8.B.5 Nuclear Physics B18 (1970) 333-365. North-Holland Publishing Company

8.B.6

PHOTOPRODUCTION OF NEUTRAL RHO MESONS

H. ALVENSLEBEN, U. BECKER, William K. BERTRAM, M. CHEN, K. J. COHEN, T. M. KNASEL, R. MARSHALL, D. J. QUINN, M. ROHDE, G. H. SANDERS, H. SCHUBEL and Samuel C. C. TING

Deutsches Elektronen-Synchrotron (DESY). Hamburg. Germany

and

Department of Physics and Laboratory for Nuclear Science. Massachusetts Institute of Technology. Cambridge. Massachusetts 02139/USA

Received 26 January 1970

Abstract: We present results of measurements on photoproduction of ρ^0 mesons. Analysis of 10^5 measured π -pairs on protons in the energy region 2.6 - 6.8 GeV using various assumptions of rho production, indicates that $d\sigma/dl(l = 0)$ decreases with increasing energy similar to πN scattering. Analysis of 10^6 measured π -pairs from 13 complex nuclei in a four-dimensional data matrix $d\sigma/d\Omega dm(A, m, p, l_{\perp})$ with dimensions 13, 20, 6 and 20, yields precise information on nuclear density distributions determined by ρ -production. We obtain for the Woods-Saxon radii $R(A) = (1.12 \pm 0.02)A^{\frac{1}{2}}$ fm, and using the vector-dominance model, $\sigma_{ON} = 26.7 \pm 2.0$ mb and $\gamma_{O}^2/4\pi = 0.57 \pm 0.10$.

1. INTRODUCTION

We present results on the photoproduction of neutral ρ mesons [1-4]

$$\gamma + A \rightarrow A + \rho^{0}$$
, $\rho^{0} \rightarrow \pi^{+}\pi^{-}$, (1)

from 14 elements: hydrogen (A = 1), beryllium (9), carbon (12), aluminium (27), titanium (47.9), copper (63.5), silver (107.9) cadmium (112.4), indium (114.7), tantalum (181), tungsten (183.9), gold (197), lead (207.2) and uranium (238.1).

The hydrogen data were measured at forward production angles with incident photon energies between 2.6 and 6.8 GeV and in the dipion mass (m) region from 500 to 1000 MeV/ c^2 . A total of 100 000 events were detected in order to measure the cross sections in energy intervals of $\Delta E_{\gamma} = 0.6$ GeV and in mass intervals of $\Delta m = 30$ MeV/ c^2 .

The purposes of the hydrogen measurement were:

(i) to study the detailed production mechanism of pion pairs from protons with no theoretical assumptions by accurately measuring the dipion spectrum as a function of both mass and energy,

(ii) to study the energy dependence of the forward ρ -production cross section by fitting the extensive data with various assumptions for the pro-

duction mechanism, mass, width, and a general polynomial background in all its dependent variables.

The complex nuclei measurements were made at forward angles and covered twenty intervals in the dipion mass region from 400 to 1000 MeV/ c^2 , six intervals in the dipion momentum (p) from 4.8 to 7.2 GeV/c, and twenty intervals in the transverse momentum transfer to the nucleus (t_{\perp}) from 0.0 to -0.04 (GeV/c)². These measurements form a four-dimensional data matrix (A, m, p, t_{\perp}) = (13, 20, 6, 20) containing approximately one million measured π -pairs. The high statistics of this experiment (between 10^2 and 10^3 times more events than previous works) together with the large variety of elements used (twice that of previous experiments [3, 4]) enables us to make an accurate study of the following:

(i) The nuclear density distributions. For a given A, the *t*-dependence yields accurate information on the nuclear radius R(A) seen by the ρ -meson.

(ii) The absolute and relative forward ρ -production cross sections $d\sigma/d\Omega dm(A, m, p, l_{\perp})$. For fixed A, p and t_{\perp} , measurement of the dipion spectra as a function of mass alone provides a unique determination of the ρ line shape and the background and hence an accurate determination of the cross section.

(iii) The ρ -nucleon cross section $\sigma_{\rho N}$ and the $\gamma \rho$ coupling constant $\gamma_{\rho}^2/4\pi$.

