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An iterative technique is described for generating estimates to the solutions of rectification and deconvolution
problems in statistical astronomy. The technique, which derives from Bayes’ theorem on conditional probabili-
ties, conserves the constraints on frequency distributions (i.e., normalization and non-negativeness) and, at each
iteration, increases the likelihood of the observed sample. The behavior of the technique is explored by applying
it to problems whose solutions are known in the limit of infinite sample size, and excellent results are obtained
after a few iterations. The astronomical use of the technique is illustrated by applying it to the problem of
rectifying distributions of v sin i for aspect effect; calculations are also reported illustrating the technique’s
possible use for correcting radio—astronomical observations for beam-smoothing. Application to the problem
of obtaining unbiased, smoothed histograms is also suggested.

INTRODUCTION

fundamental problem in statistical astronomy

is that of estimating the frequency distribu-
tion ¢ (¢') of a quantity ¢ when the available measures
%1, %', ..., an’ are a finite sample drawn from an infinite
population characterized not by ¥ (¢') but by

o) = f WOP | D, (1)

where P(x|£)dx is the probability (presumed known)
that «’ will fall in the interval (x, x+dx) when it is
known that £ =¢. Equation (1) is an integral equation
of the first kind with the conditional probability
density P(x|£) as kernel.

~ The classic example of this problem is that of correct-
ing an observed distribution ¢(x) for the effect of
observational errors (Eddington 1913). If these errors
follow a normal (Gaussian) distribution with variance
o2, then

Px|§)=

(x—£)2},

202

exp [ 2

(27)te
and the right-hand side of Eq. (1) becomes a convolu-
tion integral.

Another example is the problem of correcting the
distribution of stellar rotation velocities x=usini for
aspect effect in order to derive the distribution of
equatorial velocities £=v. If we assume that the stars’
rotation axes are orientated randomly, then

Plx|g)= z@ﬁ—xzr%ﬂ@—x), 3)

where H is Heaviside’s unit function [H(y)=1 for
¥2>0 and =0 for y<0]. In this case, Eq. (1) reduces
to Abel’s integral equation (see e.g., Chandrasekhar
and Miinch 1950).

Among the many. other problems of essentially the
same character are the following: (1) the determination

*On leave of absence from the Department of Astronomy,
Columbia Univerity.

of the variation of star density along a line-of-sight
from the distribution of proper motions in that direc-
tion; (2) the determination of the space distribution of
radio sources from number counts; (3) the determina-
tion of the radial variation of star density in a globular
cluster from star counts; (4) the correction of radio—
astronomical and spectrographic observations for the
effect of the instrumental profile; and (5) the determi-
nation of the temperature stratification in the solar
atmosphere from limb-darkening data. These examples
suffice to show that the problem under consideration
arises in many branches of astronomy and that its
solution is vital to the process of extracting useful
information from observations.

I. STATISTICAL METHODS

If nothing is known about ¢(£), other than that it
obeys the constraints

/ Y(OdE=1 and P(H>0 @)

that apply to all frequency distributions, then the
most obvious method for estimating ¢ is by direct
numerical solution of the integral Eq. (1). To do this,
we first approximate the integral in Eq. (1) by a
summation to obtain

J
o= gl P, (5)

where ¢;=6¢ (x:)Ax, Y;=¢(£)A¢, and P;;=P(x:|§;)Ax.
We then demand that ¢;=¢;=n(x;)/N, the fraction of
the observed sample that lies in the interval (x;—3Aw,
x;+3Ax), and thereby obtain the system of linear
equations

J
ZPif‘pj:éi? i= 172)"*7I: (6)
j=1

~which will, in general, have a unique solution if we
set J=1.
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Unfortunately, unless the sample size N is large, this
direct approach yields poor results, with the estimates
¥; showing little evidence of continuity and often
containing violations of the constraint ¥;>0 (cf.
Trumpler and Weaver 1953, p. 112-114). We can
understand this behavior if we realize that ¢, being the
result of a folding of ¥(&) with P(x|£), is a smoother
function than is ¢ ; consequently, when we solve for ¢,
short-wavelength errors in ¢ will be greatly magnified.
This effect, applied to the statistical fluctuations in ¢,
explains the poor results obtained by the direct method.

A way of perhaps avoiding this difficulty would
appear to be first to smooth the ¢; and then to solve
the linear Egs. (6). Any smoothing operation applied
to the §; does, however, correspond to a convolution of
&: with some appropriate function, and this additional
convolution must be allowed for in the rectification
- procedure if we are to avoid a biased answer. If we do
" this, however, the original difficulty simply reappears.
We must conclude, therefore, that smoothing is not an
acceptable solution.

