Electric Field of a Uniformly Charged Rod
Part II: Multiple Observation Locations
1 Previous Work
This activity builds on the activity entitled Electric Field of a Uniformly Charged Rod Part I: One Observation Location. Complete Part I before starting this activity.
2 Nested Loops
To see the pattern of electric field near the rod, you need many observation locations. The contribution of all point charges must be calculated and summed up for each observation location. Hence, you need two loops, one inside the other. The outer loop specifies an observation location, and the inner loop calculates the field at that observation location.
To achieve this:
• Comment out the statement
 Earrow = arrow(pos=vector(-0.3,0.05,0), axis=(0.1,0,0), color=color.orange)
 • Create a loop that varies the observation location, creating a new arrow at each observation location.
• Take all of the statements from the CALCULATIONS section of your program for part I, and indent them inside the loop that varies the observation location.
If your rod is oriented along the
[image: image1.wmf]x

 axis, your code would look something like the following (if your rod is oriented along the
[image: image2.wmf]y

 axis or the
[image: image3.wmf]z

 axis, you need to make minor modifications to this scheme):
 Nobs = 12
 dxobs = L/Nobs
 xobs = -L/2 + dxobs/2
 while xobs < L/2:
 obslocation = vector(xobs,y,0) # you should choose a value for y
 Earrow = arrow(pos=obslocation, axis=(0.1,0,0), color=color.orange)
 # your entire existing field calculation loop goes here, indented a level, like this:
 Enet = vector(0,0,0) ## starts out at zero and should build up
 xq = -L/2 + dxq/2
 while xq < L/2:
 ## Calculate the source location as a vector:
 sourcelocation = vector(xq,0,0)
 # and so on
 # increment the observation location:
 xobs = xobs + dxobs
You can easily indent a block of statements by selecting them, then choosing the menu option Format
[image: image4.wmf]>

 Indent Region.
3 An Electron Moves Near a Charged Rod
To apply the Momentum Principle to predict the motion of an electron near a charged rod, you will use the basic iterative calculation structure we have developed so far. At each step, to calculate the new electric force on the electron, you will need to recalculate the electric field of the rod at the electron's current location.
4 Motion of an Electron
Create a perpetual loop using while True:
Assign an initial position and momentum to an electron, and animate its motion by calculating the electric field at the location of the electron, calculating the electric force, then applying the Momentum Principle
[image: image5.wmf]t

F

p

p

i

f

D

+

net

=

r

r

r

 to update the momentum, then updating the position (
[image: image6.wmf]t

v

r

r

i

f

D

+

avg

=

r

r

r

), in a loop, where
[image: image7.wmf]avg

v

r

 can be approximated by
[image: image8.wmf]f

v

r

. Note that in order to calculate the force on the electron you always have to calculate the electric field of the rod at the current location of the electron. Leave a trail, so you can study the trajectory:
 # in the constants section, add qe = -1.6e-19 and me = 9e-31
 electron = sphere(... make_trail=True) # specify initial position near the rod

 p = me*vector(...) # p = mv; specify initial velocity as a vector

 deltat = ? # see discussion below for specifying the integration step size

 while True:

 # calculate the electric field with observation location = electron.pos

 ...

 # calculate the electric force and update the electron momentum

 ...

 # update the electron's position

For a start, set the initial position of the electron to be on the midplane of the rod, with an initial velocity that should give an approximately circular orbit around the rod. Set deltat to be a fraction of the time required to make one orbit. You may want to slow down the plotting by inserting for example rate(20) inside the outer loop (in this case, there would be 20 updates per second).
Once you have succeeded in making the electron orbit the rod in the midplane, move the initial position toward one end of the rod and see what kind of orbit you get.
 If you are using a version of VPython older than 5.70 (execute print(version) to see what version you have installed), you need to create a curve object to represent the trail, and continually append points to the curve object:
 trail = curve(color=electron.color) # this goes before the loop
 while True:

 ...

 trail.append(pos=electron.pos) # in the loop, after updating electron.pos

5 Optional: Playing around
Here are some suggestions of things you might like to try after turning in your program.
• If there are red-cyan stereo glasses available (red lens goes on left eye), you can display true stereo by adding the following statement near the start of your program (for more about this, see the section ``Controlling Windows'' in the Visual reference manual available from the Help menu):
scene.stereo = `redcyan'
• In the Visual reference manual available on the Help menu, in the section on ``Mouse Interactions'', there is documentation on how to make your program interact with the mouse.
To wait for a mouse click and get its location, do this in a perpetual loop (while True:) that calculates the net electric field:
 while True:
 # replace obslocation calculation with this:

 obslocation = scene.mouse.getclick().pos # wait for mouse click

If instead you want to drag the mouse and continuously update the electric field, remove the arrow and print statements from inside a perpetual loop that calculates the net electric field, and create just one arrow before starting the loop, then continuously update that arrow's attributes:
 Earrow = arrow(axis=(0,0,0), color=color.orange)
 scene.autoscale = False # prevent large mouse moves from autoscaling the scene

 while True:

 rate(30) # check for a mouse move 30 times per second

 obslocation = scene.mouse.pos()

 # calculate Enet

 ...

 Earrow.pos = obslocation

 Earrow.axis = scalefactor*Enet

_1394393550.unknown

_1394393553.unknown

_1394393554.unknown

_1394393555.unknown

_1394393552.unknown

_1394393548.unknown

_1394393549.unknown

_1394393547.unknown

