed asΠ = −2δΓ2/δ�, i.e., by cutting a gluon
line in the diagrams ofFig. 17. Thus, Π is given by the diagrams shown inFig. 15
(with Nambu–Gor’kov propagatorsS in the quark loop). The quark self-energy in the
Nambu–Gor’kov basis is

Σ ≡
(

Σ+ Φ−
Φ+ Σ−

)
≡ 2

δΓ2[�,S]
δS . (133)

It is given by the diagram shown on the left-hand side inFig.23. The diagonal components
Σ± correspond to the ordinary self-energies for particles and charge-conjugate particles.
In space–time,Σ+(X,Y) (Σ−(X,Y)) has a particle (charge-conjugate particle) entering
at X and another particle (charge-conjugate particle) emerging atY. On theother hand, the
off-diagonal componentsΦ± have to be interpreted as follows: a particle (charge-conjugate
particle) entersΦ+(X,Y) (Φ−(X,Y)) at X and acharge-conjugate particle(anordinary
particle) emerges atY. This is typical for systems with a fermion–fermion condensate in
the ground state [111]. The self-energiesΦ± symbolize this condensate. Note that the two



274 D.H. Rischke / Progress in Particle and Nuclear Physics 52 (2004) 197–296

=

Fig. 23. The quark self-energy. Writing out the individual components in the Nambu–Gor’kov basis one obtains
the diagrams on the right-hand side.

off-diagonal components are related in the same way as the bilocal sourcesϕ± in Eq. (129),
i.e.,Φ− ≡ γ0[Φ+]†γ0. In the following, also the termgap matrix will be used forΦ+.

In momentum space, the self-energy is given by

Σ (K ) = −g2
∫

Q
Γµ

a S(Q)Γ ν
b�

ab
µν(K − Q). (134)

This equation can be decomposed in terms of its Nambu–Gor’kov components. To this
end, let us first determine the full Nambu–Gor’kov quark propagator by formally inverting
the Dyson–Schwinger equation (132) for thequark propagator [149],

S =
(

G+ Ξ −
Ξ + G−

)
, (135)

where

G± ≡ {[G±
0 ]−1 + Σ± − Φ∓([G∓

0 ]−1 + Σ∓)−1Φ±}−1, (136)

Ξ ± ≡ −([G∓
0 ]−1 + Σ∓)−1Φ±G±. (137)

Here G+ (G−) is the propagator for quasiparticles (charge-conjugate quasiparticles).
Besides these quantities describing the ordinary propagation of quasiparticles, there
are also off-diagonal, or “anomalous” propagatorsΞ ± in Eq. (135). These anomalous
propagators are typical for superconducting systems [111] and account for the possibility
that in the presence of a Cooper-pair condensate, symbolized byΦ±, a fermion can always
be absorbed in the condensate, while its charge-conjugate counterpart is emitted from the
condensate and continues to propagate.

In terms of its Nambu–Gor’kov components, the quark self-energy is

Σ+(K ) = −g2
∫

Q
γ µTaG+(Q)γ νTb�

ab
µν(K − Q), (138)

Σ−(K ) = −g2
∫

Q
γ µTT

a G−(Q)γ νTT
b �

ab
µν(K − Q), (139)

Φ+(K ) = g2
∫

Q
γ µTT

a Ξ +(Q)γ νTb�
ab
µν(K − Q), (140)

Φ−(K ) = g2
∫

Q
γ µTaΞ −(Q)γ νTT

b �
ab
µν(K − Q). (141)
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The integrals in these equations are shown diagrammatically on the right-hand side of
Fig. 23. In thesediagrams, a normal full propagatorG+ (G−) is denoted as a double
line with an arrow pointing to the left (right). According to Eq. (137), the anomalous
propagatorsΞ + and Ξ − consist of a combination of propagators([G±

0 ]−1 + Σ±)−1,
gap matricesΦ±, and full propagatorsG±. This combination is explicitly drawn on the
right-hand side ofFig. 23, with propagators([G±

0 ]−1 + Σ±)−1 as single lines with arrows
pointing left/right, and gap matricesΦ± as full/empty circles. Inserting these self-energies
(and the corresponding one for the gluons) into the Dyson–Schwinger equations (132)
one obtains a coupled set of integral equations which has to be solved self-consistently.
In particular, the Dyson–Schwinger equations for the off-diagonal componentsΦ± of the
inverse propagatorS−1, i.e., Eqs. (140) and (141), are thegap equationsfor the colour-
superconducting condensate.

A completely self-consistent solution of the Dyson–Schwinger equations is technically
too difficult to be feasible, and one has to make certain approximations. It turns out
that in weak coupling a well-controlled, approximate solution is possible. This will be
demonstrated inSection 5.3. Prior to that, I shall discuss the excitation spectrum in a
superconductor, which follows from the poles of the quark propagator (135).

5.2. Excitation spectrum

In order to find the quasiparticle excitations, one has to determine the poles ofG±
and Ξ ±. For anarbitrary quark massm, this is a formidable task, see [150]. For our
purpose it is sufficient to consider the ultrarelativistic limit,m = 0, where thesituation
simplifies considerably [151]. Let us also focus exclusively onG+; thepoles ofG− and
Ξ ± can be determined accordingly (in fact, they have precisely the same poles). In order
to proceed, we need to specify the colour, flavour, and Dirac structure of the inverse free
propagators[G±

0 ]−1, andof the self-energiesΣ± andΦ±. The inverse propagators[G±
0 ]−1

are diagonal in colour and flavour space. To determine the Dirac structure, it is convenient
to Fourier transform them into energy–momentum space and then to expand them in
terms of projectors onto states of positive or negative energies,Λe

k ≡ (1 + eγ0γ · k)/2,
e = ±,

[G±
0 ]−1(K ) = γ · K ± µγ0 = γ0

∑
e=±

[k0 − (ek∓ µ)]Λe
k. (142)

For the weak-coupling solution discussed inSection 5.3it turns out that it suffices to
compute the self-energiesΣ± neglecting effects from the breaking of the[SU(3)c] colour
symmetry due to condensation of Cooper pairs. Then, the self-energies are diagonal in
colour and flavour space, and one only needs to know their Dirac structure. One may
expand themin terms of Dirac matrices,

Σ± = s±
0 γ

0 + s± · γ + · · · . (143)

Other Dirac structures are simply abbreviated by dots. It turns out that, in weak coupling,
the dominant contribution to thequark self-energy arises from the exchange of almost static
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(i.e., Landau-damped) magneticgluons and, in momentum space, is [152]

Σ+(K ) = Σ−(K ) � γ0ḡ2

(
k0 ln

M2

k2
0

+ iπ |k0|
)
, (144)

where ḡ ≡ g/(3
√

2π) and M2 ≡ (3π/4)m2
g. The imaginary part gives rise to a finite

lifetime of quasiparticle excitations off the Fermi surface [149], but in weak coupling
this contributes to the colour-superconducting gap only at sub-subleading order. (How
to count orders in weak coupling will be discussed in detail inSection 5.3.) There are
other contributions at sub-subleading order which have not been reliably computed so
far. Only the subleading order terms are under complete analytic control. They determine
the prefactor of the colour-superconducting gap to orderO(1). The sub-subleading
contributions contribute to the prefactor at orderO(g). Therefore, in the following the
imaginary part will be neglected and only the real part will be kept, which, for ln(M/k0) ∼
1/g contributes at subleading order to the colour-superconducting gap [153]. Defining the
wavefunction renormalization factor

Z(k0) ≡
(

1 + ḡ2 ln
M2

k2
0

)−1

, (145)

the effect of thequark self-energy is to shift the poles in the propagator,k0 → k0/Z(k0).
Note that the logarithm renders a normal-conducting system a nonFermi liquid [154].

