

OUTLINE

- Introduction / Analysis Technique
- * Explanation of multi-hadron trigger results
 - * away-side yields for different p₁ trigger bins: 10 to 12 GeV/c, 12 to 15 GeV/c, and 15 to 18 GeV/c
 - pythia predictions of away-side yields for different p_T trigger bins:
 10 to 12 GeV/c, 12 to 15 GeV/c, and 15 to 18 GeV/c
 - * ratios of all single + multi-hadron away-side yields to di-hadron away-side yields
- Conclusions and Outlook

Introduction

- Using Di-hadron correlations we try to measure fragmentation functions - parameterizing how partons become confined hadrons
- Fragmentation function D(z) depends on z defined as pT/ET, jet
- * Because we assume $p_T(trig) \approx E_T(jet)$ the current method of Di-hadron correlation has limited sensitivity to true fragmentation functions
- We may be able to better constrain E_{T,jet} ~ p_{T(trig)} with a multi-hadron trigger

Analysis Technique

5

- Collect all seed tracks pT > 5.0 GeV
- Collect all "secondary seeds" with pT > 2, 3, 4 GeV/c
- * Cone R=($\Delta \eta^2$ + $\Delta \phi^2$)^{1/2} centered on

each seed track

- Trigger p₁ = sum of all associated tracks and secondary seeds in cone
- Study recoil (away-side) associated yield relative to highest trigger cluster in event
- * Background estimate: uniform in $\Delta \phi$, normalize with ZYAM

Associated Track

Di-hadron Correlation

Associated Track

Multi-hadron Correlation

Analysis Technique - cont'd

Ratios: Single+Multi-hadron Away Side Yield to Di-hadron Away Side Yield

- 10 GeV/c < p_T (trig) < 12 GeV/c -

* Ratios (statistical errors only) fall around unity and are relatively flat.

For a minimum secondary seed cut of 2.0 GeV random clusters pull the ratio down. For a minimum secondary seed cut of 4.0 GeV, the ratio is close to unity, there are much less random Multi-hadron triggers, so the ratio falls even closer to unity.

The single+multi-hadron triggers sample same kinematics as di-hadron correlations
16

Ratios: Single+Multi-hadron Away Side Yield to Di-hadron Away Side Yield

- 12 GeV/c < p_T (trig) < 15 GeV/c -

- Even with a higher p_1 bin, with a minimum secondary seed cut of 2.0 GeV random clusters pull the ratio down. With a minimum secondary seed cut of 4.0 GeV, the ratio is still close to unity.
- * The single+multi-hadron triggers sample same kinematics as di-hadron correlations

Ratios: Single+Multi-hadron Away Side Yield to Di-hadron Away Side Yield

- 15 GeV/c < p_T (trig) < 18 GeV/c -

Conclusions and Outlook

- * We have investigated Multi-hadron triggers as the next step toward full jet reconstruction ...
 - We see that a cone radius of ~ 0.3 and a minimum secondary seed cut of 4.0 GeV maximizes the signal to background ratio
 - * The yields on the away side for Multi-hadron correlations are consistent with the yields observed via Di-hadron measurements
 - Multi-hadron trigger correlations extend di-hadron correlation measurements to a lower z₁ range
- * Method is promising, more work is needed
 - * Calculate corrected yield with an estimate of the background cluster yield
 - * Look at Multi-hadron triggers in other systems: p+p, d+Au