A more promising way of possibly avoiding the

difficulty follows from recognizing that an exact
solution of Eq. (6) is not required since the ¢; them-
selves are not exact. In fact, any vector ¥;, for which
the corresponding ¢; is close enough to ¢; for the
differences to be ‘ascribable to sampling errors, is a
possible solution (cf. Trumpler and Weaver 1953,
p. 114). This remark then suggests that we should
recognize that the problem under consideration is
ba51cally one of statistical estimation rather than an
exercise in solving integral equations.

One estimation procedure readily applied to this
problem is that of minimizing X2 To do this, we over-
determine the Eqgs. (6) by taking J<I and then make
the problem determinate by asking for the solution
vector ¥; that minimizes

I (fi— t)z :
X?=N3 —— (7
i=1 di
subject, of course, to the constraints
J
2 ¢=1 and ¢;>0. (®)
j=1

Another possibility (Lucy and Ricco 1974) is to
determine y; by maximizing the likelihood of the
observed sample,

L=¢(x)p(x5) - - -p(wn") 9)

with respect to the ¥;, subject again to the constraints
(8). (The quantities ¢(xx") are, of course, evaluated
with the quadrature formula (5), so that L is a function
of the ¢;.)

By not 1nsxst1ng that the estimate ¢¥; exactly re-
produce the statistical fluctuations in ¢, these statistical
methods are clearly preferable to direct solution of
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Egs. (6). However, in minimizing X? or maximizing L,
the ¢, are treated as independent parameters [to the
extent allowed by the constraints (8)] with no regard
for any expected smoothness and continuity of y(£).
Because of this, the estimate y; may still fail to show the
degree of smoothness that we might expect. To over-
come this, Lucy and Ricco (1974) added a constraint
on the length of the curve defined by the ¢; and showed
that, with a suitable choice of the constrained length,
the independence of the ¥, could be curbed sufficiently
for a smooth curve to be obtained. The imposition of
this extra constraint does, of course, diminish the
likelihood of the final solution; thus, in effect, we
accept a smaller likelihood for the benefit of a smoother,
and therefore simpler solution. This trade-off is analo-
gous to that commonly made in curve-fitting, where one
chooses a curve with few parameters giving a reasonable
fit to the data in preference to a many-parameter
curve giving a close, or exact fit. A smoothing constraint
is also used by Phillips (1962) and Twomey (1963) in
their method for solving integral equations in the
presence of noise, a method used recently for astro-
nomical problems by Carswell (1973) and Kunasz,
Jefferies, and White (1973).

The above statistical methods, when used with a
smoothing constraint on the ¥;, have considerable merit
and could be usefully applied to any of the problems
mentioned in the Introduction. Their wide application
is, however, restricted by their demands on computer
time and programming skill. Fortunately, the rather
simple iterative technique described below achieves
essentially the same ends, provided that no more than
a few iterations are made starting from a suitable first

guess.
II. ITERATIVE TECHNIQUE
Let Q(£|x)dt be the (‘inverse’) probability that &

comes from the interval (§, £é+d¢) when it is known
that the measured quantity x'=x. The probability

~ that o'E (x, x+dx) and £C (¢ £4d¢) is then ¢(x)dx

XQ(&|x)d¢. This, however, is identical to the proba-
bility that £'€ (¢, £4d£) and '€ (x, x+dx), which is
Y(£)deX P (x| £)dx. Equating these two expressions and
substituting for ¢(x) from Eq. (1), we find that

V() P(x|E)

Q%)= , (10)

[wereige
which is Bayes’ theorem for conditional probabilities.

From this theorem and the normalization of the proba-
bility P(x|£)dx, it follows that

Wo= [ a0, an

which is an identity having the appearance of being
the inverse of the integral Eq. (1) with Q(£|x) as the
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reciprocal kernel. Equation (11) cannot be used to
calculate ¢, however, since Q(¢£|x) depends on y—the
true reciprocal kernel is, of course, a functional of
P(x|£) only.