The colour, flavour, and Dirac structure of the off-diagonal self-energiesΦ± is less
trivial. As they symbolize the Cooper-pair condensate, they must have the quantum
numbers of the particular channel where condensation occurs. For the purpose of
illustration, I specify this structure for the four colour-superconducting phases already
discussed inSection 2.4.3. Let us furthermore only consider parity-even spin-zero and
spin-one condensates. In this case, one may expand the gap matrixΦ+ (in momentum
space) as follows [51],

Φ+(K ) =
∑
e=±

φe(K )MkΛe
k, (146)

whereφe, the so-calledgap function, is a scalar function of 4-momentum andMk is a
matrix in colour, flavour, and Dirac space, which is determined by the symmetries of the
colour-superconducting order parameter (cf.Section 2.4.3). An important property is that
it commutes with the energy projectors,[Mk,Λe

k] = 0.
In Table 4the explicit expressions forMk are listed for the four phases considered

here. For these expressions, I have used the fact that a colour antitriplet is totally
antisymmetric and thus has a representation in terms of the antisymmetric Gell–Mann
matricesλ2, λ5, andλ7. These Gell–Mann matrices form anSO(3) subgroup ofSU(3),
and are thus identical to the generators ofSO(3), (J1, J2, J3) ≡ J. These matrices were
finally used inTable 4 to parametrize that the gap matrixΦ+ is a colour antitriplet.
Similarly, τ2 (the only Pauli matrix which is antisymmetric) symbolizes that the gap
in the 2SC phase is a flavour singlet. The Dirac matrixγ5 in the 2SC and CFL cases
is necessary to obtain even parity. For the CFL case, the flavour-antitriplet nature is
represented by another set of generators(I 1, I 2, I 3) ≡ I of SO(3). Colour-flavour
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Table 4
The structure of the matricesMk and Lk in various colour-superconducting phases,(τ2)

f g ≡ i ε f g, (Jk)i j ≡
−i εi j k , (I h) f g ≡ −i ε f gh, andγ⊥(k) ≡ γ − γ · k̂k̂. For the matrixLk in the CSL phase, the second term is a

matrix in colour space, formed by the dyadic product of the two vectorsk̂ + γ⊥(k) andk̂ − γ⊥(k), and a matrix
in Dirac space, formed by the product of the twoγ⊥(k)matrices. The last two columns show the two eigenvalues
λr of Lk and their degeneracydr (counting colour-flavour degrees of freedom in the 2SC and CFL phases, and
colour-Dirac degrees of freedom in the two spin-one phases)

Phase Mk Lk λ1 (d1) λ2 (d2)

2SC γ5τ2J3 (J3)
2(τ2)

2 1 (4) 0 (2)

CFL γ5I · J (I · J)2 4 (8) 1 (1)

CSL J · [k̂ + γ⊥(k)] 1 + [k̂ + γ⊥(k)][k̂ − γ⊥(k)] 4 (4) 1 (8)

Polar J3[k̂z + γ z
⊥(k)] (J3)

2 1 (8) 0 (4)

locking is obtained by a scalar product ofI with J, cf. alsoTable 1. For the two spin-
one phases, the CSL phase and the polar phase, the order parameter is a 3-vector, see
Section 2.4.3, but the gap matrix is a scalar. This requires it to be proportional to a
scalar product of the order parameter with another 3-vector. There are only two other
3-vectors (in momentum space), the direction of momentum of the quark in the Cooper
pair, k̂, and the vectorγ . Consequently,Φ+ has to be proportional to a linear combination
of these two 3-vectors. It is convenient [40] to use the projection ofγ onto the subspace
orthogonal tok̂, γ⊥(k), because thenMk commutes with the energy projectors. Finally,
colour-spin locking requires a scalar product ofJ with this linear combination of 3-vectors.
In the polar phase, one may independently choose a direction for the gap in colour space
and in space–time. Conveniently, one choosesthe 3-(anti-blue) direction in colour space
and thez-direction in space–time.

In order to proceed, however, one does not require the explicit form ofMk in the
variousphases. The existence of the decomposition (146) and the commutation property
of Mk with the energy projectors is sufficient to derive the quasiparticle spectrum as a
function of the absolute magnitude of the gap function,|φe(K )|. To seethis, compute
Φ− ≡ γ0[Φ+]†γ0 and, together withΦ+ and[G−

0 ]−1 + Σ−, thequantity

Φ−([G−
0 ]−1 + Σ−)−1Φ+([G−

0 ]−1 + Σ−) =
∑
e=±

|φe(K )|2LkΛ−e
k , (147)

where

Lk ≡ γ0M†
kMkγ0 (148)

is another central quantity for the quasiparticle excitation spectrum. Expressions for the
matrix Lk in the various phases are also listed inTable 4. Note that alsoLk commutes with
the energy projectors,[Lk,Λe

k] = 0. SinceLk is hermitian, it has real eigenvalues,λr , and
can be expanded in terms of a complete set of orthogonal projectors,Pr

k,

Lk =
∑

r

λrPr
k. (149)
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In the four phases considered here, there are only two distinct eigenvalues and therefore
two distinct projectors. The eigenvalues are also listed inTable 4, and the projectors can
be expressed in terms ofLk via

P1,2
k = Lk − λ2,1

λ1,2 − λ2,1
. (150)

Obviously, also these projectors commute with the energy projectors,[P1,2
k ,Λe

k] = 0. It is
now straightforward to compute the full propagator by inverting the term in curly brackets
in Eq. (136), since the projectorsPr

kΛ
e
k form a complete, orthogonal set in colour, flavour,

and Dirac space,

G+(K ) = [[G−
0 ]−1(K )+ Σ−(K )]

∑
e,r

Pr
kΛ−e

k
1

[k0/Z(k0)]2 − [εe
k,r (φ

e)]2 , (151)

where

εe
k,r (φ

e) = [(ek− µ)2 + λr |φe|2]1/2. (152)

Obviously, the poles of the full propagator are located atk0 ≡ ±Z(k0)ε
e
k,r (φ

e). Because
of thek0 dependence of the gap functionφe(K ), this is acondition which has to be solved
self-consistently.

