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Abstract: The kinematics of the process ~N ~ £NV, is studied in the one-photon approxima- 
tion for unpolarized as well as polarized leptons ~. The vector-meson spin density ma- 
trix is expressed in terms of the s-channel helicity amplitudes m the hadron c.m.s, and 
the vector-meson decay angular distribution is discussed. The use of longitudinally polar- 
ized lepton beams is found to increase considerably the amount of information that can 
be deduced from the decay distribution. With longitudinal beam polarization it is pos- 
sible to separate all 26 observable independent density matrix elements into contribu- 
tions from natural and unnatural parity exchange in the t-channel, respectively. 

1. Introduction 

Leptoproduct ion  experiments of  vector-mesons, e.g. 

~.N -~ ~NV, V = p, w,  ~ (1) 

are presently being performed at various laboratories [1 -3 ] .  They will provide in- 
teresting data on vector-meson decay and hence on the spin structure of  reaction 
(1). Furthermore,  with the advent o f  intense, highly energetic and polarized lepton 
(electron or muon) beams at SLAC, NAL and CERN II it will be possible to mea- 
sure vector-meson product ion with polarized leptons. Motivated by these develop. 
ments we a t tempt  a systematic presentation of  the vector-meson decay analysis in 
the one-photon exchange approximation,  including lepton polarization. In view of  
muon scattering at small momentum transfers we avoid the usual zero-lepton mass 
approximation.  We explore the maximum amount of  reformation than can be ob- 
tained on the virtual process 

7N ~ VN (2) 
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from the hadronic decay of the vector-meson, with unpolarized and polarized lep- 
tons. We also discuss the separation of the observable vector-meson spin density 
matrix elements into contributions from natural and unnatural parity exchange in 
the t-channel. A complete separation is experimentally possible provided the mea- 
surements are carried out with longitudinally polarized leptons at different lepton 
scattering angles. 

The present work is a continuation of a paper on vector-meson production by 
polarized photons [4]. We employ a unified notation and proper normalization so 
as to facilitate the comparison between real and virtual photoproduction. 

Since we address ourselves primarily to the experimentalists the derivations are 
given in a fairly detailed manner. The paper aims at a comprehensive discussion of 
the subject and draws heavily on the works of Hand [5], Akerlof et al. [6] (photon 
density matrix P(3') for unpolanzed leptons); Fraas and Schildknecht [8] (vector- 
meson decay for the case of s-channel helicity conservation); Dieterle [9] (general 
case of the vector-meson density matrix); Gourdin [10] (inclusive particle produc- 
tion by polarized leptons) and Chadwick [ I 1] (P(3') without small lepton mass ap- 
proximation). * 

2. The photon density matrix 

2.1. Basic notations 
We consider vector-meson production in lepton-nucleon collisions, eq. (1), and 

denote, as indicated in fig. 1, by l 1, l 2, n 1, n 2, the four-momenta of the incoming 
and outgoing leptons and nucleons, respectively, and tlie vector-meson momentum 
by v. The four momentum of the virtual photon is defined as 

q = l 1 - 12, (3) 

~ 1 -Lz 

Fig. 1. 

* After completion of this work we received a preprint by Fraas who treated the case of vector- 
meson production by polarized leptons on a polarized target. 
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(4) Q 2 = _ q 2  ; 

Q2 is positive for space-like photons. 
Let us briefly list a few wdl-known formulae, which express the kinematics in 

terms of laboratory quantities: 

Q2 2 = Qmin + 2 I1111121 (1 - cos O) ,  

Q2mi n = - 2m 2 + 2 (11ol2o - I11 II12 I) ,  (5) 

where m is the lepton mass, O is the lepton scattering angle and lie, 1 i, i = 1, 2, refer 
to the time and space components  of  the four-vectors for the incident and scattered 
leptons. I f Q  2 ~ m 2, 

Q2 ~, 4E1E 2 sin 2 ~ O ,  (6) 

(in standard notation, E i =//o)" The energy of  the virtual photon is commonly  de- 
noted by 

u = E l - E 2 , (7) 

and the effective mass of  the final state hadron system by W: 

S = W 2 = 2 M v + M  2 -  Q 2 ,  (8) 

where M is the nucleon mass. The square of  the four-momentum transfer between 
the incoming and outcoming nucleon is called t, 

t = (n I - n2 )2 . (9) 

We introduce a coordinate system in the hadronic c.m.s, through the following 
orthogonal set o f  unit vectors: 

q* X O* 
z = q * ,  r =  , x = r x z .  ( lo) 

Iq*l Iq* X u*l 

The vector-meson production angle with respect to the direction of  the virtual 
photon is denoted by 0 * V '  

q* • v* 
• - (11) cos 0 v - 

Iq*l Io*l 
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The angle ~ is defined as the angle between the-normals to the lepton scattering 
plane 

! 1 X 12 
e Q = ~  , 

l! 1 X 121 
(12) 

and the hadron production plane, Y 

( ( Y X e ~ J × Y ) - e ~  
cos~ = e~ • Y, s i n~=  I(YX eQ )X YI (13) 

The decay distribution of the vector meson will be described in the vector meson 
rest frame using the helicity system with the z-axis opposite to the direction of the 
outgoing nucleon in the c.m.s. : 

- - n  2 
z -  , y = Y ,  x = y  × z .  ( 1 4 )  

In 2 I 

The decay angles 0, ~ are defined as the polar and azimuthal angles of the unit vec- 
tor ~, which in case of a two-particle decay points along the momentum of one of 
the decay particles (or in case of a three-particle decay along the normal to the de- 
cay plane): 

cos0 = lt .  z cos~ - Y ~z-(X X lt) sin ~= _ x  • (z X x) (15) 
' ~1  ' I z × n l  

2.2. The photon density matrix for unpolarized incident leptons 
In the one-photon exchange approximation, the matrix element describing pro- 

cess (1) is of the form 

M= e2 (/2 I/~ 1 111 >" (n2° II~lu I nl > = e2/u "J~ ' (16) 

where e2141r = r ~  ;],, J, are the matrix elements of the electromagnetic current 
operator ]u sandwicl~ed between the lepton and hadron states, respectively. The 
normalization is such that the differential cross section for vector meson production 
by eN scattering reads [6] : 

d°eN~eNV = 1 E2 m 2 1 1 ~ IMI2 (17) 
dE 2 d~21 d e  dt (2~r)5 E 1 4(02 + Q2)½ Q4 4 spins 
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where d ~  lis the volume element of the scattered lepton. With the abbreviations 

=m 2 ( l  21]~11l 1){l  2 .el )* X v Ii v I11 , (18) 

t #v = (n2o l/elu In I )(n2oljelVlnl  )* , (19) 

I M 12 can be written in terms of the known leptonic tensor Xpv and a hadronic tensor 
t # v  

e 4 
I M 12 =-~ ~p. tPv" (20) 

The summation of ~pv over the lepton spins leads to 

~ = ~ X =m 2Tr  ")' ~'~ 
L ~ spins P~ 

(21) 

= ( 1 1 1 2  v + 12pll~ ' _ ~Q2 gpv ) .  

