
Lecture 19 Torque and Rotational Motion (Chapter 8) 
Finish Torque 
Angular Momentum 

 
An example for practicing torque: 
The drain plug on a car’s engine has been tightened to a torque of 25 m•N.  
If a 0.15 m long wrench is used to change the oil, what is the minimum force 
need to loosen the plug?  Assume the force makes a 30° with the length of 
the wrench. 
 
 
 
 
 
 
So if we write down our equation for torque: 
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" = rF sin#

" = 25m •N

" = 0.15m(sin30
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)F = 25m •N

F = 333N

 

 
We’ve talked about rotational mass, i.e. moment of inertia before, but we’ve 
never tried a calculation with it.  So let’s try an example to figure out how to 
calculate it. 
The formula for Rotational Inertia is: 
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2.  This is if you have point masses 

in your system, like a barbell for instance.  We’ll do two different examples: 
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m1 = m2 = 30kg 
x1 = x2 = 0.50m 



 
Now if we move the axis, it will change the calculation: 
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So if we look at Newton’s Second Law, τnet = Iα or α = τnet/I, for a given 
torque the acceleration will be less for the second scenario because I is 
bigger.  It would be tougher to get the second dumbbell to rotate because 
of where we’ve put the axis of rotation, though we haven’t actually changed 
the masses! 
 
But what if we don’t have point masses to deal with?  What if we have solid 
objects?  It actually requires calculus to do this, so we’ve given you a table 
of objects to deal with (p.278).  If you needed one of these on an exam, it 
would be provided to you.  Notice that these all involve the mass and the 
radius in one form or another. 
 
We have one final concept to cover with respect to Rotational Motion is 
Angular Momentum.  Recall we covered linear momentum p = mv.  By direct 
analogy angular momentum is L = Iα.  It has units of kg•m2/s.  Just as linear 
momentum can be conserved under certain conditions, so can angular 
momentum.  
Also, recall Fnet  = ΔP/Δt.  If there’s some net external force, then there’s a 
change in momentum.  By direct analogy, τnet = ΔL/Δt.  If there’s some net 
external torque, then there’s a change in angular momentum.  If τnet = 0, then 
ΔL = 0. 
 
We can do an easy demonstration of conservation of momentum.  If we let 
someone spin while holding arms out with weights we observe a change in 
speed when they bring the weights in.  Let’s see if we can explain this in 
terms of angular momentum.   
 
 

m1 = m2 = 30kg 
x1 = 0 x2 = 1m 



 
When momentum is conserved: 
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"L = 0

Li = Lf

(I#)i = (I#) f

 

 
Take a minute and come up with an explanation for this.  Compare 
explanations with other classmates. 
 
We know that by changing I, ω has to change accordingly.  Let’s try a real 
problem: 
A skater has a moment of inertia of 100 kg•m2, when his arms are 
outstretched and a moment of inertia of 75 kg•m2, when his arms are tucked 
in close to his chest.  If he starts to spin at an angular speed of 2.0 rps 
(revolutions per second) with his arms outstretched, what will his angular 
speed be when they are tucked in? 
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"L = 0

Li = Lf

(I#)i = (I#) f

# f =
(I#)i

I f
=
100•2.0

75
= 2.7rps

 

 
We’re now going to move onto a new topic: oscillations.  We can start by 
examining a system we have some familiarity with:  a mass on a spring.  Recall 
we learned about Hooke’s Law, Fs = -kΔx.  This means that when we have a 
mass on a spring, there are three factors affecting the force of the spring.  
First, the greater the displacement, the greater the force.  Second, the 
stiffer the spring (k) the greater the force.  Third, we know that the 
direction of the force opposes the displacement.  If I displace the mass 
down, I feel a force upward (-).  If I release the mass on the spring, it has a 
distinctive motion.  Write down two adjectives to describe the motion. 
 
It is called Simple Harmonic Motion.  We see that it is smooth, not choppy, 
and it repeats itself over and over (harmonic).  It has a period.  We can 



easily find the period of the motion by timing how long it takes to repeat its 
motion.  We can also say other things about the motion.  
Let’s make a list: 
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One important point to make is that SHM requires a restoring force.  This 
means a force that constantly tries to restore the system back to 
equilibrium.  For the mass on the spring, we definitely have this.  If we 
stretch the spring down, it pulls up toward equilibrium and vice versa! 
 
Again, we call the maximum displacement the Amplitude.  It is determined by 
the initial conditions of the system (i.e. how far I decide to pull the spring 
down). 
 
If we look at the motion of the mass on the spring over time, it has a 
distinctive motion. http://www.phy.ntnu.edu.tw/java/shm/shm.html (Figure 
13.5, p.451)  It is a sinusoidal (cosine or sine) curve.  Notice that a sinusoidal 
curve has a period, i.e. it repeats its shape repeatedly.  It also has an 
amplitude.  Though your book uses a sine function, we’re going to use a cosine 
function to describe the motion.  The function tells us the position of the 
mass as a function of time. 
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Notice that at t = 0s, y = A.  Our system starts stretched at amplitude.  
When t = T/2, y = 0, our system is passing through equilibrium.  So how would 



we draw this generic function?  We know what it is generally going to look 
like.  A cosine function starts at its maximum value (amplitude in this case), 
then it goes through one cycle before it repeats itself again. 
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We also have functions to describe the velocity and acceleration of the 
mass:  (surprise, they’re sinusoidal too!)   
for the velocity: 
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The main difference between the position and velocity is that we have this 
sine function –  
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Notice we’ve started our function at zero instead of a maximum.  When the 
position is at a maximum, the velocity is zero.  When the velocity is at a max, 
the displacement is zero. 
 
We can also talk about acceleration.  The function is again a cosine function: 
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The maximum acceleration of the system is A/T2.  Also notice that the 
acceleration is a maximum when the spring is at its maximum stretch.  This 



makes sense right, if you consider that the maximum force is also at that 
position. 
 
Another system that exhibits SHM is a pendulum.  We can talk about all the 
same properties for a pendulum, i.e. period, amplitude, etc.  All the same 
sinusoidal motion equations apply.  The main difference is that we express 
the position as θ (angle) instead of y (length).  In this situation as in the 
mass-spring system we have a restoring force.  For a pendulum the restoring 
force is gravity – for the mass-spring system, the restoring force is the 
force of the spring.  


