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The average and the dispersion of multiplicity distributions in nucleus-nucleus col- 
lisions are calculated assuming that the inelastic collision of two nuclei is an incoherent 
composition of collisions of individual nucleons. The average multiplicity is assumed to 
be proportional to the number of "wounded nucleons" i.e. the nucleons which under- 
went at least one inelastic collision. For the sake of comparison the average and the dis- 
persion of the number of collisions is also discussed. Our calculations indicate that in nu- 
cleus-nucleus collisions, the amplification of various characteristics of the nucleon-nucleon 
interaction is far grater than in hadron-nucleus collisions. 

1. Introduction 

In this paper we discuss multiplicity distributions of particles produced in col- 
lisions of two nuclei at high energies. Our basic assumption is that the inelastic col- 
lision of two nuclei cart be described as an incoherent composition of the collisions 

of individual nucleons. This picture is an old one. It proved useful in the description 
of nucleon-nucleus collisions [1-5] .  It seems therefore natural and interesting to 
extend it further to the nucleus-nucleus collisions in the hope of obtaining useful 
estimates of experimental characteristics such as multiplicities, dispersions and their 

dependences on nuclear parameters. 
It should be stressed that in this approach the collective effects which may occur 

in nuclei are neglected. The existence of such effects in e.g. nucleon-nucleus inter- 
actions is controversial [6,7]. It is therefore interesting to extend the investigation of 
this problem to nucleus-nucleus interactions and our calculations should prove use- 
ful by giving predictions for the cases where collective effects are absent. Should fu- 
ture experiments prove that collective effects are indeed absent in inelastic collisions* 
our scheme can be used to analyze the properties of elementary collisions which are 
otherwise difficult to see. For example, it may be possible to separate different com- 
ponents in the elementary production processes which get differently amplified in 
the processes of multiple collisions. 

* We neglect altogether the diffractive production processes. 
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462 A. Biatas et al. / Multiplicity distributions 

In the case of  nucleon-nucleus collisions a fundamental role is played by the num- 
ber of  collisions (u) of  the incident nucleon with the nucleons in the target nucleus 
[1 ]. However, the generalization of  this concept to nucleus-nucleus collisions is not 

unique. 
In this paper we propose to describe the nucleus-nucleus collisions in terms of  

the number of "wounded"  nucleons (w) i.e. the number of  nucleons which under- 
went at least one inelastic collisions in this process. For instance in the case of  nu- 
cleon-nucleus collisions there are v "wounded"  nucleons in the target nucleus and 
one "wounded"  incident nucleon. Consequently, in this case, there is a simple rela- 
tion between v and w 

w = v + l .  (1.1) 

Thus either of  them can be used. 
In the nucleus-nucleus collisions, however, there is no unique relation between v 

and w. Therefore a choice has to be made and our conjecture is that,  physically, the 
more relevant variable is w. The motivation for this choice comes from the interpre- 
tation of  the available data on nucleon-nucleus interactions [8]. The average multi- 
plicities in collisions of  a high-energy nucleon with a target nucleus of  mass number 
A follow approximately the formula 

nA = I c P  + 1 )n i l  = ½ w n I t  , (1.2) 

where nH is the average multiplicity in nucleon-nucleon collisions, and F ( ~ )  is the 
average number of  collisions (of  wounded nucleons). 

This formula suggests that the incident nucleon contr ibut ion to h A is the same as 
the contr ibut ion of each hit target nucleon and equals a p p r o x i m a t e l y  * 1 - ~n H. Thus, 
there seems to be no difference whether a nucleon is hit once or several times. This 
observation justifies the relevance of  w. 

For nucleus-nucleus collisions this picture implies that the average multiplici ty in 
a collision of  two nuclei with the mass numbers A and B is 

1 - -  ( 1 . 3 )  TAB = ] w n H  , 

while for nucleon-nucleus collisions one could also use V (as indicated in eq. (1.2)) 
here it is no longer possible. 