Measurement of the nuclear-density distributions and the production cross sections from the thirteen elements determines the rate of reabsorption of ρ -mesons by nuclear matter and the effective forward production cross section per nucleon $|f_0|^2$. This yields $\sigma_{\rho N}$ and $\gamma_{\rho}^2/4\pi = \alpha \sigma_{\rho N}^2/64\pi |f_0|^2$ in a self-consistent manner. Since the original work of Lanzerotti et al. [1], several experiments have been done [3, 4] to investigate reaction (1) in order to determine $\sigma_{\rho N}$ and $\gamma_{\rho}^2/4\pi$. They have obtained different results and some of the results are different from the predictions of the vector-dominance model [5].

2. THE EXPERIMENT

The present experiment was carried out at the 7.5 GeV DESY electron synchrotron. A bremsstrahlung beam interacted in the target and the photoproduced pairs were detected by a large aperture magnetic spectrometer [6] shown in fig. 1a. For hydrogen the target length was 60 cm.

This spectrometer consists of dipole magnets (MD, MA, MB), scintillation counters (L₁, L₂, L₃, L₄, R₁, R₂, R₃, R₄), threshold Cerenkov counters (LC, RC, HL, HR), and scintillation-counter hodoscopes (TL, TR, QL, QR, VL, VR). The magnet MD (maximum field 18 kG over an effective volume $1.0 \times 1.5 \times 0.3 \text{ m}^3$) separates charged particles from the γ -beam and also sweeps very low-energy particles out of the system. Particles with a central spectrometer momentum are bent an angle of $15^{\circ} - \theta_{\pm}$ by MD, where θ_{\pm} is the horizontally projected production angle with respect to the beam. To isolate the beam and associated low-energy particles from the aperture of the spectrometer, considerable shielding is placed within the field re-

Fig. 1. (a) Plan view of the spectrometer. (b) Spectrometer acceptance limits. The locus of the limiting trajectories is shown as a function of $\Delta p/p_0$ and $\Delta \theta$ as defined in the text. The central spectrometer angle θ_0 is 7°. (c) The yield of pion pairs as a function of target thickness.

gion of MD. However, the shielding is in all cases at least 5 cm away from the limiting trajectories of accepted particles and thus is never a source of scattered background. After passing through MD, the central momentum particles are bent -8° by the MB $(1.029 \times 0.30 \times 0.106 \text{ m}^3 \text{ effective field} \text{ volume})$ located 2.18 m downstream from the centre of MD.

The target position and the field of MD are chosen such that the trajectory of the central ray (central momentum p_0 and angle θ_0) after it enters the MB magnets is identical for all settings of the spectrometer. The MA magnets, 5.39 m further downstream, then bend the central ray a constant angle - 12.93°. (The MA magnets have an effective field volume of $1.30 \times 0.488 \times 0.166 \text{ m}^3$). This arrangement has the following properties essential to the experiment:

(i) The acceptance of the spectrometer is not limited by the edges of magnets or by shielding, being defined instead by the scintillation trigger counters $L_2 - L_4$, $R_2 - R_4$. All counters are located such that their sur-

faces are not directly exposed to the target. The instantaneous rate in L_2 and R_2 , the "hottest" of the triggering counters, is always ~ 1.5 MHz; in all other counters it is always < 100 kHz.

(ii) The spread in position and angle of the particles as they pass through all the threshold counters is nearly independent of the spectrometer setting. Therefore, any slight inefficiency of these counters cannot lead to a momentum-transfer-dependent effect.

(iii) The spectrometer recombines rays of constant $p_{\pm}\theta_{\pm} \propto m$ and therefore has a large acceptance and at the same time a good mass resolution. For a given spectrometer setting, the acceptance is $\Delta \rho/\rho_0 \approx \pm 0.18$, $\Delta \theta/\theta_0 \approx \pm 0.14$, $\Delta m/m \approx \pm 0.10$, and $\Delta \psi \approx \pm 10$ mrad, where ψ is the projected vertical production angle. Fig. 1b shows a typical $\theta \rho$ acceptance window for one of the spectrometer arms for $\theta_0 = 7^0$. The curve shows the limiting trajectories. Vacuum pipes and helium filled bags were placed inside the spectrometer to reduce multiple scattering and nuclear absorption of pions, so that the 22500 hodoscope combinations defined an event to an accuracy of $\delta m = \pm 15 \text{ MeV}/c^2$, $\delta \rho = \pm 150 \text{ MeV}/c$, and $\delta \ell_{\pm} = \pm 0.001 (\text{GeV}/c)^2$.