Defining correspondingly a tensor 

~ 

T pu = t uv , (22) 
spins 

the final form reads 

¼ ~ l /d12=!~"  ~ (23) 4 p U  " 

spms 

Without loss of generality we evaluate L u, in a coordinate system, with the z-axis 
pointing along~q = 11 - 12 and 11,12 in the x, z plane, i.e. lly = 12y = 0. 

The tensor L describes the photon spin state and therefore can be called the pv 
spin density matrix of the photon. It has in general transverse (x, y)  as well as 
longitudinal (z) and scalar (0) components. While the transverse polarizations re, 
main unchanged under Lorentz transformation along q, the longitudinal and scalar 
components transform into each other. It is therefore customary to treat them as a 
single entity. We eliminate the scalar component through current conservation 

q p / P = O ,  q j u = O ,  (24) 
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and obtain as a result 

/`` s`` = ix s~ + / / ~  ' P o / A  • (25) 

This is equivalent to the formal replacement 

/ 3  ., . _ ~  I,, = Ox,/y, iz, 0), (26) 

J,,=(6,sy, Jz, Jo)-%=(Jx, Jy , + ~ J~,o), 

where the powers ofQ/q o (Q =x/~) have been assigned to/z and~ in such a way, 
that 

/``/``=- ~-J I~/'``, (27) 
``=3,4 ``=3,4 

and similarly for J ,  J ' .  Thus the replacement does not alter the longitudinal-scalar 
flux. 

Insertion of/', J '  into eqs. (18), (19), (21), (22) leads to a replacement of L`` v, 
L by the 3 X 3 matrices L~, T : 

/... 
L #,v= 1,2 ; 

~w 

LI~,= 
_ [ ~ 0 ) ~  3 / n \  U = 1,2, v = 3 ;  

- ~ ; 3 ,  v = l , 2 ;  

(To) 2 Z'33 u = v = 3 .  
/ 

T Nv=  1,2; 

(/~Q0) T3v /~=3, 

\ r33 u = . = 3 .  

(28) 

v = l , 2 ;  

(29) 
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Eq. (23) becomes now: 

= L ~ ,  v • spins 4 spins 
(30) 

The polarization of a physical spin 1 particle is invariant under a Lorentz boost. 
Inspection o f L  shows that this is true also for the photon spin density matrix. 
For the transverse components the invariance property is obvious; we give the 
proof for L 13" Current conservation yields 

Q L" - Q "" (31) L13 - qo 13 q3 LIO. 

From eq (21) and observing that in the coordinate system chosen 111 = 121' we 
have 

L 13 = 111 (113 + 123)' 

L 10 = 111 (110 + •20 ) .  

(32) 

We apply a Lorentz transformation L (/3) along q on ~.  The result is, with 7 = (1 -/32)--~ 

, - O ' l l l  
L 13 - Q L%10 = ")'(q3 + ~qo )')' {(110 + 120) +/$(113 + 123)) 

q3 

(llo + •20 ) 1 fl + (113 + 123)/ 
Qlll 

fl (110 + 120)J q3 1 +/3qo 
q3 

(33) 

_ - 0  
q3 111 (110 +120)=L13 " 

Since L is invariant under boosts along q we may choose a suitable system to uv 
evaluate Luv. This is the Breit system, characterized by 110 = 120 (see fig. 2) 
i.e. l 1 = (lx,  O, 1 z,  10), l 2 = (Ix, O, -- 1 z,  10), q = (0 ,  O, 2/z = q, 0) .  

Eq. (28) has to be rewritten before being applicable in the Breit system, since 
here qo = O. For example, 
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Fig. 2. 

_ Q Q + 12z) L13 - --~00 (llxl2x +12xllz)= ---~0 lx (llz 

: Q 12z-I 2 _  Qlx 120-120_ 
-q--o Ix llz 12z qo llz - 12z Q l x - -  

110 - 120 110 + 120 

qo qz 
(34) 

l =_QX 
qz (/10 +/20 )" 

Evaluation in the Breit system gives 

L13 = _ 21xl 0 . (35) 

The remaining elements of Luv are found in the same way. 

Luv = 2 

l I o + l  2 
zQ 0 

_~Q2 

\_lxV/12+m2 +_~Q2 0 

-Ixx/12+m2 +~Q2 1 
0 

12x + m2  / ( 3 6 )  

It is customary to express Luv in.terms of the polarization parameter e, defined 
by 

Lll  1 +e 
w 

L12 1 - e  ' 
(37) 

which gives 

e=(l+ Q2~ -I 
21x 2 / • (38) 
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Furthermore, following Chadwick [11] for the case m 6:0 a mass correction para- 
meter/i is introduced, 

=2m2 (I - (~). (39) 
Q2 

Inserting eqs. (38), (39) we have 

/½(l+e) 
- Q2 / O  

Luv 1 - e 
-x/- eO + e+ 

0 - x/l e(1 +e+281  
½(1 - e) 0 

0 e+6 

(40) 

This expression for L is also valid in the hadron c.m.s, system Finally L will be • tw 
transformed into the ~'adron c.m.s, helicity frame. This is accomplished by a transi- 
tion from cartesian to spherical coordinates followed by a rotation around Z through 
the angle 4) (see eqs. (10), (13)): 

LXx, = U.~L ), U~xI, , (41) 

where X, X' denote the photon helicity (~, X' = 1, 0, - 1) and 

1 ( 0  e- i~  
v"' ='/2 \ :  

- 1 _  * 1 
Uux - Uhu = ~/2 

_ e i@ 
ie io 

0 

_-ie-i°o ~i,~ : t  

0 e-i* I 

0 "-;1 

(42) 

(43) 

The resulting photon spin density matrix reads 

Q2 I~/e x/e(1 +e,+28)e -i¢) 

L~, - 2(1 - e~ (I + e + 28)e ~ ~(e + 8) 
\ 
\ -  ee ~¢> - ~/e('l + e + 28)e/a' 

_ ee -2/~ 

1 ~/e(l +e+28)e-/a)fi 

(44) 
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Fig. 3. 