In order to get an impression what the excitation spectrum of the quasiparticles in a
superconductor looks like, let us for the moment approximateφe(K ) ≡ φ = const,
and also setZ(k0) ≡ 1 (corrections are of orderO(ḡ)). Let us also neglect the fact
that there are two different sets of excitation branches depending on the value ofλr . In
Fig. 24 the excitation spectrum is shown for noninteracting massless fermions as well
as for quasiparticles in a superconductor. The dispersion branches for the quasiparticle
excitations corresponding to negative energies,e = −, i.e., thequasi-antiparticles and
quasi-antiparticle-holes, hardly differs from the noninteracting antiparticle or antiparticle-
hole branches. As we shall see inSection 5.3, in weak coupling,φ � µ, such
that to very good approximationε−

k,r � k + µ. On the other hand, the dispersion
branches for the quasiparticle excitations corresponding to positive energies,e = +,
differ considerably from the noninteracting particle or hole branches. The most notable
feature is an energy gap at the Fermi surface,k = µ, between the quasiparticle and
quasiparticle-hole branches. This indicatesthat, in a superconductor, it costs an energy
2φ to excite quasiparticle–quasiparticle-hole pairs at the Fermi surface. In contrast, in
a noninteracting system it costs no energy to excite particle-hole pairs at the Fermi
surface. The superconducting state is thus energetically favoured compared to the normal-
conducting (noninteracting) state. As a rule of thumb, the more fermionic excitations
branches develop a gap (the more fermions form Cooper pairs), and the larger the
associated gap, the lower is the ground state energy, and the more energetically favoured is
the particular superconducting state.

In the CFL and CSL case, there are two different excitation branches with two different
gaps,ε+

µ,1(φ) = √
λ1φ ≡ 2φ andε+

µ,2(φ) = √
λ2φ ≡ φ. Consequently, it costs twice

the amount of energy to excite quasiparticle excitations from the first branch than from the
second. In the 2SC and polar phases, there are also two different excitation branches, but
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Fig. 24. The excitation spectrum for (a) noninteracting massless particles and (b) quasiparticles in a
superconductor. The value of the gap functionφe(K ) is assumed to be constant,φ = 0.5µ. The excitation
energies for noninteracting particles areεk(0) = k − µ for particles (solid),εk(0) = µ − k for holes (dashed),
εk(0) = −(k+µ) for antiparticles (dotted), andεk(0) = k+µ for antiparticle-holes (dash–dotted). The excitation
energies for quasiparticles areεk(φ) = −

√
(k − µ)2 + φ2 (solid), εk(φ) =

√
(k − µ)2 + φ2 for quasiparticle-

holes (dashed),εk(φ) = −
√
(k + µ)2 + φ2 for quasi-antiparticles (dotted), andεk(φ) =

√
(k + µ)2 + φ2 for

quasi-antiparticle-holes (dash–dotted) [151].

the one corresponding to unpaired fermionic excitations is gapless,ε+
µ,2 = 0. In the next

section, the gap equation (140) for the gapfunctionφe(K ) will be solved, which allows us
to determine the magnitude of the gap at the Fermi surface.

5.3. Solution of the gap equation

In order to solve the gap equation (140), insert Eqs. (146) and (151) into (137) for Ξ +,

Ξ +(K ) = −
∑
e,r

γ0Mkγ0Pr
kΛ

−e
k

φe(K )

[k0/Z(k0)]2 − [εe
k,r (φ

e)]2 . (153)

(By the way, this result demonstrates the claim made earlier thatG+ andΞ + have the same
poles.) Now insert this equation into the gap equation (140), multiply from the right with
M†

kΛ
e
k, and trace over colour, flavour, and Dirac space. The result is an equation for the

scalar gap functionφe(K ),

φe(K ) = g2T
∑

n

∫
d3q
(2π)3

∑
e′,s

φe′
(Q)

[q0/Z(q0)]2 − [εe′
q,s(φ

e′
)]2�

ab
µν(K − Q)

× T µν,ee′
ab,s (k,q), (154)
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where

T µν,ee′
ab,s (k,q) = −Tr[γ µTT

a γ0Mqγ0Ps
qΛ

−e′
q γ νTbM†

kΛ
e
k]

Tr[MkM†
kΛ

e
k] . (155)

The form of this gap equation is the same for all colour-superconductingphases considered
here. The difference lies in the excitation spectrum and the structure of the term

T µν,ee′
ab,s (k,q).

At this point it is convenient to explain the power counting scheme in weak coupling,
g � 1. The right-hand side of Eq. (154) has a prefactorg2. Consequently, in order to
satisfy the equality, after performing the integral there have to be terms∼φ/g2, which
together with the prefactor produce a term∼O(φ), i.e., which is of the same order as the
left-hand side. These are the so-called terms ofleading orderin the gap equation. Then
there are terms of so-calledsubleading order. These enter the right-hand side of the gap
equation at orderO(gφ). The terms of so-called sub-subleading orderare∼O(g2φ). It
turns out thatonly the terms of leading and subleading ordercan be reliably calculated in
weak coupling.

In order to proceed, one has to make further approximations. As shown in [155], to
leading and subleading orderone does not need the fully self-consistent gluon propagator;
it suffices to employ the gluon propagator in HDL approximation, cf.Section 4.4.1. The
HDL gluon propagator is diagonal in adjoint colours,�ab

µν ≡ δab�µν . For the sake of
definiteness, I choose pure Coulomb gauge, where

�00(P) = ��(P), �0i (P) = 0, �i j (P) = �t (P)(δi j − p̂i p̂ j ), (156)

with P ≡ K − Q and the longitudinal and transverse propagators��,t introduced in
Eq. (93). In fact, it is not even necessary to use the full form of the HDL propagator. In weak
coupling, power counting along the lines of argument given above reveals [40, 59, 156] that
the dominant, leading-order contribution to the gap equation comes from almost static,
Landau-damped magnetic gluons. Theirpropagator may be approximated by

�LDM
t (P) � p4

p6 + M4ω2
Θ(M − p), (157)

whereM2 = (3π/4)m2
g. To subleading order, there are two contributions, from nonstatic

magnetic gluons,

�NSM
t (p) � 1

p2Θ(p − M), (158)

and from static electric gluons,

�SE
00(p) � − 1

p2 + 3m2
g
. (159)

All other terms in the HDL gluon propagator contribute to sub-subleading order.
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In pure Coulomb gauge, one only needs the 00-component,T 00,ee′
ab,s (k,q), and the

transverse projection of thei j -components of the tensorT µν,ee′
ab,s (k,q),

T t,ee′
ab,s (k,q) ≡ −(δi j − p̂i p̂ j )T i j ,ee′

ab,s (k,q), (160)

where the extra minus sign is convention. In [51] it was shown thatone can writethese
components in terms of a power series inp2/(kq), wherep ≡ |k − q|, with coefficients
η
�,t
2m which depend onk, q and the productee′, and an overall normalization factoras

which is the same for the 00- and the transverse component. The power series overm start
at m = −1 and, for spin-zero and spin-one gaps, terminate atm = 2. The normalization
factors satisfy the constraint

∑
s as = 1.