The main purpose of  this paper is to explore the consequences of the model  in 
which the mult ipl ici ty distributions for nucleus-nucleus collisions are given by in- 
coherent superposition of  distributions provided by each wounded nucleon. We cal- 
culated average mult ipl ici ty and dispersion in this model. We found that the expected 
nuclear effects are rather dramatic,  particularly for collisions of  two heavy nuclei. 
Consequently, we feel that experimental  investigation of  heavy nuclei collisions at 

* It may appear that this argument depends critically on the accuracy of eq. (1.2). We show later 
that this is not the case (see sect. 4). 
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high energies may indeed be useful for establishing: (a) which aspects of elementary 
collisions get amplified in nuclear interactions and (b) whether collective phenomena 
play an important role in nuclear collisions at high energies. 

The collisions of two nuclei were already discussed by many authors. The exten- 
sion of the Glauber model was used to describe elastic, quasi-elastic and total cross 
sections [9,10]. Production processes were also discussed in this framework [10]. 

Average multiplicities are discussed in sect. 2 and dispersion in sect. 3. In sect. 4 
we consider the stability of the obtained results with respect to variation of the pa- 
rameters of the model. Our conclusions are listed in the last section. The derivation 
of the formulae for the average number of wounded nucleons is given in appendix A. 
The dispersion of the number of wounded nucleons and of the number of collisions 
is derived in appendix B. 

2. Average multiplicities 

As explained in the introduction the average number of particles produced in in- 
elastic nucleus (mass number A) - nucleus (mass number B) collision is 

fiAB = ½WfiH • (2.1) 

Thus calculation offiAB reduces to calculating the average number of wounded nu- 
cleons ~. Since our basic assumption is that the inelastic collisions of two nuclei can 
be described as an incoherent composition of individual nucleons, we compute 
using probability calculus. 

In appendix A we show that the number of wounded nucleons in the collision of 
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Fig. 1. Geometry of the nucleus-nucleus collision. 
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A and B is the sum of  wounded nucleons in the nucleus A and the nucleus B: 

~AB = ~A + ~ B ,  (2.2) 

where 

Act B Bo A 
WA - OA B and ~'a OA B (2.3) 

Here o A is the nucleon-nucleus A product ion cross section, o g is the nucleon-nu- 
cleus B product ion cross section and OAB is the production cross section for the col- 
lision of nucleus A with nucleus B. The explicit formulae for OA, o B and OAB are 
given in appendix A. 

When B = 1, (2.2) reduces to 

Ao H 
1 (Ao H + a  A ) = I +  = l + b -  (2.4) W1A = "~-A OA ' 

in accordance with eq. (1.2). There, we have used the well-known expression for the 
average number of  collisions g = AOH/a A [5], [11 ], where a H is the nucleon-nu- 
cleon product ion cross section. 

In fig. 2 we show R = 1 - gWAB for various A and B nuclei and a H = 30 mb. It  is 
seen that in first approximation R is a function of  the product  AB. Furthermore,  R 
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Fig. 2. Average number of wounded nucleons (black symbols) and average number of  collisions 
(open symbols) versus AB.  o H = 30 mb. 
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increases rather rapidly for AB greater than ~400 (this is far beyond the region at- 
tainable in hadron-nucleus collisions). For comparison we also plot points for 
R v = ½(~- + 1) which fit nicely hadron-nucleus collisions. The following nuclear den- 
sities were used: 

F o r A  > 16: 
- 1  

p(r)=PO(1 + exp I r ~ )  , (2.5) 

where R = 1.07 A 1/3 frn, c = 0.545 fro. 
F o r A  = 4: 

p(r) = \rrR 2/ exp , R = 1.37 fm .  (2.6) 
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Fig. 3. Dispersion versus average for (a) number of wounded nucleons (black symbols) and (b) 
number of collisions (open symbols), o H = 30 mb. 
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3. Dispersions 

