Coefficient of Linear Expansion

Introduction

The linear expansion of a heated solid or liquid can be measured by a quantity α, the coefficient of linear expansion. This coefficient is defined in such a way that it measures the percentage change in the length per degree temperature change.

$$\alpha = \frac{\Delta L}{L_o \Delta T}$$

The coefficient varies with different materials. The purpose of this lab is to use the formula stated above to determine the coefficient of three materials with a specially designed apparatus.

Procedure

Draw a diagram of the apparatus, labeling all major features

Describe how it works

Record measurements in Table 1. Calculate α on the next page and record your findings in the table.

<table>
<thead>
<tr>
<th>L_o (cm)</th>
<th>ΔL (cm)</th>
<th>T_i (°C)</th>
<th>T_f (°C)</th>
<th>ΔT (°C)</th>
<th>α</th>
<th>Metal?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Measurements to Determine the Coefficient of Linear Expansions for Three Metals
Questions

1. Explain how linear expansion of metal rods could be used as a thermometer. What would be some of the problems with this method?

2. How does the centesimal meter work? (draw a picture if it helps)

3. Calculate the percent error for each of the \(\alpha \) values calculated in Table 1 (using values from your book). What could have contributed to the error in this experiment?