Let us now express e in terms of lab system variables: we start by calculating the 
x component IX of the lepton momentum (see fig. 3), 

1 l ' ( q X !  2Xq)  ! 1 "{12 q 2 - ( q ' 1 2 ) q }  
Ix =llx = [q X t 2 X q[ -X/12q4 +(q12)2q2 _ 2(qi2)2q2 

1 
[q[ --(11 " 12)2 = ~-~- I Ill[ 1121 sin 0 

Combining this result with eq. (5), 

Q2 2 0 tan-~O, - Qmin = 2[i1[ [12 1 sin 

we  find from eq. (38), 

Q2 + v2 2 ]-1 
e = 1 +2 .,2 2tan" ~@ ) 

which for Q2 ~ m 2 reduces to the well known expression 

e~ ~+2(Q2+p2 ) }-I 
Q2 tan 2 ~0  

(45) 

(46) 

(47) 

(48) 

2.3. The photon density matrix for polarized incident leptons 
In order to describe a polarized lepton beam we shall start from a covariant pro- 

jection operator [ 12] operating on Dirac spinors and employ the same trace techni- 
que applied to evaluate L v. We introduce the lepton polarization vector P~ which 
in the lepton rest frame can be written as 
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p0 = P(cos a 1 sin or2, sin Ot 1 sin rv2, cos  or2, 0 ) ,  bL (49) 

where the lepton is assumed to move in the z-direction. The angles a 1, a 2 character- 
ize the orientation of the polarization vector: a 2 = 0, rr corresponds to longitudinal- 
ly, r~ 2 = i f /2  to transversely polarized leptons. The quantity P measures the degree of 
polarization, 0 ~<P < 1. The covariant density matrix of a polarized lepton beam 
can be written as [12] 

+  ,sv + Ss#), (s0) 

w h e r e P  is obtained from pO by a proper Lorentz transformation. Fo rP  = 1, p(£) 
is a projection operator. 

The cross section is calculated by taking the proper initial polarization state and 
~eraging over the final state polarizations. Instead of L we have a new matrix 
L~,[121 

L'v =~Tr {(/"2 +m) 7u (tl +m)~(1 +1,5/~) 1,v} 

=L" v + 4 T r  {Tz/175~7v +/'27 ")'SPr3,v } . 

The polarization dependent part is 

(51) 

= im e q p p O ,  
p.upo 

where the tensor e is defined as 
pl~ov 

o{*' 
ep#av 0 

if (P, g, a, V)'lS all (eVenodd) permutation of (I ,  2, 3, 4) 

if two indices are equal. 

As in the case of Luv we replace v by a 3 X 3 matrix Muv, 

(52) 
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/ ~  
M /a,u= 1 ,2 ,  

Q 
qo M~3 /z= 1,2, u = 3 ,  

Q~ 
- -,a 0 3 v  / a = 3 ,  u = l , 2 ,  

(53) 

and obtain 

I 
O q3Po - qoP3 

M~v = im - (q3Po - q0P3 ) 0 :1 (54) 

The matrix M is invariant under boosts along q. This is self-evident for all ele- 
ments butM12 (_uv__ ) " e M21 for which th proof runs as follows: 

M~12 = 7(q3 +/3q0)7 (PO + ~ 3  ) -- 7(qo + ~/3)7(P3 + ~PO ) 

= ,),2(1 _ ~2) (q3e 0 _ q0P3 ) = q3?o _ qoP3 =M12 " (55) 

Evaluation of M~u in the Breit system gives: 

Muu = imQ o " i )  - P o  0 1 

P2 - P1 

(56) 

The transformation into the helicity basis yields (see eq. (41)): 

Mx, x, = mQ 1 - ~ ( e  I - a '2)d* o 

1 /P2)ei . 
~/2 (PI - 

0 t -~2(P1 +/P2)e- 

- PO 
(57) 
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In the above relations the lepton polarization vector P is to be taken in the 
Breit system. In a last step we express P in terms of its r~st system parameters (eq. 
(49)) where the z-axis was chosen along the direction of the lepton momentum in 
the lab. system. This requires firstly a Lorentz transformation from the lepton rest 
system into the Breit system. The parameters %/3 of the transformation can be read 
off from the lepton four momentum vector in the Breit system: 

X/~2 +~Q2 + m ~ Q l /1  + e + 2 8  
3' = m =2m 1 - e ' (58) 

x +~Q Q + e 
7/3 = m = 2---m - e 

. . . .  ~ z 

Fig. 4. 

Secondly we rotate P around the y-axis so as to have q pointing along the z-direc- 
tion (see fig. 4). The rotation angle 6o is given by 

sin 6o = i11------ I = . (59) 

This leads to the final result: 

p B S = p  ( -I~ Q V 2 e ( l + e + 2 6 )  # cos ot 1 sin ot 2 + ~-~ 1 -- e 2 cos ~2 ' 

sin Ot I sin a 2 , 

21~e  eoso t l s ino t2+2~  V l + e + 2 f i c o s o t 2 ,  
l + e  (60) 
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which for Q2 ~, m 2 can be approximated by 

pBS~ Q-~-P (~12e_ V l + e c o s o t 2 ) .  (61) u 2m ~. cos ot 2 , O, cos ~2 ' 1 - e 

We see that for purely longitudinally polarized leptons (or 2 = 0, rr), P~2 s = 0. The 
other components will be large provided Q > m. For purely transversally polarized 
leptons there will be no large polarization effects for Q >> m, since the enhancing 
factor Q/m is absent. 