In our model each wounded nucleon contributes independently to the observed 
multiplicity distribution. Consequently, for a fixed number of wounded nucleons, 
the dispersion is given by the formula 

D2(w) a 2 (3.1) = w ~ D  H , 

where D H is the dispersion in the nucleon-nucleon interaction. Thus, the observed 
dispersion can be computed from the formula 

D 2 - 1 -  2 _ ~ W D H  + ¼ [W 2 _ ~2]  n 2 .  (3.2) 

Here we employed the following expression, implied by our model, for average mul- 
tiplicity with a given number of  wounded nucleons: 

B(w) = ½w~ H . (3.3) 

Hence the problem of computing D reduces to evaluation of  w 2 - ~2.  This calcula- 
tion is given in appendix A. The numerical results are shown in fig. 3 where dispersion 
of  the number of wounded nucleons w is plotted versus  the average. The striking fea- 
ture is that the observed dependence is approximately linear with the slope ~1.  Sim- 
ilar linear behaviour is seen for dispersion of the number of  collisions, but its slope 
is greater (~1.3). 
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Fig. 4. Dispersion of multiplicity distribution versus average multiplicity for nucleus-nucleus col- 
lisions at lab energy 300 GeV/nucleon. o H = 30 mb, 3 = 0.5. 
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In fig. 4 we plot DAB versus nAB for 300 GeV obtained from eq. (3.2) using 
ffH = 8.5 and f iH/DH = 2.0. Note that points corresponding to the hadron-nucleus 
collisions are all concentrated in the lower left corner of the diagram. This illustrates 
the extent of  the extrapolation involved in our model. 

4. Stability of the results 

In this section we discuss two possible modifications of our model which are sug- 
gested by the analyses of  the data for nucleon-nucleus collisions in refs. [1,3].  We 
shall show that although they may be important in the case of  nucleon-nucleus in- 
teractions the nucleus-nucleus collisions are far less sensitive to them. 

The first observation is that all modifications of  our model must preserve sym- 
metry of  the process of  the nucleon-nucleon interaction. The simplest realization of  

1 such symmetry is to assume that both nucleons contribute ~n H of  the multiplicity, 
as expressed in eq. (1.3). However, as discussed in refs. [1] and [3] reasonable fits to 
the data on nucleon-nucleus collision may be obtained with the formula 

nA = (13~-A + 1 - 13)nil = (13% + 1 - 213)nH , (4.1) 

where 3 ~ .  < 1 Now it is clear that/3 < ½ means that only 213 fraction of  nH gets mul- 
tiplied in the collision whereas (1 - 2/3) does not. It is obvious that such a modifica- 
tion changes the predicted average multiplicity (since it is proportional to 13). How- 
ever, the relation between dispersion and average multiplicity seems to be unaffected 
by this modification of  the model. We calculated dispersions for nucleus-nucleus col- 
lisions using eq. (4.1) (instead of  eq. (1.3)) with 13 = 0.4. We found that such correc- 
tions introduce insignificant changes to the relation between D and nA (plotted in 
figs. 3 and 4) wherever the average number of  wounded nucleons exceeds ~10,  that 
means in the majority of  cases. 

Another possible modification is to change eq. (3.2). For example in ref. [3] the 
Poisson multiplicity distribution is assumed for nucleon-nucleon interactions.With 
this assumption the formula (3.2) should be replaced by 

(4.2) 

We have calculated dispersions with this formula and again found the modifications 
unsignificant for nucleus-nucleus collisions. This is easily understood if one realizes 
that the first term in (4.2) is only a small correction to the leading second term pro- 
vided the number of  wounded nucleons exceeds ~10.  