Performing the Matsubara sum in Eq. (154) one then obtains

φe(εe
k,r , k) = g2

16π2k

∫ µ+δ

µ−δ
dqq

∑
e′,s

asZ(εe′
q,s)

φe′
(εe′

q,s,q)

εe′
q,s

tanh

(
εe′

q,s

2T

)

×
∑
m

∫ k+q

|k−q|
dpp

(
p2

kq

)m

× {−2�SE
00(p)η

�
2m + [2�NSM

t (p)+�LDM
t (εe′

q,s + εe
k,r , p)

+�LDM
t (εe′

q,s − εe
k,r , p)]ηt

2m}. (161)

Several approximations have been made to obtain this result. First, the integration overq
has been restricted to a narrow interval of length 2δ around the Fermi surface,δ ∼ M.
It turns out that this approximation is good to subleading order; due to the momentum
dependence of the gap function, the value of the cut-off affects the colour-superconducting
gap parameter only at sub-subleading order [40]. Second, when evaluating the Matsubara
sum via contour integration, to subleading order the value of the polesq0 = ±Z(q0)ε

e′
q,s

may be approximated byq0 � ±εe′
q,s everywhere except in the residue of the contour

integral. Thesingle factor ofZ(εe′
q,s) under the integral arises from the residue. In the

argument of this factor, one has also made the approximationq0 � ±εe′
q,s, sincethe

logarithm in q0 in Eq. (145) gives at most a subleading contribution to the integral
[51, 153]. Third, the gap function was assumed to be an even function of energy,φe(k0) ≡
φe(−k0) [40]. Fourth, the gap function was assumed to be isotropic in momentum space,
φe(k) ≡ φe(k) [51]. Finally, the imaginary part ofφe was neglected [40].

How do theleading,∼O(φ), and subleading,∼O(gφ), termsarise? To this end, one
has to power-count the different contributions to the integral in Eq. (161). One uses
the fact (which will be confirmedbelow) that in weak coupling,φ ∼ µ exp(−1/g).
Neglecting all subtleties regarding different excitation branches, and settingεe′

q,s ≡ εe′
q ≡√

(e′q − µ)2 + φ2, for e′ = + the integral overq gives rise to a term

∫ µ+δ

µ−δ
dq

ε+
q

≡ 2
∫ δ

0

dξ√
ξ2 + φ2
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= 2 ln

(
δ +√

δ2 + φ2

φ

)
� 2 ln

(
2δ

φ

)

∼ ln

[
g

exp(−1/g)

]
∼ 1

g
, (162)

where I have substituted the variableξ ≡ q − µ and used the fact thatδ ∼ M ∼ gµ 	
φ ∼ µ exp(−1/g). The logarithm appearing in the estimate (162) is called the “BCS-
logarithm”, because it also appears in standard BCS theory [111]. For e′ = −, theBCS-
logarithm does not occur, asε−

q � q + µ, such that the integral is parametrically only of
orderδ/µ ∼ M/µ ∼ g (provided that the gap functionφ− falls off sufficiently fast that
one may restrict the integral to a narrow range around the Fermi surface).

For the leading-order contribution to the gap equation, we need another term which
is also∼1/g, such that this term and the BCS-logarithm combine to give a contribution
∼1/g2 which cancels the prefactorg2 in front of the integral in Eq. (161). To estimate
the order of magnitude of the remaining terms, one notes that the coefficientsη

�,t
2m are

parametrically at most of orderO(1) [51], such that they can be neglected for the purpose
of power counting. The term∼1/g which we are looking for arises from the termm = 0
in the sum overm in conjunction with the Landau-damped magnetic gluon propagator.
Abbreviatingω± ≡ εe′

q,s ± εe
k,r , one estimates

∫ k+q

k−q
dpp�LDM

t (ω±, p)

=
∫ M

k−q
dp

p5

p6 + M4ω2±
= 1

6
ln

[
M6 + M4ω2±

(k − q)6 + M4ω2±

]
∼ ln

(
M2

ω2±

)
, (163)

where the approximationk � q was used. (Only whenk − q � 0, may the logarithm
become large, see argument below. Otherwise, ifk−q ∼ M, the logarithm is only of order
O(1), not O(1/g).) If either e = − or e′ = −, or both e = e′ = −, the logarithm is
parametrically of orderO(1), andnot ∼1/g. Consequently, the only case of interest is if
bothe = e′ = +. In thiscase,ω± ∼ φ, and the logarithm is large, ln(µ/φ) ∼ 1/g.

One readily convinces oneself that thep integral over theother terms in Eq. (161) gives
at most a contribution of orderO(1). In combination with the BCS-logarithm, this leads to
a subleading contribution in the gap equation. From the quasi-antiparticle poles,e′ = −,
one does not obtain a large BCS-logarithm, but a term∼g. With the prefactor and a factor
of φ from the gap function under the integral, their contribution to the gap equation is
of orderg3φ, i.e., even beyond sub-subleading order. In the following, one may therefore
safely neglect the contribution from quasi-antiparticles when computing the gap for the
quasiparticleexcitations,e = +.

In order to proceed, one performs thep integrals, which can be done exactly [51],
but only needs to be known to orderO(1). One furthermore analyses the coefficients
η
�,t
2m and realizes [51] that, to subleading order, one may approximatek � q � µ in

the expressions for these coefficients. Thus, they become pure numbers of orderO(1).
Moreover, to subleading order the coefficientsη�,t−2 ≡ 0 andneed not be considered further.
I list the coefficients for m = 0,1,2 in Table 5 together with the normalization factors



D.H. Rischke / Progress in Particle and Nuclear Physics 52 (2004) 197–296 283

Table 5
The normalization factorsas, the coefficients η�,t2m, and the constantd from Eq. (165) in various colour-
superconducting phases. In the polar phase,ϑ is the angle between the direction of the colour-superconducting
order parameter and the momentum of the quarks in the Cooper pair

Phase a1 a2 η�0 η�2 η�4 ηt
0 ηt

2 ηt
4 d

2SC 1 0 2
3 − 1

6 0 2
3

1
6 0 0

CFL 1
3

2
3

2
3 − 1

6 0 2
3

1
6 0 0

CSL 2
3

1
3

2
3 − 7

18
1
18

2
3 − 5

18 0 5

Polar 1 0 2
3 − 2+cos2 ϑ

6
1+cos2 ϑ

24
2
3 − 2−cos2 ϑ

6
1−3 cos2 ϑ

24
3
2(3 + cos2ϑ)

as for the four colour-superconducting phases considered here. The final result for the gap
equation can be written in the concise form [51] (let us omit thesuperscript “+” for the
sake of simplicity)