Eq. (60) can be inserted into eq. (57) to evaluate Mxx, in the Breit system. In 
the limit Q2 >> m 2 the result is 

o, ,;o-,° o I 
MXx' 2~/1 - e Pcos a21vreei# 0 ~ree-i~ 

\0 i't' - 1Vi- / 

2.4. Decomposition of the photon density matrix 
The photon density matrix, p (7), normalized to unit flux of transverse photons, 

is given by 

1 - e  
O(7)xx, = - ~  {Lxx, +Mxx, }. (62) 

Note that the flux of longitudinal photons is in the ratio VL/F T = e +/i relative to 
the transverse flux (see eq. (44)). In analogy to the case of photoproduction [4] we 
decompose 0(7) into an orthogonal set of independent hermitian matrices I~ a 

8 

p(3,)=-~ ~ II x " ;  (63) 
~=0 

(i°il (i°i)C :° t 2;0= 0 ; ~1 = 0 ; Z 2 = 0 0 

0 0 0 0 

]~3 = 0 ; ~4 = 2 1 ; Z5 = _ _  0 

0 -- 0 --1 
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L6 =_._~_1 0 ; ~7 = _ _  0 ~8 = 1 . 
,42 2 

- i  1 

The vector II has the following components:  

395 -i!l 
0 - 

i 
(64) 

"" 2m 
II = { 1, - e cos 2 ~ ,  - e sin 2ci,, -Q-- (1 - e ) P  0 , e + 

x/2e(1 +e  + 2 ~ ) c o s ~  ,x /2e  (1 +e  + 2 8 )  s inq , ,  

2mo (1 - e )  (P1 cos ~ + P  2 sin ~),--~-(12m _ e) (p1 sin ~ _  p 2 cos ~)} . 

The decomposition eq. (63) is unique because of  the orthogonality relation, 

(65) 

T r ( Z a Z # ) _ 5  , 

Tr ( Z a Z a ) -  a¢ 

and is equivalent to a separation of  p(7)  into vector and tensor polarization parts 
[131. 

Table 1 
Symmetry properties of the matrices ~a 

c 

~ o  1 I - 1 

]~1 1 0 - 1 

~ z  - 1 3 i 

~s - 1  2 - i  

z 4  1 4 1 

z s 1 5 1 

~6  - 1 7 i 

~7 - 1  6 - i  

~ s  1 8 1 
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The matrices Z0 _ Z3 describe transverse photons and correspond to those used 
in photoproduction [4]; ~0 gives the unpolarized part, Z1 and Z 2 represent linear 
polarization, and Z3 circular polarization. The matrix Z4 describes longitudinal 
photons; Z 5 _ y8 represent transverse/longitudinal interference terms. 

We now turn to the symmetry properties of the matrices L, M and Za which 
determine the structure of the vector meson decay distributions and also the separa- 
tion into contributions from natural and unnatural parity exchange. 

The matrices L ~ ,  and Mxx, have opposite symmetry under reflection at the anti- 
diagonal: 

L_x_x,  = ( -  1) x-x '  Lx, x, (66) 

M_x_x,  = - ( -  1) x-x '  MX, x . (67) 

Correspondingly the matrices >-,3, yfl and Z 8 obey relation (67) while the rest of 
the Za follow relation (66). Further symmetry properties of the Za are listed in 
Table 1. 

3. Vec tor -meson  product ion  

3.1. The vector-meson density matrix 
The previous section dealt with the lepton vertex and provided us with the den- 

sity matrix of the photon. We now turn to the hadron vertex which represents the 
virtual process 7V N -+ VN. It is customary to express the cross section for this pro- 
cess in terms of b~ in the following manner: 

dOvvNoVN 1 2(I -- e) 
E 

dt d@ 32,t2 (v 2 +Q2)  Q2 
1 ~ IMI2 (68) 
4 

Apart from the factor 2(1 - e)/Q 2 this corresponds to the usual expression for the 
photoproduction cross section (replacing/, by e in/~). The extra factor has been 
added to normalize to unit transverse photon flu~ (see eq. 44)). 

Rather than using kl we shall work with the standard formalism for two-body 
reactions by introducing the helicity amplitudes of Jacob and Wick [14] for 
7vN -* VN: TXVXN,X x where the X's denote the helicities of the particles. The ,v 
connection between T ~1~ bl is established through the relation 

TXvXN, X~X N = < XVXN' I/x IXN ) , (69) 



tL Schilling and G. Wolf, Vector-meson production 397 

where 

(XVXN, IJ+IlXN)=~-~ - (XvX N, I/" x +tly IXN), 

and 

( XvX N, I/~,.y=01XN) = < XvX N, Ii z ~ X N ). 

In terms of T the cross section reads 

d°'rvN-*VN 1 

dt dO 321r 2 (~,2 + Q2) ½ Tr (Tp(~,)T+).  (70) 

Eq. (70) explicitly shows the dependence of dO.tvN~VN/dt dO on the photon 
polarization. In particular, after integration over ~, eq. (70) yields 

dOTvN.-,VN dOT(~/vN ~VN) dOL(TvN~VN) 

dt dt + (~ + 6) dt ' 

where dOT/dt and do I /dr  denote the cross sections for vector meson production 
by transverse and longitudinal photons respectively. 

The helicity amplitudes as a consequence of parity conservation, obey the fol- 
lowing symmetry relation (in the coordinate system chosen): 

T(Ov) - XV_ XN,, _ x r-  XN = (-- 1) (xV- kN ') - ( k  - k N) T(OV)XvXN"k'~ kN , 

(72) 

with O v being the production angle in the hadron c.m.s. 
The vector-meson density matrix will be derived starting from the von-Neumann 

formula, 

p'(V) = ~ T p (7) T + , (73) 

where summation over nucleon helicities is understood. For practical purposes it is 
convenient to work w~th the normalized matrix. 

p(v) = ~(v)/f  2-~-Tr ~(V) 

where an averaging over q) is being done. 

(74) 
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The remaining part of this section deals with the decomposition of p (V) into 
hermxtian matrices suggested by the corresponding decomposition of P(7): 

p ( v )  = 

8 

H p c~ , (75) 
¢~=0 

with 

P3'VT~/= 2N a hN,,hN,7~,y,h',y VT~N 'h3,TtN 7h3 ' kV"N""-r"N 
(76) 

Here the Na are normalization constants which for the purely transverse parts 
(~ = 0 - 3 )  we choose to be identical to those used in photoproduction [4]. This will 
facilitate the comparison between photo- and electroproduction data. For the 
longitudinal part (a = 4) we proceed analogously. For the interference terms we 
take the geometric mean of the transverse and longitudinal normalization factors. 
Accordingly the N a are given by: 

. . . . .  3 :  %=Nr-- ½ T 2 
[ hVhN, ,h rkNI  ; 

hV,hN' ' 
h). =-+ 1, k N 

Ct = 4 : N = N L = D 12. (77) 
;~V,kN,,h N TXVhN"OhN , 

1 
-- 5 . . . .  , 8 :  = ( N a N  L ) 3 .  