Thus other reasonable modifications of  eq. (3.2) should also not change our con- 
clusion for nucleus-nucleus interactions. 
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5. Conclusions 

The standard description of hadron-nucleus interactions, in which inelastic col- 
lisions are incoherent compositions of the collisions of the incident hadron with in- 
dividual nucleons in the target nucleus, is extrapolated to nucleus-nucleus collisions. 
The average multiplicities are sensitive to the details of the elementary nucleon-nu- 
cleon process and therefore can be used to fix the parameters of the model. On the 
other hand the relation between dispersion and average multiplicity depends almost 
exclusively on the mechanism of the amplification of the production process in con- 
secutive collisions. It can be used therefore to distinguish between different me- 
chanisms of multiplication of particles. 

Append~ A 

Formula for the average number o f  wounded nucleons. 

The number of wounded nucleons in the collision of A and B is the sum of 
wounded nucleons in the nucleus A and the nucleus B. Thus it is enough to compute 
the average number of wounded nucleons in one nucleus e.g.B. Let us denote the 
probability of collision of the nucleon i from B with anyone of the nucleons of A 
with a given configuration S~l, ... S~A by 

p(sB;A; S~l .... S~A ) = PA(SBi ) , (A.1) 

variables are defined in fig. 1. The probability that the nucleons s~q, ... ~w where the 
collide and S~w+l,... ~ do not is 

After integrating over the configurations of B we get for the probability of having 
w e wounded nucleons in B: 

P(WB; B;A  ; s~I , ... ~A ; b) 

Here 

-- (w ~)~ [1--~(A;~l,...~;b)lS-wB 

X t-f i(A;#, . . .S~A;b)] wB . (A.2) 

~(A;#,. . .~;b)=f d2sBi p ( ~ ; A ; #  . . . .  ~)DB(b- s~i ) (A.3) 
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with 

+ ~  

DB(S )= f dz PB(S, z) ,  
- - o o  

where pB(s, z) is the single nucleon probabiiity distribution in the nucleus B (nor- 
malized to unity) which can be identified with the probability density from the sin- 
gle particle wave function. We assume all nucleons to be "equivalent" in the sense 
that all the one-nucleon probabilities are the same (this simplifying assumption can 
be removed at the expense of complicating, inessentially, the algebra which we want 
to avoid). 

We are interested only in production processes, hence we should subtract the prob- 
ability that none of the nucleons got wounded [P(w B = 0)]. Therefore, we normalize 
our probabilities as follows: 

Norm ~ f d 2 b  [1 - P(w B = 0)] 

= f d 2 b [ 1 - f d 2 S ~ l  ... d 2 d  d2sf  ... d2s B 

X DA(4)...DA(S~A ) DB(S q - b)...DB(sB - b) 

B 

X 1-1 { 1 - p ( s ~ i  ; A ; 4  , ... ~A)}] = °AB, (A.4) 
i=1 

which is, in fact, just a cross section for production in a collision of the nucleus A 
with the nucleus B (for more details see the footnote in appendix B). 

So, the average number of  wounded nucleons in B is 

OAB~B = f d2b d2~ ... d2~ 

where 

× 

% ( a ,  A ; q , ... d ; b) e(w , A, ?l .... ?A;Z') 
w B 

B 
= ~ wB( B)(1--p)B-WBpWB=Bfip(A;~,. . .S~A;b). 

w B = 1 WB 

(A.5) 
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OAB~ B = B f d2b d2s A ... d2s Ad2s  B 

X D A ( q ) . . .  D A ( ~ ) D B ( S B  - b)p(sB;A;~11,. . .  ~ ) .  (A.6)  

However,  

A 

p(sB;A;~11, ... S~A) = 1 -- 1-[ [1 -- o(s B - ~ ) ] ,  (A.7)  
i=1 

where fd2s o(s) = OH, o H being the nucleon-nucleon to ta l  inelastic cross sect ion with  
d i f f rac t ion  p roduc t ion  excluded.  F r o m  (A.6)  we get finally 

BOA 
% - , ( a . a )  