Although the identity (11) does not solve the integral
Eq. (1), it does suggest the following iterative procedure
for generating estimates to y: From a guess to ¥ and
the known function P(x|£), we use Eq. (10) to calculate

an estimate for Q(£]x). Then, taking the hint provided -

by the identity (11), we integrate this estimate over
¢(x), the approximation to ¢(x) obtained from the
observed sample, and thereby generate an ‘improved’
estimate for Y (£). The procedure is then repeated as
often as is necessary or wise. Thus, if ¥ is the r-th in
the sequence of estimates, the (r 4+ 1)-th estimate is

(D= / F)0r (el )dx, (12)
where V©PED
4 X
0y = (13)
, s
with

(2= / V(PG| Dt (19)

We may readily show that this iterative scheme
conserves the constraints (4). Eliminating Qr(¢£|x) from
Eq. (12), we obtain

)
PO =p(®) / :c)P<x| i,  (15)

¢r

from which it follows that y¢+'>0 if ¢°>0. Proof of
the normalization constraint follows from integrating
Eq. (12) with respect to £ and then using the normali-
zations of the probabilities Q7(¢|x)d¢ and & (x)dx.
Equation (15) shows that the iterative scheme con-
verges if ¢"=¢. However, if the ¥ corresponding to
¢=a¢ violates the constraint >0, then convergence to
this solution is impossible and is, in any case, un-
desirable. From Egs. (14) and (15), we see also that
deviations of ¢/¢" from unity on a length scale large
compared to that of P(x|£) will be removed in essen-
tially one iteration. On the other hand, deviations on a
small length scale will, to a large extent, be averaged
out when folded with P(x|£) and will result, therefore,
in only small corrections to y". Thus, the scheme is
responsive to long wavelength ‘errors’ in ¢, but un-
responsive to those of short wavelength. This is clearly
a desirable characteristic of the scheme since the
shorter the wavelength of the ‘errors’ in ¢ the more
likely it is that they are due to statistical fluctuations
in ¢. On the basis of these remarks, we may therefore
anticipate that, after a few iterations, the scheme will
usually have taken account of all significant information
in the sample, and that further iterations will result
only in small corrections that slowly tend to match

the successive estimates ¢’ to the statistical fluctua-
tions in ¢.

When the number of observations NV is not large, we
might well be concerned at the loss of information
involved in forming the data into a histogram in order
to obtain ¢. This loss of information can be avoided
by taking

1~
$x)=— 2 s(x—uxn), (16)
N n=1

where the x, are the individual measures and §(x) is
Dirac’s delta function. Substitution of this expression
into Eq. (12) yields

1~
=3 0, (17)

a result with considerable intuitive appeal. If we do,
in fact, treat the data this way, the smoothness of the
estimates !, ¢? ... depends not only on the smoothness
of ¥°, but also on there being a large enough sample for
the overlapping of the functions Q7(¢|x,) to produce a
smooth function. When the sample is too small for
this to happen, it is intuitively clear that the statistical
uncertainty in any estimate of ¢ is greater than the
rectification corrections. In such cases, there is no point
in attempting the rectification. [The approach fails
when P(x|£) contains singularities, since the estimates
¢+ will then also contain singularities. In such cases
we must make a smoother choice for ¢ than that given
by Eq. (16).]

A further matter of practical concern, especially
when a distribution is being corrected for errors, is the
data’s frequent lack of homogeneity. If the fraction
vi of the sample corresponds to the conditional proba-
bility density function Pi(x|£), and if we define ¢x(x)
and Qx(£]x) accordingly, then the identity (11) becomes

YO=5 / 01(x)0(¢] %) d. (18)

The corresponding form of Egs. (12)-(14) is then
obvious. If we choose not to group the data, then Eq.
(17) applies with Q7 (£|x,) replaced by Q,"(¢|x,), which
is obtained from Egs. (13) and (14) with P(&|x,)
replaced by P,(|x,).

Above we have developed the iterative technique
for one-dimensional distributions; the generalization
to multidimensional distributions, ¢(x,y,...) and
Y(&m,...) is immediate, however. To achieve this
generalization, we interpret x and £ as representing the
vectors (x,y,...) and (£m,...) and the integrals and
summations as representing the appropriate multiple
integrals and summations. For example, if ¢(x,y) is
the intensity distribution recorded by an image-forming
device and if A (x—£, y—n) is the point spread function
of that device, then image restoration may be achieved
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with the following iterative scheme:

)
PHED) =9 () / / " ot y—m)dxdy  (19)

"(%,9)
where

¢(y) = / / VA=t y—ndidn.  (20)

The starting approximation ¢°(£,7) should be a smooth,
non-negative function having the same integrated
intensity as the observed image. (N.B. If off-axis
aberrations are significant, the point spread function
is no longer simply a function of ¢ and y—n. This
presents no difficulty for the present scheme, but does
prevent the use of Fourier techniques.)