φ(εk,r , k) = ḡ2
∫ δ

0
d(q − µ)

∑
s

asZ(εq,s)
φ(εq,s,q)

εq,s
tanh

(εq,s

2T

)

× 1

2
ln

(
b2µ2

|ε2
q,s − ε2

k,r |

)
, (164)

which is exact to subleading order. In Eq. (164) I have introduced

b ≡ b̃exp(−d), b̃ ≡ 256π4
(

2

Nf g2

)5/2

,

d = − 6

ηt
0
[η�2 + ηt

2 + 2(η�4 + ηt
4)]. (165)

The Nf -dependence ofb arises from the corresponding dependence of the gluon mass
parametermg, cf. Eq. (99). The values for the constantd are also listed inTable 5. For
the spin-zero colour-superconducting phases,d = 0, due to an accidental cancellation of
the coefficientsη�2 andηt

2. Thisdoes not happen in the spin-onephases and, consequently,
d �= 0.

In order to solve Eq. (164), one makes the following approximation which was first
proposed by Son [156] and is valid to subleading order,

1

2
ln

(
b2µ2

|ε2
q,s − ε2

k,r |

)
� Θ(εq,s − εk,r ) ln

(
bµ

εq,s

)

+Θ(εk,r − εq,s) ln

(
bµ

εk,r

)
. (166)

The remainder of the calculation is technical, but straightforward and given in detail in
[51]. To summarize the steps, a suitable substitution of variables allows to rewrite the
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gap equation (164), which is an integral equation, in terms of Airy’s differential equation
[51, 153]. The result for the gap function has the form

φ(xr ) ≡ φ0F(xr ), (167)

where φ0 is the value of the gap function at the Fermi surface, i.e., the colour-
superconducting gap parameter or “gap”, andF(xr ) parametrizes the momentum
dependence of the gap function. The variablexr is defined as

xr ≡ ḡ ln

(
2bµ

k − µ+ εk,r

)
. (168)

At the Fermi surface,k = µ, one hasxr ≡ x∗
r = ḡ ln[2bµ/(

√
λrφ0)] = π/2 + O(ḡ) ∼

O(1). If one moves away from the Fermi surface,xr stays of order O(1), as long as the
momentum difference from the Fermi surface is|k − µ| ∼ O(φ). When|k − µ| ∼ M
or larger,xr ∼ O(ḡ). Theprecise form of the functionF(xr ) is not very illuminating (it
consists of a combination of Airy functions [51, 153]), and thus will not be discussed here.
All one needs to know is that it has a narrow peak in an interval|k − µ| ∼ O(φ) around
the Fermi surface. At the Fermi surface,xr ≡ x∗

r , the function F(xr ) assumes the value
F(x∗

r ) ≡ 1 + O(ḡ2). At a distance |k − µ| ∼ M from the Fermi surface,F(xr ) ∼ O(ḡ).
If one neglects the factorZ(εq,s) in Eq. (164), the differential equation satisfied by the
gap function is that of the harmonic oscillator and, consequently, the solution of the gap
equation becomes simpler and more amenable to interpretation:F(xr ) ≡ sinxr [40, 156].

The value of the gap function at the Fermi surface is

φ0 = 2bb′
0µ exp

(
− π

2ḡ

)
(λ

a1
1 λ

a2
2 )

−1/2. (169)

The constantb′
0 ≡ exp[−(π2 + 4)/8] arises from the wavefunction renormalization

factor Z(εq,s) in Eq. (164) [59, 153]. The result (169) differs from the standard BCS
result in the power of the coupling constantg in the exponent. In weak-coupling BCS
theory,φ0 ∼ exp(−1/g2), while hereφ0 ∼ exp(−1/g). Thedifference in the parametric
dependence ong arises from the long-range nature of magnetic gluon exchange. In
BCS theory, the attractive interaction is assumed to be short-range (point-like or at least
exponentially screened). On the other hand, in QCD static magnetic gluon exchange is not
screened [13]. Almost static magnetic gluons are dynamically screened, but the screening
is rather weak. It gives rise to the large logarithm (163) in addition to the BCS logarithm
(162). This reduces the power ofg in the exponent.

In Table 6I list the value of thegapφ0 in units of its value in the 2SC phase. For
the spin-one gaps, the nonzero value of the constantd leads to a strong suppression
∼e−d ∼ 10−2 − 10−3 as compared to the spin-zero gaps. In the CFLand CSLphases,
the second gapped excitation leads to a nontrivial factor(λ

a1
1 λ

a2
2 )

−1/2 < 1, which reduces
the gap as compared to the 2SC and polar phases where there isonly a single gapped
excitation.

The result (169) is rigorously valid in weak coupling, i.e., for asymptotically large
quark chemical potentials, where the value of the strong coupling constant evaluated at the
scaleµ is small,g(µ) � 1. However, for phenomenology it is of considerable interest to
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Table 6
The value of the gap function at the Fermi surface,φ0 in units of its value in the 2SC phase, and the critical
temperature, in units of its value expected from BCS theory, Eq. (28), and in units ofthe critical temperature in
the 2SC phase,T2SC

c

Phase φ0/φ
2SC
0 Tc/TBCS

c Tc/T2SC
c

2SC 1 1 1

CFL 2−1/3 21/3 1

CSL 2−2/3e−d 22/3 e−d

Polar e−d 1 e−d

determine the gap also at values ofµ which mightoccur in nature, for instance in the core
of compact stellar objects. To this end, oneextrapolates the weak-coupling result (169) to
large values ofg(µ) ∼ O(1). Such an extrapolation has to be considered under the caveat
that the sub-subleading terms are not really small forg(µ) ∼ 1 and could lead tolarge
deviations of the actual value of the gap from the subleading result (169). Nevertheless, the
computation ofφ0 at g(µ) � 1 is a well-posed problem with a definite result, and so is its
extrapolation to large values ofg(µ). In this sense, this approach should be considered to
be more reliable than ad hoc calculations within NJL-type models which are very popular
in the description of colour-superconducting quark matter [18].

For the running of the strong coupling constantg with µ/Λ, whereΛ is the QCD scale
parameter, I take the standard 3-loop formula [36]. I assume that there are onlyNf = 3
active quark flavours involved in the running of the coupling constant, so that in order to
obtain the correct value ofg(µ) at the mass of theZ boson, one has to adjust the QCD
scale parameter,Λ = 364 MeV. I also takeNf = 3 in thefactorb in Eq. (165). Physically,
this means that, independent of the number of quark flavours which form Cooper pairs,
there are always three (massless) quark flavours which screen colour charges. The result
of extrapolating Eq. (169) to realistic values ofµ is shown inFig. 25(a) for the various
colour-superconducting phases considered here.