During the experiment many precautions were taken to ensure that the spectrometer behaved as designed and that all systematic effects were understood. We list the following 10 examples:

(i) To ensure that the data are not sensitive to second-order effects in the target, such as photon beam attenuation and pion absorption, we measured the yield of π -pairs as a function of target thickness from 0 to 5 g/cm² of carbon. As seen in fig. 1c, within an accuracy of 1%, the corrected counting rate increased linearly with target thickness.

(ii) Accidental coincidences were monitored by a series of duplicate logic circuits of different resolving times and were kept below 2% by controlling the beam intensity.

(iii) The dead time of the electronics was monitored by continuously recording the single rates in the counters. The beam intensity was adjusted such that the dead time was less than 2%.

(iv) Nuclear absorption of pions by material in the spectrometer was investigated by introducing additional material and by varying the gas pressure in the Cerenkov counters. The measured loss of pairs agreed with cal culations based on published data [7].

(v) To avoid any possible effects from spectrometer asymmetry, half the data was taken at each polarity of the spectrometer. The rates from the two spectrometer polarities were identical.

(vi) All counter voltages were kept constant to \pm 5 V and all magnetic fields were kept stable to 3 parts in 10⁴.

(vii) To ensure that low-mass π -pairs from high Z elements are not contaminated by electron pairs, Čerenkov counters were used to count and to reject electrons. They indicated the maximum contamination was less than 1 part in 10⁴.

(viii) To ensure the reproducibility of the data, monitor runs were made on carbon every few hours at a fixed spectrometer setting of $\theta_0 = 5.5^{\circ}$, $p_0 = 3.35 \text{ GeV}/c$. Over the entire running period the system was reproducible to $\pm 1\%$. (ix) To keep errors from inelastic contributions to reaction (1) small, all the data were taken with p close to the peak photon energy k_{max} ($k_{max} \ p \approx 1.2$).

(x) The purity of the targets was chosen to be better than 99.9%. The thickness of the targets was chosen such that the corrections for beam attenuation and for pion absorption were similar for each element and that the target-out rates were small.

3. THE DATA

The data were corrected for small systematic effects such as beam attenuation in the target, target out, nuclear absorption of pions in the target and in the counters, dead time, accidentals, etc. All of these corrections were checked by measurement in the same spectrometer to be accurate to 1%.

The acceptance was calculated by a Monte-Carlo method. A sufficient number of Monte-Carlo events was generated so that the errors in the measured cross sections are due only to experimental statistics and small systematic uncertainties. Essential to the Monte-Carlo integration was the accurate determination of the magnet-transport equations. Because of the accuracy needed, neither first-order nor second-order transport theory could be used. Instead, the equations were determined by numerically integrating a family of 100 trajectories through a grid of the measured field values of each magnet. The transport coefficients were then obtained from the trajectories by a least-squares method. The transport equations included all terms linear, bilinear, and pure quadratic in x, x', z, z' and $\Delta p/p_{0}$ (except those excluded by symmetry) and terms up to fourth order in $(\Delta p/p_0)/(1 + \Delta p/p_0)$. Trajectories obtained from these coefficients agreed in position and angle to three parts in 10^3 with those obtained from exact numerical integration. The effects of multiple scattering and of π -decay in flight along the spectrometer were also considered in the Monte-Carlo calculation.

3.1. Hydrogen data

Table 1 shows the measured hydrogen cross sections at forward angles as a function of *m* from 505 - 955 MeV/ c^2 and of *p* from 2.9 - 6.5 GeV/c. In obtaining these cross sections at forward production angles (< 1°) the effects of the *t* variable ($|t_{\perp}| \approx 0.01 (\text{GeV}/c)^2$) and decay angular distribution have been folded into the acceptance [1]. We have used a *t*-dependence of exp (8*t*) and a decay angular distribution in the centre of mass of $\frac{3}{2} \sin^2 \theta_{\text{c.m.}}$. Fig. 2a shows the hydrogen data in three dimensions with the measured experimental cross sections displayed as a function of the variables *m* and *p*. These data enable direct comparison to various models in a straightforward way. Two principal features appear in fig. 2a.