III. INCREASING LIKELIHOOD

Although the qualitative discussion in Sec. II
suggests the usefulness of the iterative scheme, its
relationship to the methods discussed in Sec. I is not
obvious. We shall now show, however, that, when the
integrals are approximated by sums and when only
the fraction e of the correction to ;" is actually applied,
the scheme converges as r—o to a solution of the
corresponding maximum- likelihood (ML) problem,
provided that e is sufficiently small. Moreover, we
demonstrate that the ML-solution is, in general, unique
when J<7 and that the multiple solutions when J>71
all have equal likelihood. Finally, we prove that the
direct solution is identical to the corresponding ML-
solution, provided that the direct solution does not
violate the constraint y;>0.

It is convenient to consider the latter statement
first. Adopting the notation of Sec. I and noting that
¢:/Ax is the probability density assigned to each of the
N@; observations in the interval (x;—3Ax, x:+3Ax),
we find that the likelihood is given by

InL=N -H(¢;)+constant (21)
with -
I
H(Y;)= gl Pilne, (22)

and where ¢; is given by Eq. (5). Maximizing H is
clearly equivalent to maximizing L.

In order to obtain the ML-solution sub]ect to the
constraint .

J
Z '/’J’= 1)

=1

we look for the stationary points of the function
J
G55 m)=HW;) --l-u(Zll ¥—1). (23)
s

(Notice that the constraint ;>0 is not being imposed.)
Setting the derivatives of G with respect to ¢; and u

LUCY

equal to zero, we obtain

1 ¢
2 —Pi=—u, (29)
=1 ¢,;
and
,
Zl Y=L (25)

Multiplying Eq. (24) by ¢; and summing over j, we
find that the Lagrangian multiplier u= —1. Then, since

ZPW—'I

i=1

we see that Eq. (24) is satisfied if y; is such that ¢;=g;.
Moreover, since

I -~
E b

. this ¢; also satisfies Eq. (25). Now, because the condi-

tion ¢;=¢; yields the linear equations of the direct

-method (Sec. I), we have shown that the direct solution

is also a solution of the corresponding ML-problem
when the constraint that ¢;>0 is relaxed. Obviously
then, if the direct solution happens to be such that
¥;2>0, it is also a solution of the corresponding fully-
constrained ML-problem. (That this latter solution is
in general unique is demonstrated below.)

Because Eq. (24) is not linear in y;, the surface
defined by H(¥;) is not quadratic; consequently, we
must examine the possibility that this surface has local
maxima at which the likelihood is less than the greatest
likelihood attained in the permitted region. This
possibility does not arise, however, because H(¥;) is a
concave function of position in D, the convex region
of J-dimensional vector space defined by the con-
straints (8). To demonstrate this, let ¥;* and ¢;® be
distinct vectors belonging to D and let ¢;* and ¢;® be
the corresponding ¢;-vectors. If we now define ¢;
=M%+ (1—Ny,;* with 0<A<1, we see at once that
¥; also belongs to D, which is, therefore, a convex
region of vector space. Because ¢; is indeed in the
permitted region, it is of interest to calculate H (y;) and
to compare it with H(¥,*) and H(¥;%). We have

H)=2 ¢in[rpis+(1—N)g:*]

=1

which is
I
22 diNnp+(1—N)ing:t],
i=1 : ,
since In(x) is a concave function. We have, therefore,
established that
H) > H (¢a“)+(1 —-NH ('hb), (26)

a result that. eliminates the possibility of multiple
maxima, since it implies that the chord joining any
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two points on the surface H(y¥;) always lies in or below.
that surface.

Because In(x) is a strictly concave function, the
inequality (26) is strict provided that ¥,;* and ¢, being
distinct implies that ¢;* and ¢;® are distinct. The linear
mapping defined by Eq. (5) will, in general, have this
property when J<I, but not otherwise. Accordingly,
when J<I, the inequality (26) is in general strict,
which implies that H (;) attains its greatest value in D
at a point; the solution of the ML-problem is then
unique. On the other hand, when J>1, there is not a
unique vector ¥; corresponding to the ¢; that maximizes
H; the greatest likelihood is attained, therefore, at
points on a ‘plateau’ of the H(y;) surface. This behavior
is, of course, a consequence of asking for more informa-
tion than exists in the grouped data.

Let us now examine the behavior of the iterative
scheme. With the integral approximated by a sum,
Eq. (15) becomes .