OAB 

where  OA, the to ta l  inelast ic nucleon-nucleus  cross sect ion,  is 

A 

o A =fd2b d2sBDB(SB - b) {1 - 1-I [1 - - f d Z s A D A ( ~ i )  o(s 8 - ~)l} 
i=1 

A 

=fd 2 s B (1 - I-I [1 - f d 2 s  A DA(~ti) o(s B - ~ ) 1  } (A.9)  
i= 1 a l 

because fd2b DB(sB - b)  = 1 for all s B. Repeat ing  the same calcula t ion for A we get 

WA = A°B / °AB  and the comple te  express ion for the number  o f  w o u n d e d  nucleons 
is thus 

1 
= (Ao B + BOA).  (A.10)  WAB OA B 

A p p e n d i x  B 

Generating function for  multiplicity distribu tions 

All averages discussed in this paper  can be ob ta ined  f rom the fol lowing two  gen- 
erat ing funct ions:  

A B 

F(X l .... x A ; Y l , "" Y B) = I-I I-I (1 -- oij + xiYjoij ) (B.1) 
i=1j=1 
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generates all averages where the number of  wounded nucleons is relevant, and 

A B 

•(x) = 1-I I-[ (1 - crij +xcrij) (B.2) 
i=lj=l 

generates all averages where the number of  collisions is reJevant. 

In (B.1) and (B.2) 

Oij = o(b - 4 + sB) , (B.3) 

where o(,s) is normalized, as always, to o H : 

f d2s cr(s) = o H . 

Let us compute D2 B from (B.1). From (`3.2) we know that the problem reduces 
to computing 

w 2 _ ~2 = (w 2 _ ~ 2 )  + (w 2 _ ~2 )  + 2w--~W~ - 2~ A WB" (B.4) 

The first two terms in (B.4) one obtains from immediate generalizations of  (A.5). 
For instance we have 

CrABWB(WB -- 1) = B(B - 1) f dE b d2~111 ... d2S~AA fi 2(,A; s~l , ... d ; b) D A ( 4  )"'D(S~A ) 

= B(B- l) fd2b d 2 #  ... d2 d d2slB d2s B 

X p(sB,A;  S~l .... S~A) P(.sB, A; sail .... d )  D A ( ' 4 ) " "  DA ( ' ~ ) "  (,B.5) 

Using the identity 

p(,,'( ...) p(,d ...)-" p(d ...) + p('4...)- [p(,d ...) + p(,s~...)- p(,sf . . . )  p('4--.)],  

we obtain 

OABWB(WB ~--~= B ( B -  1)(20 A - O2A ) (B.6) 

and, mutatis mutandis, 

CrAB WA (W A -- 1 ) = A ( A  - 1)(2cr B - cr2B) . (B.7) 

Here crA (crB) is the nucleon-nucleus A(B)  cross section and crZA (cr2B) is a cross sec- 
tion of  a two-nucleon object with the spatial shape of  the B(A)  nucleus: DB(s ) IDA(S)] 
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is its density distribution. So, 

w--~ - W~l =g4Z-. _ [A2(2°B - °2B) + A(°2B - ° B ) ] - - - -  
~Akl 

A2o  i 

°~lB 

_  2o2 (B.8) 
W l  _ ~2 B = 1 [B2(2o A _ 02A)+B(O2A _ OA)]_  0 - - - ~  

OAB 
AB 

We evaluate w A w B using the generating function (B.1). Expanding F in powers 
of  x 1 , ' "  x A , Y  1,"" YB we find that the coefficients of  various products give prob- 
abilities of  all possible collisions. For instance the coefficient of  x31x32 y21y~y2 term 
is the probability of  a 6-fold collision in which two nucleons from A collided three 
times each and three nucleons from B collided twice each, hence 5 nucleons got 
wounded. So the number of  wounded nucleons given by one term is equal to the 
number of  different xi 's (w A)  and the number of  different Y'k s (wB). 