Note that this implies Tr p0 = Tr p4 = 1. Appendix A lists the pa expressed in terms 
of the helicity amplitudes. 

Since we normalize the matrices pa individually, the vector I I  of eq. (74) differs 
of course from the corresponding II a which appears in the decomposition of p('/) 
(eq. (64)). We find: 

1 2 m  (1 - e ) P  0 , (78)  II - 1 + (e + 5)R { 1, - e cos 24, - e sin 2 4 ,  Q 

(e + 8)R , x /2eR(I  + e + 28 7 cos @, x/2eR(1 + e + 26) sin O ,  

2.__m_m (1 - e) V~" (P1 cos 4, + P2 sin ~) ,  Q 2m (1 - e) x/-R (P 1 sin ~ - P 2  cos~ Q 
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where R =--NL/N T = OL/O T and ~ are the components of the lepton polarization 
vector in the Breit system, see eq. (6O). 

As a consequence of parity conservation (eq. (72)) and of the symmetry proper- 
ties of the ~a listed in table l, the pa obey the following symmetry relations: 

pa , = (_  1) ~'-x' - h - h  P~' " ~ = 0 ,  1 , 4 , 5 , 8  ; 

pa_x_X,__(_l)X-X' , ,  p~,a , o t = 2 , 3 , 6 , 7  

(79) 

The proof of eq. (79) goes as follows: 

1 ~ (_  1)(x_x, ) - 2 ~  ~ ~, r ~ _ ,  
qr "y 

1 c(- 1) x-~'' ~3 
= i N  ~ x, 

q, ,y 
Plux'" 

(so) 

Summation over the nucleon helicities is always understood. For the constant C ,  
C = + 1, see table 1. The symmetry relations eq. (79) reduce the number of in- 
dependent matrix elements and leave us with two types of density matrices, which 
are listed in appendix B. 

3.2. Vector-meson decay angular distribution 
We express the vector-meson decay angular distribution in terms of the spin-one 

D functions and the vector-meson density matrix (see e.g. ref. [4]): 

3 ~ o l  ° (~, 0, - ~)* p(V)~x, D~, o (,, 0, - ,), W(cos O ,#)  =T~ x,x (81) 

which can be written as 

8 
= w ~ (cos o, ~), (82) W(cos 0,~) ~ n 

~'=0 
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where I¢ a is obtained from e q. (81) replacing p (V) by pa(V). The symmetry rela- 
tions, eqs. (79), greatly simplify the decay angular distribution. Making use of the 
trace condition Tr p0 = Tr 04 = 1 one has: 

6l  1 rv W~(cos 0, ¢) = {½(1 - P00) + ~(3P00 - 1) cos20 

- V~ Re P~O sin 20 cos q~ - p~_ 1 sin20' cos 2¢} (83) 

f o r a = 0 , 4 ;  

(cos 0, q~)=~ {P~I sin20 + Pg0 COS20 ~ W ~ 

- ~ R e P l 0 ~  sin 20 cosq~ _ O l _  l a  sin20 cos2q~} (84) 

f o r a =  1, 5,8 ; 

Wa(cos 0, ~ )  = ~ ( x / 2 I m P ~ 0  sin 20 sinq~+Im p~_ 1 sin20 sin 2~) (85) 

for a = 2, 3, 6, 7. 

3.2.1. Vector-meson decay angular distribution for unpolarized leptons 
In the case of unpolarized leptons P0 = P1 = P2 = 0 and consequently 

II3 = 117 = 118 = 0. This leads to 

1 3 
W unp°l (cos 0, ~, ~p) = 1 + (e + 5)R 47r 

1 0 _ × [-~(1 - p° o) + ~(30oo 1) cos20 - , ~  Re 0° o sinE0 cos~ - po_ 1 sin20 cos2~ 

-ecos 2 .  ~"]1 sin20 +P~o c o s 2 0 - ' ~  ge0~o sin 20 c o s ~ - 0  !1-1 sin20 cos 2~  

- e  sin2~ ( x ~  Im 020 sin20 sine +Im 02_ 1 sin20 sin 2¢) 

1 4 _ +(e+8)g ~-~(1 -040) + ~(3000 1) cos20 - , ~ g e 0 4 0  sinE0 cos~ 

-- 04-1  sin20 cos 2~b) + 
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+ X/2e.R(1 + e + 26) COS~ (011 Sin20 +p50 COS20 

vr2  Re p]0 sin 20 cos ~ - O 5 _ 1 sin20 cos 2~} 
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+ X/2eR (1 + e + 26) sin ap (X/2 Im 060 sin 20 sin ~b + Im O 6 _ 1 sin20 sin 2~} 1.  
(86) 

Note that the contribuUons from P l ,  02, 05, p6 can be separated in a measure- 
ment  at a single value of  e since the functions cos ~, cos 2~,  sin ~,  sin 2~  are ortho- 
gonal to each other. In order to separate the contributions from 0 0  and O 4 and to 
determine R,  measurements at different e values, Le. at different values of  the lep- 
ton scattering angle O for fixed Q2, W are required. 

The experiment measures in general 20 independent real quantities: o T and OL, 
the vxrtual photon cross sections, and the 180, 2 ,  ot = 0 - 2, 4 - 6 which appear in 
eq. (86) above (see also appendix B). 

3.2.2. Vector-meson decay angular distribution for polarized leptons 

3.2.2.1. Longitudinally polarized leptons (o 2 = 0, n) 
The components  of  II which depend on the lepton polarization are (see also eqs. 

(60) and (78)): 

//1 _ e 
II3 - 1 +(e+6)R P 

1/7 _ x/2e(1 - e) (1 + 26/(1 + e))R 
1 + ( e  + 6 ) R  P c o s ~ ,  

ii 8 _ x/2e(1 - e) (1 + 26/(1 + 
1 + (e + 6) R e)) R p sin ~ ,  (87) 

where P is the degree of  polarization. The decay angular distribution is given by : 

IV(cos 0, ¢, +, a2 = 0, u) = w unp°l (cos 0, ~, ,I,) _+ w l°ng pol (cos 0, ~, +)  ; 

1 3 
wlong pol (COS 0, ~, qb) = 1 + (e + 6)R 4~r 

(88) 

X P [X/1 - e 2 {V'-2 Im p30 sin 20 sin ~ + Im p31_ 1 sin20 sin 2#) + 
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+x/2e(1 -- e) (1 + 2~/(1 + e))R cos ~{x/2  Im p70 sin 20 sin 

+Im p~_ 1 sin20 sin 2~b} 

+ x/2e(1 - e) (I * 25/(1 + e))R sin • (P~I sin20 + pS00 c°s20 

- x/~ Re PSi0 sin 20 cos ~ - p8_ 1 sin20 cos 2~} ] . (89) 

Provided the ratio R is known, a measurement of the decay angular distribution 
with a single setting of the lepton polarization and the lepton scattering angle is 
sufficient to determine all matrix elements p~:, a = 0 - 8 which enter eq. (88). Al- 
though the accuracy may be improved by taking data with both polarized und un- 
polarized beams, measurements with an unpolarized beam are not required in order 
to separate the matrix elements. This is because the angular functions multiplying 

Ot the p~ in eq. (88) - except for 0 ° and p4 _ are orthogonal to each other. This 
remark might be important in view of the planned/z-beams at NAL and CERN II 
which in general will be polarized. 

