Multi-hadron Triggered Azimuthal Correlations in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV from STAR

Brooke Haag UC Davis

Outline

- Introduction / Analysis Technique
 - Motivation for multi-hadron triggers
 - Explanation of a multi-hadron trigger
- Results
 - Away side yields for different p_T trigger bins,
 - 10 to 12 GeV and 12 to 15 GeV
 - Ratios of Cluster triggers to di-hadron triggers
- Conclusions and Outlook

Presented at the Annual Meeting of the Division of Nuclear Physics October 10-13, 2007 Newport News, Virgina

Introduction

10

Near side, IApl < 0.63

Away side, $|\Delta \phi - \pi| < 0.63$

d+Au min bias Au+Au 20-40%

STAR,

Phys.

Rev.

Б Ф

0

(2006)

62 w

Õ

Au+Au 0-5%

- Fragmentation function D(z) depends on z defined as $p_T/E_{T,iet}$
- Current method of Di-hadron correlation is insensitive to true fragmentation functions
- Try multi-hadron (cluster) trigger
 - Better constrain $E_{T,jet} \sim p_T(trig)$, better approximation of fragmentation function

Analysis Technique

- Collect arrays of seed and associated tracks with a minimum seed p_{τ} cut (5.0 GeV) and a minimum associated p_T cut
- Define a cone radius (R=0.3) •
 - p_T trigger = p_T sum of all the associated tracks (secondary seeds) in that cone
- Plot $\Delta \phi$ between the highest p_{τ} seed in the ۲ cone and associated tracks
 - Subtract flat background for Au+Au
 - Extract Yields:

 p_{T} (trigger) = 8 to 10 GeV & 12 to 15 GeV

 p_{T} (assoc) = 3 to 4, ..., 10 to 11 GeV

Multi-hadron trigger

track

 $dN/d\Delta \phi$ - jet p_T , 12 to 15 GeV, associated p_T , 3 to 4 GeV

- Plot Δφ between the highest p_T seed in the cone and associated tracks
 - Subtract flat background for Au+Au
 - Extract Yields:

7

p_T (trigger) = 8 to 10 GeV & 12 to 15 GeV

4

Comparison of single vs. cluster trigger statistics d+Au

Di-hadron correlation

Multi-hadron triggers

• gain statistics by allowing clusters to add up to $p_{\rm T}({\rm trig})$, not just requiring a single particle to carry $p_{\rm T}({\rm trig})$

Minimum secondary seed cut = 2.0 GeV

- Multi-hadron and Di-hadron curves match well for $10 < p_T$ trig <12 GeV
- Multi-hadron and Di-hadron curves match well for $12 < p_T$ trig <15 GeV, except at lower p_T assoc, likely effect of random clusters

Minimum secondary seed cut = 3.0 GeV

• Multi-hadron and Di-hadron curves match well in both $p_{\scriptscriptstyle T}$ trigger bins

• Fraction of Multi-hadron triggers decreases as secondary seed cut increases

Minimum secondary seed cut = 4.0 GeV

• Multi-hadron and Di-hadron curves match well for $12 < p_T$ trig < 15 GeV

• For $10 < p_T$ trig < 12 GeV, Multi-hadron triggers have slightly lower yield than Di-hadrons, possible effect of minimum seed/secondary seed cuts

• Fraction of Multi-hadron triggers decreases as secondary seed cut increases

Ratios: Single+Multi-hadron triggers to Di-hadrons

- 10 GeV < p_T trig < 12 GeV -

• Ratios (systematic errors only) fall around unity and are relatively flat. No significant variation with increasing secondary seed cut.

• The single+multi-hadron triggers sample same kinematics as di-hadron correlations.

Ratios: Single+Multi-hadron triggers to Di-hadrons

- 12 GeV < p_T trig < 15 GeV -

• Excluding lowest p_T associated bins affected by random clusters, ratios (systematic errors only) fall around unity and are relatively flat. No significant variation with increasing secondary seed cut.

• The single+multi-hadron triggers sample same kinematics as di-hadron correlations.

Conclusions and Outlook

- Investigated Multi-hadron triggers as a method of better approximating fragmentation functions
 - Multi-hadron triggers and Di-hadron correlations mostly give very similar results
 - Also ratios of Single+Multi-hadron trigger yields to di-hadron yields show slopes not different, kinematics not very different
- Multi-hadron triggers yield the same physics as di-hadron correlations with improved statistics
 - Method is promising, more work is needed
 - Pythia simulations to understand expectations for multi-hadron trigger yields
 - Study yields for different jet cone radii
 - Look at higher p_T trigger > 15 GeV

Backup Slides

Minimum secondary seed cut = 2.0 GeV

Minimum secondary seed cut = 3.0 GeV

Minimum secondary seed cut = 4.0 GeV

Ratios: Single+Multi-hadron triggers to Di-hadrons

- 8 GeV < p_T trig < 10 GeV -