1 ¢;
Yirti=y7 3 ?‘Pij, (27)

=1 ¢7'

so that the correction to ¥, is

6w=w(i _"p,.,._l). (28)
=1¢"

Remembering that u=—1, we have, from Egs. (23)
and (24),

aG"
i =y, (29)
7
and
oH™ 9G"
—=—t1; (30)
W Ay

consequently, when we apply the correction edy;” to
Y7, the change in H is

r

dH.= ejél( +1)6|//].r+0(52), (31)

iy

Because the scheme conserves the constraints (8),
we have

J
2 oY=
=1

so that

7 aGr 2
dH.=¢ ];1 t//j’(all/ ,) +0(e?). (32)

From Eq. (29), we see that the iterative scheme
converges (i.e., &;=0 for all j) at the point y,* if
and only if

oG

— =0 when y;*#0. (33)
W; -

Accordingly, if ¢,* is entirely within D, convergence
occurs at a point of maximum likelihood. On the other
hand, if ¢ /* is not entirely within D, convergence occurs
at a point of greatest likelihood on the boundary of D.
(From earlier results, we know that these points are
in general unique when J>1.)

When y;* satisfies the condition (33), the first-order
correction to H, given by Eq. (32), is of course zero.
When condition (33) is not satisfied, this first-order
correction is strictly positive, so that, for sufficiently
small ¢, the iteration will result in an increase in the
likelihood. Thus, we see that the iterative scheme can
be used to generate a sequence of estimates to ¥(§),
each member of which assigns a greater likelihood to the
sample than did its predecessor.

Although these analytical results demonstrate in-
creasing likelihood only for sufficiently small ¢, numeri-
cal calculations reveal increasing likelihood even with

=1, and it seems likely that increasing likelihood will

turn out to be rigorously true for e=1. Accordingly, in
applying this technique, it is recommended that the
full correction be applied.

IV. NUMERICAL EXPERIMENTS

The results of Sec. III indicate that the iterative
scheme converges monotonically as r —« to the ML-
solution. No attempt should be made to achieve
convergence, however, because, after a few iterations,
further gains in likelihood are achieved in general only
by fitting ¢”(x) to the statistical fluctuations in ¢(x)
at the price of an increasingly complicated ¢7(£) (cf.
Sec. IT). We now illustrate this point by reporting the
results of numerical experiments for a case whose
exact solution is known as N — .

Let ®(x;u,0) denote the normal distribution
with mean u and variance o2 Then, if we take y(§)
=®(£;0,1/v2) and P(x[£)=®(x; §1/V2), we may
readily show that ¢(x)=®(x;0,1). Accordingly, our
experiment is to apply the scheme to a random sample
of N numbers drawn from &(x;0,1) and to compare
the resulting sequence of estimates ¥ with the exact .

A criterion measuring the goodness-of-fit of ¢ to ¢
is obtained by calculating a pseudo-X? in the following
way : we determine the ten-percentage points £ of the
y-distribution and then calculate n,, the expected
number of observations in the k-th interval (£,&x41)
when N observations are distributed according to .
Then, since #y"=N/10 when ¢'=y, we define our
pseudo-X2 to be ’

10 (ny"—N/10)2
20 = _— 34
WL 59

It is also of interest, of course, to examine the goodness-
of-fit of both ¢ and ¢" to the sample. We do this by
calculating X2{¢} and X2{¢"}, the conventional X3,
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Fic. 1. Estimates obtained after the third and fifteenth itera-
tions for the experiment described in the text. The solid curve is
the known answer.

with the data binned, in both cases, into the ten
intervals defined by the ten-percentage points of ¢.
The results from one such experiment are shown in
Figs. 1 and 2. We take N=150 and, because of the
modest sample-size, use Eq. (16) for ¢(x); Eq. (17) then
yields the estimates y~ starting with y°= (V2/7)/ (1+£%).
In Fig. 1, the exact ¢ as well as ¢ for r=3 and 15 are
plotted, and we see that the result of many iterations
is indeed inferior to the excellent fit obtained in a few
iterations. Further illustration of this effect is found in
Fig. 2, where X*{y"}, X*{¢"}, and N~ InL are plotted
against . This plot shows that each ¢ is an “improve-

-1-0.84

b 1-0.85

(o] 5 10 15 20

F16. 2.. Success criteria plotted against iteration number.
Crosses denote N~1InL; filled circles denote x2{y"}; open circles
denote x2{¢"}.