Besides the 20 independent real quantities obtained with unpolarized leptons, 8 
additionals terms are accessible to measurements with longitudinal lepton polariza- 
tion. 

3.2.2.2. Transversely polarized leptons (~2 = ½ ~ } 
In this case those terms of the decay angular distribution which depend on the 

lepton polarization carry a factor m/Q and are therefore important only when Q2 ~ m  2 
The corresponding II components are, 

II3 = 0 ;  

2m p 
If7 = i +(e +~)R -Q" Yl+e c°s °tl c°s ~ + sin t~l sin ~ )  ; 

O-e)v  2m _ . l [ i - - e  
Ha = 1 + (e + 5)R - Q / ' t  V l - ~ e  cos rw 1 sin • - sin ~1 cos ~).  

Remember that ~1 is the angle between the plane of polarizaUon and the lepton 
scattering plane. The matrix p3 is not measurable since H 3 = 0. The polarization 
dependent part of the decay distribution is given by: 

1 3 (1 - e)v  x wtrans pol (cos 0, ~, ~) - 1 + (e + ~)R 4~r 



K. Schilling and G. Wolf, Vector-meson production 403 

X [ (V?- -+ :  cos~l cos cI' + sin ~1 sin ~)  {X/2 Im 0~0 sin 20 sine 

+ Im 0~_ 1 sin20 sin 20} 

1 - -  e COS +) ( 081  Sin20 + 0 8 COS20 + ( V]---~--~ cos "1 sin ~ - sin a l  

- x/r2 Re 080 sin 20 cos 0 - 08_1 sin20 cos 20)] • (90) 

As before the knowledge of R is required. At alo= 0, due to the orthogonalxty of 
the angular functions the contributions from 07, 0 ° can be isolated for a given lepton 
polarization degree P. For arbitrary al  one must vary P. 

It should be noted, however, that no additional information is obtained when 
transversely, in addition to longitudinally polarized leptons are used. Therefore and 
because of the factor m/Q in the transverse ease it appears highly advantagous to 
use longitudinally polarized leptons. Fortunately the g-beams obtainable at NAL 
and CERN II will be longitudinally polarized with a high degree of polarization. * 

3.2.3. Decay distribution when Ol,, o L are not separated 
Separation of o T and o L requires measurements at different lepton scattering 

angles, which are difficult because of the inelastic scattering cross section decreas- 
ing rapidly with increasing O. If no separation is done the following matrix dements 
can be determined: 

o4 
r~  - 1 +(e +~)R ' ~ = 1 - 3 ;  

F+ (e + 8)R ' 

1 +(e+5)R ' c~=  5 - -  8 .  ( 9 1 )  

N o t e :  Tr r04 = 1. 

The decay distribution for polarized leptons reads now: 
3 

W unp°l (cos 0, 0, ~)  =~-~ [~ ( 1 - r ~  ). +1~ (3r0004 _ 1 ) cos 20 - Vr2 Re rl~ sin 20 cos 0 

- r104-1 sin20 cos 20 - 

* We thank Dr. F.W. Brasse for a discussion on this point. 
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--e cos 2& {r~l sin20 + r 1 cos20 -- V~- Re r~0 sin 20 cos ~b - r~_ 1 sin20 cos 2~b} 

- e sin 2q~ {x/2Im r120 sin 20 sin ~ + Im r12_1 sin20 sin 2~} 

+ x/2e(1 + e + 6) cos tb (rSll sin20 + r500 cos20 - vc2 Re ~ 0  sin 20 cos ~b 

- ~ - 1 sin20 cos 2~} 

+ x/2e(1 + e + 6) sin • {Vr2 Im r~0 sin 20 sin ~ + Im r 6_ 1 sin20 sin 2~} ] . 
(92) 

The additional part of the decay distribution arising from longitudinal lepton 
polarization is given by (see eqs. (88), (89)): 

wlong pol = 33_p [x/1 - e 2 {vr2 Irn r]l 0 sin 20 sin ~ +Im r~ 1 sinE0 sin 2~} 
4rr 

+ x/2e(1 - e) (1 + 2~/(1 + e)) cos • (x/'2 Im r~o sin 20 sin 

+ Im r~_ 1 sin20 sin 2~} 

+ ~/2e(1 - e) (1 + 26/(1 + e)) sin • {r~l sin20 + rob 0 cos 20 

- V~  Re rib 0 sin 20 cos ~b - r18 - 1 sin20 cos 2~} ] . (92a) 

The matrix elements r~ can be determined, for example, by moment analysis 
provided the full decay angular distribution is observed. For convenience the r~ 
are listed in appendix C in terms of moments. 