(i) The spectra are dominated by the ρ .

(ii) For every mass bin from 505 to 955 MeV/ c^2 , the spectrum exhibits a dependence of the type $d\sigma/d\Omega dm \propto p^2(1+M/p)^2$ with M > 0, rather than a

H. ALVENSLEBEN et al.

Table 1 Hydrogen data matrix $d\sigma/d\Omega dm$ in units of $\mu b/sr \cdot MeV/c^2$ as a function of p(GeV/c), the laboratory momentum of the dipions, and $m(MeV/c^2)$, the invariant mass of the pion pair.

P	6.5	5.9	5.3	4.7	4.1	3.5	2.9
955 925 805 805 835 805 775 745 715 685 655 625 505	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 4.7\\ .25 \pm .11\\ .52 \pm .11\\ .60 \pm .09\\ .87 \pm .09\\ 1.43 \pm .09\\ 2.63 \pm .11\\ 4.33 \pm .13\\ 5.07 \pm .17\\ 5.11 \pm .19\\ 3.96 \pm .17\\ 3.65 \pm .16\\ 2.68 \pm .15\\ 2.34 \pm .14\end{array}$	$\begin{array}{c} 4.1\\ .17 \pm .12\\ .53 \pm .11\\ .62 \pm .09\\ 1.39 \pm .13\\ 2.34 \pm .14\\ 3.67 \pm .16\\ 4.24 \pm .16\\ 4.54 \pm .18\\ 3.47 \pm .20\\ 3.19 \pm .20\\ 3.02 \pm .19\\ 2.23 \pm .18\end{array}$	3.5 $1.02 + .48$ $.38 + .09$ $.92 + .12$ $1.43 + .15$ $2.80 + .19$ $3.42 + .23$ $2.79 + .19$ $2.73 + .25$ $3.20 + .51$ $1.08 + .85$ $1.49 + .38$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
565 535 505	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$.70 \pm .18$ $.81 \pm .09$ $.95 \pm .17$

 p^2 dependence (fig. 2b). This behaviour shows that the forward dipion production cross section d σ d/dm decreases with increasing energy, similar to the case of πN scattering [8].

3.2. Complex nuclei data

To facilitate analysis and to be able to study the dependence of these cross sections on all dynamic variables we have grouped the data into a four-dimensional data matrix $(A, m, p, l_{\perp}) = (13, 20, 6, 20)$. Due to space limitations, these 31200 cross sections cannot all be presented here; we present some of the data and the results of a complete analysis.

Table 2 shows a typical subset of data for p=5.8, 6.2, 6.6 GeV/c and $l_{\perp}=0.0$ to -0.01 (GeV/c)², $k_{\max}=7.4$ GeV, in the mass region of 480-1020 MeV/c² for the 13 elements.

A projection of 2% of the data onto the three-dimensional (A, m, l_{\perp}) space for $\beta = 6.2 \pm 0.2$ GeV/c is shown in fig. 3a. One observes that these spectra are dominated by the ρ and that the ρ is diffractively produced off the nucleus. As seen, the mass profile varies drastically with A and t_{\perp} , indicating that not all pion pairs are from ρ -decay and that there must exist an appreciable non-resonant background which depends on A, m and t_{\perp} . A projection of 5% of the data onto the (A, m) plane for $\langle p \rangle = 6.0$ GeV/c is shown in fig. 3b. In obtaining this figure, the experimental cross section d\sigma d\Omega dm was divided by $p^2 (f_{\rm C} + f_{\rm inc})$ (see subsect. 4.3). We thus remove the ρ -production mechanism but not the background from the mass spectra.

Fig. 2. (a) Experimentally measured cross sections $d\sigma/d\Omega dm$ in $\mu b/sr \cdot MeV/c^2$ of reaction (1) for hydrogen as a function of the variables *m* and *p*. The curves are best fits to eq. (2) (the background is not shown). Similar curves were obtained for fits to eqs. (3) and (4). (b) Projection of fig. 2a onto the $(p, d\sigma/d\Omega dm)$ plane for fixed values of *m*. The curves are best fits to $d\sigma/d\Omega dm = p^2(1 + M/p)^2$. This shows explicitly that the data for fixed *m* increase more slowly than $p^2(M > 0)$.