LUCY

ment” over its predecessor if we judge success by the
likelihood, which increases monotonically with 7, or by
X2{¢"}, which decreases monotonically. However, if we
judge success by X2{y"}, our measure of the goodness-
of-fit of Y" to ¢, we find that the iterations beyond r=3
are not, in this case, improvements. It is notable also
that the minimum in X*{y"} coincides with X*{¢"}
dropping below X*{¢}—that is, with ¢ becoming a
closer fit to the data than is the actual sampling
distribution, ¢. The subsequent iterations, therefore,
can indeed be described as merely fitting the statistical
fluctuations in ¢ ; and the penalty is seen to be worsening

" estimates y". :

. To investigate the degree of success that might
typically be obtained with this scheme, the above
experiment has been repeated for forty independent
samples, again with N=150. In Fig. 3, the results
obtained after the third iteration are presented as
histograms of X2{¢}, X*{¢*}, and X2{y*}. Comparison of
the histograms of X*{¢} and X%*{¢?} shows that by
stopping at =3 we have trespassed only slightly into
the domain where the data are being fitted too closely.
Comparison of the histograms of X*{y?} and X*{¢}
shows that the former is strongly biased to small
values, indicating that good fits are indeed generally
obtained. In fact, this degree of success might seem
surprising, since one might have anticipated intuitively
that the most we could hope for is X2{y"} >~ E(X?), the

4/3

n E
10 @3
|
O 1 ) A ! J
n
o+ 7
. 0 é 1[2 18 j4
x2

F1c. 3. Results obtained after three iterations in forty in-
dependent experiments. The upper, middle, and lower plots are
histograms of x2{y?}, x>{¢*}, and x2{¢}, respectively.
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expected value of X2 for samples drawn directly from y.
That the scheme does better than this is a consequence
of its built-in smoothing operation [see the remarks
following Eq. (17)]. From the histograms, we see that
X2{y?} is typically one half of X*{¢}—that is, half the
X2 obtained by random sampling from a given distri-
bution function. Therefore, since for fixed #"/N,
X2« N, the smallness of X?{y*} is due to n;" matching
N/10 with the closeness expected in random sampling
from ¢ when the sample size is ~2N.

In the above experiments excellent results are ob-
tained in a few iterations. There are two circumstances,
however, in which the convergence to a good fit will
be slow. The first arises when our choice for ¥ is such
that the corresponding ¢° introduces short-wavelength
deviations from unity in ¢/¢° additional to those caused
by statistical fluctuations in ¢ [cf. the remarks following
Eq. (15)7]. Such would be the case, for example, had we
taken ¢° in the above experiments to be ®(¢; 0,0) with
0?3}, the variance of the exact . This circumstance
may be avoided if we resist the temptation of antici-
pating the outcome of the rectification and take for ¢°
a simple, smooth fit to .

The second circumstance leading to many iterations
arises when the exact y has significant short-wavelength
structure and the sample size is sufficiently enormous
that ¢ still contains information from which this
structure in ¢ can be discovered. In this case, if we
start from a smooth y°, many iterations are necessary
before the estimates ¢” acquire the short-wavelength
structure required if ¢” is to be a good fit to .

It is important to note that, in both the above
circumstances, we need not know y in order to recognize
the need for many iterations. This need will be apparent
from large values of X*{¢}, provided that the X>-test
is carried out with optimum resolution—that is, with
bin sizes whose expected contents are all ~5-10
observations. Since in practical applications of this
scheme ¢ is not known, the basis for stopping the
iterations has to be the value of X2{¢"}, or of some other
measure of the goodness-of-fit of ¢ to ¢. If the X>-test
is used and if P(X?>X,%) denotes the probability that
random sampling will give X2 greater than a given value
X,% then the iterations should be stopped as soon as
P(>Xx*¢}) is not small (e.g., is not <0.05). This
recommendation implies, of course, that the iterations
not be continued to the point that 1—P is small. (In
calculating these probabilities », the number of degrees
of freedom, should be taken as the number of bins
minus one. By not reducing » further, to allow for our
use of the data in estimating ¢”, we are treating ¢*
exactly as if it were the true ¢.)

In many applications, the errors in ¢; will be measure-
ment errors rather than sampling errors. In such cases,
we may still use the X%test in deciding when to stop
the iterations by comparing the actual and the expected
distributions of residuals ¢;—@.". (If necessary, param-

Probability Density x 10° (km/sec)

200 400

Velocity (km/sec)

Fi16. 4. Rectification of v sini measures for 42 B6-B9e stars.
The final estimates ¢ and ¢ are shown together with the histogram
of the raw data.

eters in the expected distribution function may be
estimated from the residuals themselves.)