l e t  us denote 

F(1 .... 1 ; Y l , . . . y B ) = F ( 1 , y ) ,  

F(1, . . . ,x i = 0, ... 1 ;Yl ,  ... YB) = Fi(O,Y) , 

F(1, , . . ,xi = O, ... 1;1 .... ,Yk  =0 ,  ... 1) = Fik(O, O ) . (B.9) 

F(1, y )  contains all the probabilities of F, while Fi(0, y )  contains all the proba- 
bilities of  F except the ones with x i to any power. Therefore Gi(Y ) = F(1, y )  - 
Fi(O , y )  contains only these probabilities which are multiplied by x i to any power 
and consequently H ( y )  = ]~i Gi(Y) is the sum of all the probabilities with weights 
WA and still multiplied by Yk'S. But we want to have all the probabilities summed 
with weights w A w B . The following expression is the one we want 

1= ~ [ n ( y  1 = 1 .... YB = 1 ) - a ( y  1 = 1 .... Yk = 0  .... YB = 1)] 
k 

A B A B 

= A B F ( 1 , 1 ) - B ~  Fi(O , 1 ) - A  ~ F k ( 1 , 0 ) + ~  ~ F / k ( 0 , 0 I , ( B . 1 0 )  
i=1 k=l  i=1 k=l  

where we have re-traced our steps back to the original generating function F [(B.9) 
explains the notation]. 

OABWA we = f d:b f ... A d:,q ... d2 4*(b, ,-'" 4 )  

X D A (~11)"" DA (~A) DB (s~). . .  D B (s~) .  (B. 11) 
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We normalize the probabilities similarly as in sect. 2. The expression for the norm 
symmetric  in A and B variables is therefore 

Norm = OAB = f d 2 b  f d 2 s A  1 ... d 2 ~  d2slB ... d2s B 

A B 

X DA(~). . .DA(S~A)DB(sB ) ...DB(SB ) {1 -- ~I  l-I [1 -- a(b - s i + s])]} . 
i=1 j=l  

(B.12) 

From (B.1) we get 

B A 

F(1,  1) = 1, Fi(O, 1) = l-I (1 - a /k ) ,  Fk(1 ,0 )  = 1-[ (1 - a ~ ) ,  
k=l  i=1 

A B 

r~(o,  o) = [I [I (1 - oti). 
l ~ i j c k  

The final result, after a straightforward algebra, is 

OABWAWB = (o A + a B -- SAB - o H N A_  1NB _ 1)AB 

with SAB , N A _ 1 and N B_ 1 defined as follows 

(B.13) 

(B.14) 

SA a =fd2b (1_ [ f d2$nA($ ) (1  _ O H D B ( b _ s ) ) B - 1 ]  [fd2s'OB($ ') 

X ( I _ O H D A ( b + s ' ) ) A  1]} , 

N A -  1 = f d2SDA(s) [1 - OHDA($)] A -  l , 

N B -  1 = f  d2s DB(S) [1 -- OHDB(S)] B -  1 . 

From (B.4), (B.8) and (B.15) we get the final formula 

w2 ~2 _ 1  [.42(20 B _ °2B)+A(°2B _ °B)] - - _ _  
_ _ OAa 

A 2 o ~  

( B . 1 5 )  
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1 - - - -  +. [ B 2 ( 2 O A - - O 2 4 ) + B ( O 2 A - - O A )  ] BZ°2A 
°AB 02 B 

2AB 
[-L aA + °B _ SAB _ °H N A - 1 N B - 1  OAOB i ,7 (B.16) + 

aAB OAB ] 

which enables us to compute D2AB given by (3.2) * 
It is worth noticing that (B.16) reduces, in the case of  the nucleon-nucleus A col- 

lision, to a compact and handy expression: 

- -  + A°H w 2 _ ~ 2  - A2°~ fd2bD2(b)  - II [l-oufd2bD2(b)]. o~ [OA 
(B.17) 

From the generating function (B.1) one can also obtain the formula (2.2) for the 
average number of  wounded nucleons. To this end one employs the function 
H(y = 1) which, after averaging over nuclear densities gives aAB~A.  