4. Natural and unnatural parity exchange 

4.1. Separation of contributions from natural and unnatural parity exchange 
Suppose we picture the reaction 3,vN -+ VN to proceed v/a t-channel exchange 

of particles (or particle systems) with pure natural (P = ( -1 )  J) or unnatural parity 
(P = - ( -  1)J). Then measurements of the density matrices p0 _ p8 allows one to 
separate the contributions from natural and unnatural parity exchange. This is pos- 
sible because of a further symmetry property of the helicity amplitudes [15]; 

T(0V)-XvXl~,,-X XN = --- ( -1 )  ~'V-x'r T(0~)XVXN,,X~,X N' (93) 
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~'hich is valid to leading order in s. The + ( - )  sign applies to natural (unnatural) 
?arity exchange. Writing T as a sum of contributions from natural and unnatural 
?arity exchange 

T = T N + T  U , (94) 

we obtain: 

T (~) * - ' {T(0V)XvhN,,X rX N ~  ) T(0V)_XVXN,_X3XN } • (0V)XvXN,,X XN - * _+ ( -  l xV - x  * 
(95) 

This relation in conjunction with the symmetry properties of Z a allows us to 
write 

~ ~u 
P x x  ' = p +Pxx' ' 

where the paN, paU are defined as 

(96) 

_& _&" 
2N ~ x ,x"  r 

XN,A N, 

(97) 

The essential content of eq. (,96) is the absence of interference terms between 
T N and T U which holds for unpolarized nucleons. The proof goes as follows: 

~[~TI,NX,.¢ ~X X' .U " T~,~, 
3'3' 3' 

= X ~ X' (Txx'r +(- l)X-X" T-X-X'} 
"t "f 

z;x; {r2%-(-1)x'-x; 

= z ,x' r* - X ' - X '  
X X' "Y 7 "1: ' Y 7  "Y 

3, 3, 

~-x ~ , o r[~._x:~ + ( -  1) "r T_X_X r ZXyX~ ' T~,X, _ ( _  1) x ' -x '  

x h' ,y,y 
~ T* ( ( -  1) x-x': T-x-x,y ZX x',r TX'X~-(-  1 )x -~  T - x - x r  x rx~, x'x~, = 0  

(98) 
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Summation over the nucleon helicities is always understood. Note that the proper- 
ties of Z a were not used to derive the result, which therefore holds for any ma- 
trix sandwiched between the T's. 

Making use of the parity symmetry of the helicity amplitudes and of the second 
symmetry property of the matrices Z a (see table 1), namely 

ZT. -74 = d  ( -  1) ~Z # , (99) ~/ ~{ ~ y X  ' 

• (~J) 
we shall express me p as sums and differences of density matrix elements: 

91 9/"{ ,y 

X (Tx,x; - ( -  I) x-x~t T*_x,_x ; )  

---~' ~ {T~, :~,~ T~,~.~ +(-1) (x-~)+(~'-7'~) 
X y 

x ~_~,_~ T*_~._~. 
• 'Y "Y 9" 

-+ ( -  1) ~ T_~,_X Z~..y~.,~ T~,~.; 4- (_  1) 

x T~z~,,; r',,,,,;~ 

= ~ Z~ ~ T , ~ % ~  T;,,~ +(-~) ~'-~:' 
,y 

=-12 {P~'a ± d a (  - 1 ) ~ ' p ~ _ ~ , }  . 

Summation over the nucleon helicities is always understood. 

(100) 
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From this general result one obtains the relations listed in appendix D for the 
individual density matrices. Note that for the matrices p4, as,  pu, a separation of 
the two parity contributions requires only the elements of the same matrix, namely 
p4, p5, p8 respectively; note also that p400u - 5u _ 8u _ - -P00 -Poo -u" 

Appendix D demonstrates the importance of measurements with longitudinally 
polartzed leptons. It is only with these measurements that the N and U contribu- 
tions to p2, p3 and p6 _ p8 can be separated. 

4.2. Natural and unnatural parity exchange cross sections 
The cross section contributions from natural and unnatural parity exchange will 

be called a N and a U. According to appendix D 

aT =1{1 +(2p~_l  - -pl0)  }aT '  

a L { 1 -T- -- p~3) } a L (101) 

Note that measurements with unpolarized leptons are sufficient to determine 
O~T, OTU and O~L, OL U. The parity asymmetry, P o, defined as 

o N _ o U 
P - - -  (102) 

o oN + o  U ' 

for transverse and longitudinal photons, respectively, can be written as: 

-- 2 ,  - -  , 10  , 

1 ' o ,  = - ( 2 , 4 _ ,  - p o)" (r03) 

5. The density matrices and the decay angular distribution in the case of s-channel 
heficity conservation and natural parity exchange 

If the helicities are conserved in the hadronic c.m.s. (SCHC), i.e. 

ThVXN,,h.),XN = TXVXN,, K?y~.N ~ihV'k.), (~hN,hN ' 
(lO4) 

there are only three independent helicity amplitudes (see eq. (72)). The further as- 
sumption that only natural parity is being exchanged (eq. (93)) leaves us with two 
independent amplitudes, for which we choose TI~ 1½-and T0~ 0½" 
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Defining/i to be their relative phase, 

Tolnl  T;~ 1~ -= I T0~0~I ITI-~ 1~ le-i6 (105) 
2~2 

one finds for the density matrices the values listed in appendix E. In the limit 
Q2 ~, m 2 the decay angular distribution for longitudinally polarized leptons is given 
by: 

1 3 
W(cos 0, qJ) = 1 + eR ~ {sin20 (1 + e cos 2~0) + 2eR cos20 

- x/2e (1 + e)R cos 8 sin 20 cos ~k 

+ x/2e(1 - e)R P sin 5 sin 20 sin ~O} , (106) 

where the polarization angle ~ = ¢ - • has been introduced, and P is the degree of 
lepton polarization. 

6. Summary 

We have investigated vector-meson production by lepton scattering in the one- 
photon approximation. After deriving a standard decomposition of the photon spin 
density matrix for the general case of polarized incoming leptons the spin structure 
of vector-meson production by virtual photons has been studied. The vector-meson 
spin density matrix has been decomposed into a set of nine matrices pa with con- 
venient symmetry properties suitable for both an economic analysis of the experi- 
mentally determined decay distribution and a direct comparison with photoproduc, 
~on results. The vector-meson decay distribution has been discussed for un- 
polarized and polarized leptons. As is well known, measurements at different lepton 
scattering angles, i.e. at different values of e, are required to determine the ratio 
R = eLIOT. The lepton polarization does not help to get around this problem. How- 
ever, the number of independent bilinear combinations of helicity amplitudes that can 
be measured from the decay distribution is increased from 20 to 28 when a long- 
itudinally polarized instead of an unpolarized lepton beam is used. Transverse 
polarization appears to be of no practical interest. By use of longitudinal lepton 
polarization all observable density matrix elements can be split into contributions 
from natural and unnatural parity exchange in the t-channel. In this respect experi- 
ments with polarized lepton beams are definitely superior to those with unpolarized 
beams which permit this separation for only three of the nine matrices p~'. 