In the absence of background, all spectra should be identical. As seen, the width and shape of the spectra (full width half maximum) varies considerably from low A to high A elements. This is further evidence that the non-resonant background depends strongly on A.

H. ALVENSLEBEN et al.

Table 2

BERVILIUM $A diff in \mu J/sr.hev/c2 vs. m(MeV/c2), p(GeV/c) and t1 (GeV/c)2 respondent to the second seco$	1.7 ± 1					2.0	2.0 +	2.2	3.1	1005	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$;		ω c 	+1	•			 +	975 1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	י ת די ת + 1		ب سر س + ا				ן אין אין אין אין אין			045 1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+ 14		ب ند • • • إ +	0.7) - - - - - - - - - - - - - - - - -		+ + +		 + +	2005	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2 4 2 4		 			 - 4 - 1			200	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	 - +			ა – ა ი	4 i n u	1.9	- 14			822	
BERYLL 100 $\frac{1}{2}$ <td></td> <td>ن د ن</td> <td></td> <td></td> <td>1</td> <td>· · ·</td> <td></td> <td></td> <td>1 0 1</td> <td>1 261</td>		ن د ن			1	· · ·			1 0 1	1 261	
BERVLI IUM $\frac{1}{N} \frac{d^2 c}{d 1.0 + 1}$ in µµ/sr./h V/c^2 vs. $m(MeV/c^2)$, $p(GeV/c)$ and t_1 (GeV/c) ² BERVLI IUM $\frac{1}{N} \frac{d^2 c}{d 1.0 + 1}$ in μ /sr./h V/c^2 vs. $m(MeV/c^2)$, $p(GeV/c)$ and t_1 (GeV/c) ² $\frac{1}{495}$ $\frac{1}{11.3}$ $\frac{1}{2.2}$ $\frac{5.7}{5.7}$ $\frac{3}{1.0}$ $\frac{1}{1.5}$ $\frac{1}{4.2}$ $\frac{5.8}{2.6}$ $\frac{5.2}{1.2}$ $\frac{1}{2.1}$ $\frac{1}{1.5}$ $\frac{5}{4.2}$ $\frac{2}{2.6}$ $\frac{1}{1.3}$ $\frac{1}{1.5}$ $\frac{5}{4.2}$ $\frac{2}{2.6}$ $\frac{1}{2.2}$ $\frac{5.7}{2.1}$ $\frac{3}{2.6}$ $\frac{1}{2.2}$ $\frac{5.7}{2.1}$ $\frac{3}{2.6}$ $\frac{1}{2.2}$ $\frac{5.7}{2.1}$ $\frac{3}{2.6}$ $\frac{1}{2.2}$ $\frac{1}{2.1}$ $\frac{1}{2.1}$ $\frac{1}{2.2}$ $\frac{5.7}{2.1}$ $\frac{2}{2.6}$ $\frac{1}{2.6}$ $\frac{2}{2.6}$ $\frac{2}{2.6}$ $\frac{1}{2.6}$ $\frac{2}{2.6}$ $\frac{2}{2.6$				- + - 	5 5 5 5 6			• • •	• • • • • • • •	105	
BERYLL IVM $\frac{1}{2}$ <td></td> <td></td> <td></td> <td> </td> <td></td> <td>3 4 3 4</td> <td></td> <td></td> <td></td> <td></td>				 		3 4 3 4					
BERYLL 1UM $\frac{1}{2}$ <td>26.0 +</td> <td></td> <td>26.2 +1</td> <td></td> <td>50 50 + 1</td> <td>2 C C C C C C C C C C C C C C C C C C C</td> <td></td> <td>3</td> <td></td> <td></td>	26.0 +		26.2 +1		50 50 + 1	2 C C C C C C C C C C C C C C C C C C C		3			