The average number of collisions F and the dispersion D 2 = v 2 - p2 we calculate 
from the generating function 

A B 

¢ ( x )  = 1-I VI (1 --  oq +xoij  ) . (B .18 )  
i= l  /=1 

* In the actual numerical calculations we used the optical limit formula for OAB 

= d2b[1 - exp(-ABaHfd2s DA(S) DB(b - s))] aAB 

and the following formula for OA(OB) , a2A(a2B): 

°A = f d % [ 1  - (1 - OHDA(b)) A ], 

O2A = f d 2 b  d2b ld2b  2 DB(b - b t)  DB(b - b2) [1 - (1 - OHDA(bl) - OHDA(b2)) A ] 

o~ A tfd 2 b ~ ( b )  21 f d  2 b t l - 2~.  ~A (~)1 A- 1 

which can be derived from the exact multiple scattering formula under only one assumption 
that  the nucleon size is small compared to sizes of  nuclei A and B. 
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Let us label the pair of  if with one index p, 1 ~ p <- AB, and re-write 

AB AB v v 
q~(X) = [ I  ( l  -- Op +Xap)= ~ I-I (1 -- Op) 1-I (XOp,), (B.19) 

p=l  v p p '  

where I; extends over all possible divisions of  the set of AB indices into two groups. 

AB-v  v AB 

O0(X) x= 1 =~Vv [lp (1--Op)~p a p , = E  o p = (B.20) 

This last expression is clearly the average number of  collisions (each element of  the 
first sum of  (B.20) is a product  of  v, the probabil i ty that AB - v nucleons did not 
collide and the probabil i ty that v nucleons did collide) for a given configuration of  
the nucleons in the colliding nuclei. So, to obtain the average number of  collisions 
for two given nuclei we have to average O¢(x)/Oxlx= 1 over the nuclear densities and 

divide by OAB: 

AB f d2b d2s A d2sBDA (s A) a(b - s A + s B) DB(sB ) 
ABe g 

~- = - - -  (B.21) 
aAB OAB 

Using the same generating function (B.18) we obtain the dispersion as follows: 

AB AB 

OAB(P(V -- 1)) = OAB \ OX 2 x=l  p p 

. . .  E o(b - 4 * 4 )  =fd2b d2sBDA(4) . . .DB(SB)i ,k  

X ~ o ( b -  s~4 t +SBm), (B.22) 
l,n¢~k 

where l, n 4: i, k means that the two pairs are different. We have therefore the fol- 
lowing three expressions to compute (we assume a(s) = OH8 2(s)): 

(i) i 4: l, k = n ,  

f d2b d2~  ... d2see DA(~)...D(s~) ~ o(b- ~ + s~) l~ o(b- ~ + s~) 
/,k 

= B A ( A -  1 ) o  2 × f dZbD2(b), 
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(ii) 

A. Biatas et al. /Multiplicity distributions 

i=l,k=/=n, 

fl2b d2q ... d2s~, D~(~I )... t)(,~,) ~ o(t, - 4 + s5  ~ n  °(~ - 4 + g)  
i,k 

=AB(B-  1 ) o  2 X f d2b D2(b), 

(iii) i 4= l,  k 4= n,  

k4:n 

=AB(A - 1) (B - 1) 0 2 fd2b × 2 ( b ) ,  

where ×(b) = fd2s DA(b + s) DB(s ). The final formula  is: 

OABD 2 =AB 0 2 ((A - 1) (JR - 1)fd2b x2(b) + (B - 1)fdZb D2(b) 

+ ( A -  1) f d2bDZ(b)_ °ARAB+ °H1 }. (B.23) 
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