When the iterations have been stopped, we may wish
to estimate the uncertainty of our estimate y+(%).
This is readily done if we regard Q7(£|x) as exactly
known, for then Eq. (12) becomes a linear mapping of
¢ (x) into Y +1(£) and as such may be used to study the
propagation of errors.

V. APPLICATIONS

Having established the usefulness of the technique,
we now illustrate and discuss its application to astro-
nomical problems.

(¢) Stellar Rotation: As mentioned in the Introduc-
tion, the rectification of distributions of vsini is an
example of the class of problems under consideration.
We shall rediscuss two distributions from which
significant conclusions have previously been drawn.

The first example is Slettebak’s (1966) study of
v sini measures for 42 B6-B%e stars, the distribution
of which he asserted to be consistent with the hypothesis
that all such stars have equatorial velocities 1~350
km/sec. The results obtained after four iterations with
the iterative scheme are given in Fig. 4, which shows
that the estimate for ¢ has a sharp peak at =360
km/sec; Slettebak’s conclusion is, therefore, essentially
confirmed. (The starting approximation was y°=con-
stant for v <500 km/sec, and ¢ was taken to be the
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F1c. 5. Rectification of » sini measures for 251 BS5-B9 stars.
The final estimates ¢ and ¢ are shown together with the histogram
of the raw data. )

continuous function obtained by linear interpolation
between the midpoints of each block of the histogram.)

The second example is Deutsch’s (1968) study of
vsini measures for 251 B5-BO stars in the main-
sequence band in which he concluded that two distinct
populations must be recognized, one comprising slow
rotators with »=15 km/sec, the other rapid rotators
with #~150 km/sec. After two iterations, we obtain
the results given in Fig. 5. (The starting estimate and
¢ were obtained as in the previous example.) Com-
parison of the ¢ shown here with that-obtained by
Deutsch (1968, Fig. 2) reveals that we have failed to
recover the sharp peak [¢=~9X10~® (km/sec)™ at
2~10 km/sec] that is the basis of his claimed discovery
of a population of slow rotators.

The explanation of our disagreement with Deutsch

is fairly obvious. In applying the iterative technique, -

we have made no assumptions about ¢ other than that
it satisfies the constraints (4); consequently, starting
with a smooth ¥° and working with data grouped in
50 km/sec bins, we have obtained an acceptable fit
to ¢ without introducing variations in ¢ or ¢ on the
scale of 10 km/sec. Deutsch, on the other hand, does
make additional assumptions about the form of y.
Having found that a single Maxwellian distribution
predicts too few slow rotators, he adopts a bimodal
Maxwellian distribution for ¥ and, not surprisingly,
finds that the additional Maxwellian fits itself to the
slow rotators. Since our results contain no hint of this
bimodal character, we conclude that Deutsch’s -dis-
covery is more a consequence of his assumptions
-concerning ¥ than of the data. Deutsch’s conclusions

LUCY

should be accepted only if there are independent argu-
ments favoring the bimodal Maxwellian distribution.

In definitive studies of stellar rotation, one should
first apply the iterative technique to correct the distri-
butions of v sins for observational errors and then apply
the technique again to rectify the corrected distri-
butions for aspect effect. It would also be of interest
first to correct each star’s vsini for evolutionary
expansion, so that the final result is the distribution of
equatorial velocities at zero-age.

(#) Beam-smoothing: As an example from the im-
portant area of deconvolving data for the effect of
instrumental broadening, we consider the problem of
correcting radio-astronomical observations for the
smoothing due to the beam pattern of the antenna.

Following Bracewell and Roberts (1955), we take
the beam pattern to be P(x|£)=A(x—¢) with
A (z) = (sinwz/wz)2. Error-free observations of a point
source of unit amplitude [i.e., ¥ =8(£)] result, therefore,
in the response =4 (¥). The problem, then, is to apply
the iterative technique starting with y°=@(¢), the
estimate provided by the observations, and to examine
the approach of the succeeding estimates to the known
answer, ¥=4(¢). The results obtained after one and
three iterations are given in the right-hand side of
Fig. 6. With one iteration, the central intensity is

Fic. 6. Deconvolution of an antenna’s response to a point
source. The right-hand side shows results obtained after one and
three iterations with iterative technique. The left-hand side shows
the corresponding results with the Burger-van Cittert scheme.
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increased from 1.00 to 1.22, and the intensity in the
side lobes is halved. :

The left-hand side of Fig. 6 shows the results obtained
with the Burger-van Cittert iterative scheme (see
Bracewell and Roberts 1955), which, in our notation, is

Y& = (5)+[(x) —¢ () Joms. (35)

Comparison of these results shows that the two schemes
achieve comparable rates of increase in the central
intensity; the Burger-van Cittert scheme is, however,
clearly inferior because of the substantial negative
intensities that appear in the region of the side lobes.
This physically inadmissable behavior of the Burger-van
Cittert scheme, which has been widely discussed in
radio astronomy, emphasizes the great importance of
the present scheme’s built-in conservation of the
constraint ¥>0.