Oneobserves that the 2SC phase has the largest gap,φ2SC
0 � 10 MeV followed by the

CFL phase. The spin-one phases have gaps which are about 2 to 3 orders of magnitude
smaller,φ J=1

0 ∼ 10−2−10−1 MeV. The gap is approximately zero for chemical potentials
below 500 MeV, rapidly rises to assume a maximum aroundµ � 600 MeV and then
decreases. (For larger values ofµ it will eventually increase again.) This behaviour is due
to the dependence ofφ0 on g. For large values ofg (small values ofµ), the power-law
behaviourg−5 from the prefactorb leads to a suppression, while at small values ofg
(large values ofµ), the exponential suppression∼ exp(−1/g) dominates. This leads to
a maximum for intermediate values ofµ. (For asymptotically large values ofµ, thegap
increases again, because the prefactorµ dominates theµ dependence of the remaining
factors.)

One can also solve the gap equation at nonzero temperature. One finds that the
shapeF(xr ) of the gap function hardly changes withT , but thatthe valueof the gap
decreases [40]. The gap equation (140) is equivalent to the one obtained in the mean-field
approximation [151], and therefore the temperaturedependence of the gap follows the
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Fig. 25. (a) The gap and (b) the critical temperature as afunction of the quark chemical potential. Solid curves
are for the 2SC phase, and dotted curves for the CFL phase. (In the case of thecritical temperature, both curves
coincide.) The long-dashed curve is for the CSL phase, and the dashed and dash–dotted curves are for the polar
phase withϑ = π/2 andϑ = 0, respectively.

predictions from mean-field theory. In particular, the transition to the normal-conducting
phase is of second order, irrespective of the symmetries of the order parameter. The critical
temperatureTc for this transition can be computed analytically, for details see [40, 51, 153].
The result is [51]

Tc = eγ

π
φ0(λ

a1
1 λ

a2
2 )

1/2[1 + O(g)]. (170)

This result is surprising for two reasons. First, in a phase with a single gapped excitation,
like the2SC phase or the polar phase, where(λ

a1
1 λ

a2
2 )

1/2 ≡ 1, the critical temperature in
QCD, measured in units of the gap, is thesameas in BCS theory [40], at least to leading
order in weak coupling. This is unexpected, since we have seen that the dependence of
the gap itself ong is parametrically very different than in BCS theory. Second, in a phase
with two different nontrivial excitation branches, like the CFL and CSL phase, the factor
(λ

a1
1 λ

a2
2 )

1/2 �= 1 violatesthe expectation from BCS theory [50, 51]. In Table 6I show
Tc in units of the critical temperature expected from BCS theory,TBCS

c ≡ (eγ /π)φ0, to
demonstrate this violation. In physical units, say the value of the critical temperature in
the 2SCphase,T2SC

c = (eγ /π)φ2SC
0 , the factor(λa1

1 λ
a2
2 )

1/2 cancels against its inverse in
Eq. (169). This leads to the conclusion that, in the mean-field type approach pursued here,
the critical temperatures in the 2SC and CFL phases are actually identical. The critical
temperatures in the spin-one phases are just a factore−d smaller than in the 2SC and CFL
phases [59].
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The critical temperature (170) is shown asa function ofµ in Fig. 25(b). These curves
also define the boundaries of the colour-superconducting phases in the phase diagram
of nuclear matter, cf.Fig. 1. The subleading result (170) for Tc implies that one would
have to cool quark matter below temperatures of order 5 MeV, before one enters a
colour-superconducting quark matter phase(the 2SC or CFL phase). This means that,
unless sub-subleading corrections to the gap (169) (and thus to Tc) are large, colour
superconductivity is irrelevant in the context of heavy-ion physics, but that it may play
a large rolefor compact stellar objects which have a sufficiently dense core. While spin-
zero colour-superconducting matter may occur already quite early in the evolution of such
a compact stellar object, i.e., while it is still comparatively hot, matter in a spin-one colour-
superconducting state only occurs after the core of the stellar object has cooled below a
temperature of order 10 keV, i.e., in the later stage of its evolution [157].

5.4. Gluon and photon properties

In this section, I take a first step towards a self-consistent solution of the
Dyson–Schwinger equations (132) and compute gluon properties in a colour
superconductor. Within the two-loop approximation toΓ2, thegluon self-energy consists of
the diagrams shown inFig. 15. At temperatures of relevance for colour superconductivity,
T ≤ Tc ∼ φ0 ∼ µ exp(−1/g) � µ, we may neglect the contributions from the gluon
(and ghost) loops to the gluon self-energy: they are∼g2T2, while the quark loop is
∼g2µ2 	 g2T2. Thus, the gluon self-energy in momentum space is

Π µν
ab (P) = g2

2

∫
K

Tr[Γµ
a S(K )Γ ν

b S(K − P)], (171)

where the trace runs over colour, flavour, Dirac, and Nambu–Gor’kov space. By
introducing the Nambu–Gor’kov basis one has effectively doubled the degrees of freedom
by introducing charge-conjugate quarks in addition to quarks [45]. The factor 1/2 in
Eq. (171) preventsovercounting these degrees of freedom.

Similarly to the gluon self-energy one can compute the photon self-energyΠ µν
γ γ

replacing the quark–gluon verticesΓµ
a ,Γ ν

b in Eq. (171) by the corresponding ones for
the coupling between quarks and photons,

Γµ
γ ≡ e

g

(
γ µQ 0

0 −γ µQ

)
, (172)

whereQ ≡ diag(2/3,−1/3,−1/3) is the quark electric charge matrix.Furthermore, as
discussed inSection 2.4.2, in a colour superconductor gluons can mix with the photon,
leading to a “rotated” electromagnetic[Ũ(1)] symmetry in the 2SC and CFL phases.
This fact manifests itself in a nonvanishing “mixed” gluon-photon self-energyΠ µν

aγ , which
follows from Eq. (171) by replacing just one of the quark–gluon vertices with the quark-
photon vertex (172). In order to determine the gluon and photon properties in a colour
superconductor, one has to compute all these different self-energies. For the sake of
convenience, in the following let us set the indexγ ≡ 9 and consider Eq. (171) for
a,b = 1,2, . . . ,9. I also introduceT9 ≡ (e/g)Q as the appropriate generator for[U(1)em].
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(a) (b)

Fig. 26. Contributions from (a) normal and (b) anomalousquark propagation to the self-energies of gluons and
photons, and the mixed gluon-photon self-energy. The notation follows that ofFig. 23.