We are indebted to Dr. S. Yellin for pointing out an error in the draft version. 
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Appendix A. The matrices 0 ~ expressed in terms o f  the helicity amplitudes 

For brevity, for the matrices p l ,  p 2 . . .  the summation over the nucleon helici- 
ties is not shown and the nucleon helicitles are omitted. The normalization factors 
N T, N L are defined as (see eq. (76)):  

NT=-~ ~ I t 2 .  
%XN,XN TXXN"X'~XN ' 

= Z;  t r ,  xN, ,0xN_ I 2 N L 
X, hN, h N 

_ I ~ ThXN,~.yhN T;~,hN,hy~.N, P0X' 2NT h,y=-- 1,XN,,~. N 

Tx _ x Tx' x PL' = ~ h =+- I "Y ' 
"t 

Z; x 7-~,_~ rT,,,, , 
P " " -  21'T ;', =±1 ~ "t 

,o h' 2NT x - ~, 

I * pL--~ T,,o T,,,o, 

"t 

i 

p6, _ 2"V/~TNL ~'"t =± 1 ~ ~o ~,~ - ~ ,  '~,o ), 

_ 1 ~ {(TX0 T~,~. + r ~  TX*,0) , 
F .  V ,~TNI  " ,, --~1 • • 

3, 

8 _ ~ * 

p~, 2,V~_~TNL -~ (T,. o T~,,. - r,.,,, r,,0). X=± 1 
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Appendix B. Form of  the density matrices p" 

The underlined elements are measurable from the decay distribution. 

a Rep~ 0 + i l m P l  0 Pl l  a 

= a - i l m  a a PxX' Re PlO PlO PO0 

\ ° .Re p~l_l - Re p~ o + iIl'n O1 O 

- R e  P~O - i I m p  

for ot = 0, 1,4, 5,8 ; 

/ P~I RePrO +ilmP~O 

pi,, Re P o- / ImPTo 0 
\ 
~ -  i ImpS'_ 1 ReP~o-ilmP~O 

i Im P--------~-- 1 

Re P~O + i lm P~O ) 

for ot = 2, 3, 6, 7 .  

Appendix C. Matrix elements r a 

The matrix elements r~ (see eq. 91)) for the case of longitudinally polarized 
leptons (o~ 2 = 0) can be expressed in terms of moments with the definition 

fdcos 0 d e  dep F(O, ¢, #p) W(cos O, ¢, ~b) 
27r 

<F(0, ¢, ¢)>- 
dcI, 

dcos 0 d ~b W(cos 0, q~, ~P) 

r0004 ={ (cos 2 0 ) - ~  

5 ( s i n 2 0 c o s ¢ ) ,  Re rl040 - 4vr~ 

r04 = S ( s i n 2 0  cos 2¢) 
1 - 1  
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1 =_] ((cos 2¢ )  _ 5 (cos20 cos 2¢)}  r 0  E 

r~l = el t_ _~ ( cos 2¢  ) + -~ ( cos20 cos 2¢  )} 

Re r~0 
1 5 

- - ~ ( sin 20 cos ~ cos 2¢  ) ,  

r 1 
1-1 

_ l s  - e ~ ( sin20 cos 2~ cos 2¢ ) ,  

1 5 2 Im rlO - e2x/r~ ( sin 20 sin ~ sin 2¢  ) ,  

im r2_ l  = __~s (sin20 sin 2~b sin 2¢  ) ,  

Imr~0 - I 5 ( s i n 2 0 s i n ~ )  
e4i-S7 

Im r~_ 1 1 _ e ~  s ( sin20 sin 2~ ) ,  

rS00 = a  { - ( c o s ¢ ) + 5 < c o s 2 0 c o s ¢ > }  , 

~1  = a ( 3 ( c°s ¢ )----~ (c°s20 c°s ¢ ) } ' 

5 
RerlS0 = - a ~ ( s i n 2 0 c o s ~ c o s ¢ ) ,  

2x/2 

r 5 = - a ~ ( sin20 cos 2# cos • ) ,  1-1 

5 _ ~  ( sin 20 sin ~b sin • ) Im r160 = a 2x/r ~ 

Im r16 - 1 = a ~ ( s in20 sin 2 ~  sin • ) , 

1 5 Imrl? 0 =p  b ~ - ( s i n 2 0 s i n ~ c o s ~ ) ,  

411 
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1 
Im r:_ 1 = e b { ( sin20 sin 2¢ cos qb >, 

0 1 r = ff  b { -  ( sin ¢ > + 5 < cos20 sin ¢ >) , 

1 
r811 = ~ b {~ ( sin (I) > - { ( cos20 sin • )} $* 

1 
R e r [ o  - p 

5 
- - - -  b ~ < sin 20 cos ¢ sin ¢ >, 

2x/2 

r8 _ 1 
1 - 1  p 

- - - b s < sin20 cos 2¢ sin (I) > ; 

I 1 
= ( 2 e ( l + e + 2 6 ) } - ~ ,  b = { 2 e ( 1 - e ) ( l + 2 6 / ( l + e ) ) ) - ~ .  

Append ix  D. 

o(i~) 
Phi '  

N 
1(U) 

Oxx' 

Separation of  contributions from natural (pN ) and unnatural parity ex 
change (p U ) in the t-channel 

= ½ ( p O .  T- ( - -  1) ~'' p l _ x , ) ,  

= ](Ph~x" 1 ~ ( _  l)h' pO_h,) ' Pxx' 
- l  5 -~(p~,  _+ ( -  ,)~' p[_~, ),  

Phi,' = ~(Px,x' + i ( -  1) ~' p3_~ , )  , p ~ ,  - 2(Px,v + i ( -  1) x' p7_~ , )  , 

3(N) _ ,  3 -T-i(-- 1) k' 7(N) = ! [ p  7 
p. ,  ~, ~, T i(-  1¢  p6 ,), 

4(N) _ i 4 
PX,V - 2(Pxx' + ( -  1)x' P 4 - X ' ) '  p = ~(p~, 

Append ix  E. Vector-meson density matrices for the case of  s-channel helicity con- 
servation and natural parity exchange 

pO= 0 0 

0 0 
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o o 

p l  = 0 0 p2 = 0 0 

1 0 i 0 

p3 = 0 0 0 p4 = 1 

\ 0  0 - 1 /  0 

0 

0 

° 1 0 

0/ 

413 

io ot / i o 1 p5 = - ~ 8  /~ 0 - - e -  p6 1 _ ~  

_oi~ o = - ~  o O- 
_ie i6 

1 l~ ~ 1 _~  p7 :_~  o ~,8 ___~ o io- 
+ el8 ie i8 0 
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