(i1) Smoothing of Histograms: An important role
In observational investigations is often played by
conclusions drawn from histograms of observations.
Despite the added confidence that could be given to
such conclusions by smoothing the histograms, this is
rarely done. The reason for this, perhaps, is the realiza-
tion that standard smoothing operations, in which the
data are convolved with some appropriate function,
result in smoothed distributions with biased variance.
(Of course, even grouping data into a histogram leads
to biased moments, the correction of which is the
purpose of Sheppard’s corrections.) This objection to
smoothing may be overcome, however, with the follow-
ing application of the iterative technique:

If the data sample is &y, &, ..., £v, then

1 w
V()= —2% o(k—¢n) (36)
N n=1

contains all the information in the sample but is not a
satisfactory estimate of y(£), the true distribution,
because the short-wavelength behavior of i is a conse-

_quence of the discrete sampling. A smooth, but biased’

estimate, ¢(£), for ¢ may be obtained by convolving ¢
with a probability density function P(x|£). Thus,
we have

1 »~
$@)=— % P(x|£n). 37
N n=1

(We might, for example, take P(x|§)=®(x; £,0), the
normal distribution. We would then choose ¢ to be
just large enough for ¢ to be a smooth function.) We
now apply the iterative technique, starting with
¥*=4(£), in order to ‘correct’ for this convolution.
From our earlier discussion (Secs. IT and IV), we know
that with a few iterations we can restore the long-
wavelength behavior of i but not the short-wavelength
behavior. After a few iterations, therefore, we obtain

an estimate y” for ¢ by, in effect, eliminating the short-
wavelength behavior of ¥ without modifying its long-
wavelength behavior. Accordingly, we may expect yr
to have unbiased low-order moments. (The success of
the estimate Y” may, of course, be checked against the
sample with the X>-test.)

The above procedure may be used to obtain smooth
estimates, $(x), for other rectification problems.
Smoothed estimates are necessary when P(z|%) con-
tains a singularity, as in the stellar rotation problem.
Another possible application is to the smoothing of
data obtained in Monte-Carlo simulations in order to
accelerate convergence.

(1) Model Testing: In all of the earlier discussion we
have regarded P(x|£) as known. In some problems,
however, the model leading to P(x|%) will be in doubt.
If the model is indeed wrong, then it may well be that
no function y satisfying the constraints (4) will corre-
spond to a function ¢ that provides an acceptable fit
to the observational data. Therefore, since the iterative
technique cannot violate the constraints, the model
must be rejected if the technique fails to reduce the
residuals §;—@," to the point where they can be ascribed
to observational errors.

VI. CONCLUSIONS

The main purpose of this paper has been to investi-

gate a new approach to the wide, and astronomically
Important class of statistical estimation problems in
which the desired distribution function, (), is related
to an observationally accessible function, ¢(x), by the
integral Eq. (1).
- Because of sampling errors in ¢(x), the observational
estimate for ¢ (), we have argued (Sec. I) that our aim
should be to obtain an estimate {(¢) for y(¢) that (a)
obeys the constraints (4), (b) exhibits a degree of
smoothness and continuity consistent with our expec-
tations (often intuitive) for ¥(£), and (c) corresponds
to a ¢(x) that differs from é(x) by amounts that can
reasonably be ascribed to sampling errors in §, a
condition that excludes improbably small as well as
improbably large residuals.

Seen in the context of these conditions, the method
of direct solution is unacceptable because it violates
condition (c) by demanding zero residuals. Moreover,
the penalty for this violation is usually an estimate
J(£) that also fails to satisfy conditions (a) and (b).
In marked contrast to this unfortunate behavior, the
scheme proposed in Sec. II yields, after a few iterations,
estimates y7(£) that satisfy all three conditions, pro-
vided only that the first estimate y¥°(¢) is chosen
sensibly and that the number of observations is less
than enormous.

In addition to solving the problem, the technique
has the further merits of being readily programmed
and of not being extravagant in its demand for com-
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puter time. Because of this, it should be practicable
to use the technique for two- and three-dimensional
problems—the general beam-smoothing problem, for
example. '
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