Taking the trace over Nambu–Gor’kov space in Eq. (171), one realizes that the quark
loop consists of four contributions, two“regular” ones with normal propagatorsG± for
quarks and charge-conjugate quarks and two with anomalous propagatorsΞ ±,

Π µν
ab (P) = g2

2

∫
K

Tr[γ µTaG+(K )γ νTbG+(K − P)

+ γ µTT
a G−(K )γ νTT

b G−(K − P)− γ µTaΞ −(K )γ νTT
b Ξ +(K − P)

− γ µTT
a Ξ +(K )γ νTbΞ −(K − P)]. (173)

The two different topologies corresponding to these contributions are shown inFig. 26.
To further evaluate the trace one has to specify which colour-superconducting phase

one would like to consider. The form of the propagatorsG±,Ξ ± can then be determined
following the method outlined inSection 5.2, see Eqs. (151) and (153). After inserting
these propagators into Eq. (173), one performs the Matsubara sum. The resulting
expressions for the self-energies are rather unwieldy and will not be shown here. For
the 2SC phase they were first derived in [45] and for the CFL phase in [158]. For the
spin-one colour-superconducting phases, this was done in [159]. To further evaluate these
expressions, one has to compute the integral over d3k. For anarbitrary gluon 4-momentum
Pµ, this has not yet been done. However, in the static, homogeneous limit, the self-energy
Π µν

ab (0) was computed in the aforementioned references in order to derive the Debye
and Meissner masses in the respective colour-superconducting phases. The results will be
discussed in more detail in the following. The gluon self-energy in the 2SC phase was also
evaluated for nonzero energies and momentap0, p, whichare small compared to the quark
chemical potential. This calculation is rather technical, and I simply refer to [121, 160] for
the details. The main result was that the modification of thegluon self-energy in a colour
superconductor does not influence the value for the gap parameter at leading or subleading
order in weak coupling. For the other colour-superconducting phases, a similar calculation
has yet to be done.

In general, in a medium at nonzero temperature and/or density static, long-wavelength
(colour-) electric fields are screened. The screening length is determined by the (inverse)
Debye mass. If the medium is normal-conducting, static, long-wavelength (colour-)
magnetic fields are not screened. This changes in a superconductor, where the Meissner
effect expels (colour-) magnetic fields. Theycan only penetrate a certain distance into
the superconducting medium. For static, long-wavelength (colour-) magnetic fields, the
(inverse) penetration length is determined by the so-called Meissner mass. The acquisition
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Table 7
The Debye masses for gluons, photons and from the mixed gluon–photon polarization tensor for various colour-
superconducting phases. The results are given in units ofN f µ

2/(6π2), where N f = 2 in the 2SC phase,
N f = 3 in the CFLphase, andN f = 1 in the spin-one colour-superconducting phases. The constants are
ζ ≡ (21− 8 ln 2)/54,α ≡ (3+ 4 ln 2)/27, andβ ≡ (6 − 4 ln 2)/9

Gluons Mixed Photon

a 1 2 3 4 5 6 7 8 1–7 8 9

2SC 0 0 0 3
2g2 3

2g2 3
2 g2 3

2 g2 3g2 0 0 2e2

CFL 3ζg2 3ζg2 3ζg2 3ζg2 3ζg2 3ζg2 3ζg2 3ζg2 0 −√
12ζeg 4ζe2

CSL 3βg2 3αg2 3βg2 3βg2 3αg2 3βg2 3αg2 3βg2 0 0 18q2e2

Polar 0 0 0 3
2g2 3

2g2 3
2 g2 3

2 g2 3g2 0 0 18q2e2

Table 8
The Meissner mass for gluons, photons and from the mixed gluon–photon polarization tensor for various colour-
superconducting phases. The results are given in units ofN f µ

2/(6π2), where N f = 2 in the 2SC phase,
N f = 3 in the CFLphase, andN f = 1 in the spin-one colour-superconducting phases. The constants are
ζ ≡ (21− 8 ln 2)/54,α ≡ (3+ 4 ln 2)/27, andβ ≡ (6 − 4 ln 2)/9

Gluons Mixed Photon

a 1 2 3 4 5 6 7 8 1–7 8 9

2SC 0 0 0 1
2g2 1

2 g2 1
2g2 1

2g2 1
3g2 0 1√

27
eg 1

9e2

CFL ζg2 ζg2 ζg2 ζg2 ζg2 ζg2 ζg2 ζg2 0 − 2√
3
ζeg 4

3ζe2

CSL βg2 αg2 βg2 βg2 αg2 βg2 αg2 βg2 0 0 6q2e2

Polar 0 0 0 1
2g2 1

2 g2 1
2g2 1

2g2 1
3g2 0 2√

3
qeg 4q2e2

of a Meissner mass by a gauge boson indicates that the corresponding gauge symmetry
is broken via the Anderson–Higgs mechanism. The Debye and Meissner masses are
defined as

m2
D,ab ≡ − lim

p→0
Π 00

ab(0,p), m2
M,ab ≡ lim

p→0
Π i i

ab(0,p). (174)

I present the values for the Debye masses inTable 7and for the Meissner masses inTable 8
for various colour-superconducting phases.

In the 2SC and polar phases, the Meissner mass of the first three gluons vanishes. These
gluons correspond to the unbroken[SU(2)]c subgroup, cf.Table 1. What is interesting
is that they also have a vanishing Debye mass, indicating that the corresponding colour-
electric fields are unscreened. Implications of this result were discussed in [161]. The other
five gluons acquire both a Debye as well as a Meissner mass. Electric and magnetic fields
are always screened in these colour-superconducting phases. Only the eighth gluon mixes
with the photon. Another interesting aspect is, however, that this mixing only occurs in
the magnetic sector, electric and colour-electric fields remain unmixed. In order to obtain
the eigenmodes of the gauge bosons, one has to diagonalize the mass matrices for electric
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Table 9
The diagonal elements of the electric and magnetic gluon–photon mass matrix and the (square of the) cosine of
the rotation angles for Debye and Meissner masses. The results are given in units ofN f µ

2/(6π2), whereN f = 2
in the 2SC phase,N f = 3 in the CFLphase, andN f = 1 in the spin-one colour-superconducting phases. The
constants areζ ≡ (21− 8 ln 2)/54 andβ ≡ (6− 4 ln 2)/9

Phase m̃2
D,8 m̃2

D,γ cos2 θD m̃2
M,8 m̃2

M,γ cos2 θM

2SC 3g2 2e2 1 1
3 g2 + 1

9e2 0 3g2/(3g2 + e2)

CFL (3g2 + 4e2)ζ 0 3g2/(3g2 + 4e2) (g2 + 4e2/3)ζ 0 3g2/(3g2 + 4e2)

CSL 3βg2 18q2e2 1 βg2 6q2e2 1

Polar 3g2 18q2e2 1 1
3 g2 + 4q2e2 0 g2/(g2 + 12q2e2)

and magnetic gluons. A zero eigenvalue in this mass matrix indicates the presence of an
unbroken “rotated”[Ũ(1)] gauge symmetry.

In the CFL phase, all gluons acquire a Debye as well as a Meissner mass, indicating
that the[SU(3)]c colour symmetry is completely broken. Photons are Debye- as well as
Meissner-screened, and there is again mixing between the eighth gluon and the photon.
In contrast to the 2SC and polar phases, however, this mixing extends also to the electric
sector. In the CSL phase, all gluons and the photon obtain Debye and Meissner masses.
There is no mixing between the gluons and the photon. This means that the mass matrix of
the(former gauge) bosons is already diagonal, and it has no zero eigenvalue. Consequently,
there is no unbroken residual symmetry, and no room for a rotation that could generate one.
This is in agreement with the general arguments presented inSection 2.4.2and summarized
in Table 1. Theparticular pattern of gluon masses reflects the residualSO(3)c+J symmetry
in the CSL phase, cf.Table 1: the gluons corresponding to the three antisymmetric
generators of[SU(3)c] (which are simultaneously generators ofSO(3)) assume a different
mass than the ones corresponding to the symmetric generators.

The final step is to diagonalize the mass matricesm2
D,ab, m2

M,ab for electric and
magnetic gluons. Since only the eighth gluon mixes with the photon, this diagonalization
is achieved by a simple orthogonal rotation in the 2× 2 block corresponding to the indices
a = 8,9. The resulting diagonal (squared) Debye massesm̃2

D,a and (squared) Meissner

massesm̃2
M,a, as well as the(square of the) cosine of the rotation anglesθD, θM are

shown inTable 9. In the case of an unbroken[Ũ(1)] symmetry, cf.Table 1, the “rotated”
(magnetic) photon is massless. The “rotated”gluon remains massive, but its degeneracy
with the other massive gluons is lifted.

The case of the polar phase is special. If there is only one quark flavour, or all quark
flavours have the same electric charge, the results shown inTables 7–9 hold. In this
case, the rotated photon is massless, and there is indeed an unbroken[Ũ(1)] symmetry.
However, in the case of two ormore quark flavours with different electric charges, the
results change [52]. Let us assume that the chemical potentials of all quark flavours are
identical. Then the (squared) gluon masses are the same, but in the mixed masses, the
factorq has to be replaced by

∑
f q f , while in the photon masses, the factorq2 is replaced

by
∑

f q2
f . In this case, it is not hard to realize that a diagonalization of the Meissner mass
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matrix does not lead to a massless rotated photon. There is therefore no[Ũ(1)] symmetry.
Consequently, spin-one colour-superconducting quark matter exhibits a Meissner effect,
while colour superconductors with spin-zero Cooper pairs do not. Due to the smallness of
the ratioφ0/mg for spin-one colour superconductors, these are very likely of type I, i.e.,
the magnetic field is completely expelled. This is in contrast to the standard model of a
neutron star, where the core is assumed to be a type-II superconductor and thus threaded
by magnetic flux tubes. It was recently argued in [162] that the short precession period
of some pulsars contradicts this assumption and requires the core of the pulsar to be a
type-I superconductor. The question then is whether the core could be made of spin-one
colour-superconducting quark matter [52].

6. Conclusions and outlook

In this review, I have presented the current knowledge of the equilibrium properties
of strongly interacting matter at large temperatures and/or densities. In particular, I have
qualitatively discussed the phase diagram. I have presented calculations of thermodynamic
properties of strongly interacting matter, both via lattice QCD, as well as within analytic
approaches. Finally, I have given an overview of colour superconductivity in weak
coupling.

Our knowledge of the QCD phase transition and the QGP at zero quark chemical
potential has tremendously increased over the last few years. Lattice QCD calculations
are well under control for the pure[SU(3)c] gaugetheory, and the quality of the data is
such that an extrapolation to the continuum limit as well as to the thermodynamic limit has
become possible. Lattice calculations withdynamical fermions are more challenging and,
consequently, the data are not of the same quality as for the pure gauge theory. The main
problem is that, with present methods of putting fermions on the lattice, the pion comes out
too heavy. Since pions dominate the equation of state in the hadronic phase, calculations of
the pressure below the chiral restoration temperature do not yet reflect the correct physics.
The challenge for the future is to improve the methods such that the pion mass on the lattice
is close to the value in nature. Besides a reliable computation of the equation of state, this
will also allow to decide the question about the order of the QCD phase transition in nature.

Another important development in lattice QCD is to extend the investigation of
thermodynamic properties to nonzero quark chemical potentials. For many years, the
fermion sign problem has impeded progress in this direction. Recent attempts, like
multiparameter reweighting, Taylor expansion aroundµ = 0, or analytic continuation from
imaginary values ofµ, have made an attempt to work around this problem. Much work
remains to be done to improve these methods in order to correctly determine the location
of the critical point in the(T, µ) plane. This is of great phenomenological importance: in
order to find a signal for the first-order phase transition to the QGP in nuclear collisions,
one has to tune the bombarding energy such that one probes the region of the phase
diagram, which is to the right of the critical point. Nuclear collisions at very high energies
most likely probe the region to the left, i.e., the crossover region of the quark–hadron
transition. By definition, there is no qualitative difference between hadronic and QGP phase
in this region, and a clear signal for the QGP will be hard to identify.
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Although the question about the location of the critical point is important and can
be investigated with the above mentioned lattice methods, these methods circumvent the
fermion sign problem rather than solving it. Moreover, they are only applicable for quark
chemical potentialsµ from zero up to values of orderT . Therefore, onewill ultimately
have to find atrue solution which also works at small temperatures and large chemical
potential, so that the colour-superconducting quark matter phase can be explored.

Analytic approaches to compute the equation of state of strongly interacting matter
at high temperature have advanced rapidly in recent years. The equation of state is now
known to all orders which are perturbatively computable. Work is in progress to determine
the remaining nonperturbative contribution of orderO(g6). Resummation techniques have
been applied to compute the thermodynamic properties of strongly interacting matter. At
large temperaturesT 	 Tc, they suggest that the QGP is a gas of weakly interacting
quasiparticles. However, when approaching the critical temperature from above, the
approaches based on resummation techniques fail to describe lattice QCD data. At the
moment, one seems to be forced to either abandon field-theoretical rigour in favour of
simple quasiparticle models with sufficientlymany fit parameters to reproduce the data, or
turn to an alternative description, such as the Polyakov loop model, which is physically
less intuitive. It remains to be shown how this model is related to the quasiparticle picture
at large temperatures.

Colour superconductivity is a rapidly evolving field. It is fairly likely that colour-
superconducting quark matter can be found in the core of compact stellar objects. It
remains to explore how this phase influences the properties of the star. Much work has
still to be done, for instance to compute the transport properties of colour-superconducting
matter and the phase diagram under the conditions of electric andcolour neutrality.
Although NJL-type models may give a qualitative picture of possible scenarios, they
are unreliable when one wants to draw quantitative conclusions. The task is to improve
existing weak-coupling calculations or apply nonperturbative techniques to obtain further
knowledge about this interesting, exotic phase of strongly interacting matter.
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