BERYLL 1UM $\frac{1}{2}$ in pul/sr-lik/c ² vs. m(MeV/c ²),p(GeV/c) and t_{L} (GeV/c) ² -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.005 1 0.005 1 0.007 1 0.007 1 0.005 1 0.007 1 0.007 1 0.005 1 0.007 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.007 1 0.005 1 0.005 1 0.005 1 0.005 1 0.007 1 0.007 1 0.007 1 0.001 1 <th co<="" td=""><td>22-4 +</td><td>-</td><td>4</td><td>2</td><td>5 </td><td>, . , . , .</td><td>77 A +</td><td>-</td><td></td><td>105</td></th>	<td>22-4 +</td> <td>-</td> <td>4</td> <td>2</td> <td>5 </td> <td>, . , . , .</td> <td>77 A +</td> <td>-</td> <td></td> <td>105</td>	22-4 +	-	4	2	5 	, . , . , .	77 A +	-		105
BERVELTION $\frac{1}{A} \frac{d^2 \sigma}{d_0 d_m}$ in pL/Sr./EV/C ² vs. m(PEV/C ²), p(GeV/c) and t_{\perp} (GeV/c) ² BERVELTION $\frac{1}{A} \frac{d^2 \sigma}{d_0 d_m}$ in pL/Sr./EV/C ² vs. m(PEV/C ²), p(GeV/c) and t_{\perp} (GeV/c) ² $\frac{1}{100} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{10} \frac{1}{1$	12.0 +	3°0	14.5 +	3.2	3 6 +	2.5 2	21.7 +	1.7	24-8 +	675 1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15.8 +	3.4	18.1 +	3.4	5.4 +	3.1 1	22.2 +	2.1	24.5 +	645	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18.8 ±	5.2	13.0 +	ω.υ υ	9.0 +	3.8	14.9 ±	2.6	18.0 ±	615	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.2	\$•. U	13.0 1	5.4	1 4 1	4.0 1	12.2.4	5.2	14.5 1	686	
BERYLL IUM 1 $\frac{d^2 \sigma}{d(1 dm)}$ in µL/sr./lev/c ² vs. m(hev/c ²), p(GeV/c) and t ₁ (GeV/c) -T = 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -m 1 0.001 1 0.005 1 0.005 1 0.007 1 0.009 -m 1 0.001 1 0.005 1 0.005 1 0.007 1 0.009 -m 1 1.1.5 2.2 5.7.7 3.0 1 2.3 1.1.5 2.5 1.2.2 5.7.7 3.0 1.5 2.5 1.7.6 2.5 1.7.7 2.7 2.7<			12.0						12.0 +		
BERVLITION $\frac{1}{4(1.4)}$ in jub/sr./lev/c ² vs. m(!MeV/c ²), p(GeV/c) and t ₁ (GeV/c) ² -T = 1 0.001 1 0.005 1 0.007 1 0.007 -H 11.3 2.2 5.7 1 0.005 1 0.007 1 0.007 -S55 11.3 2.2 5.7 2.3 1.1 2.3 5.5 5.5 5.7 2.6 9.5 1.5.1 4.7 3.5 5.4 2.5 7.9 2.5 1.5.2 4.7 1.3.5 4.7 3.5 5.4 2.5 7.9 2.5 1.5.2 4.7 1.3.5 5.4 2.5 7.9 2.5 1.5.2 4.7 1.3.5 4.7 1.5.2 4.7 1.3.5 5.4 2.5 4.7 1.3.5 4.7 1.3.5 5.4 2.5 4.7 1.3.5 5.4 2.5 4.7 1.5 2.7 1.3.5 5.4 2.5 4.7 1.5 2.7 1.3.5 5.4 2.5 4.7 1.5 4.7 1.5 4.7 1.5 4.7 1.5 3.7 1.5 <t< td=""><td></td><td></td><td>ר ג ג</td><td></td><td>- 14</td><td>` • • •</td><td>•</td><td></td><td></td><td>1 676</td></t<>			ר ג ג		- 14	` • • •	•			1 676	
BERVLITUM $\frac{1}{4(2 \text{ dr})}$ in µb/sr./heV/c ² vs. m(MeV/c ²), p(GeV/c) and t_{\perp} (GeV/c) ² -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -M 11.3 ± 2.2 5.7 ± 3.0 1 2.2 1.1 ± 2.3 1.5 ± 2.5 ± 3.2 1.4 ± 2.3 1.1 ± 2.3 5.5 ± 2.5 ± 3.2 1.4 ± 2.3 1.1 ± 2.3 5.6 ± 2.8 ± 3.2 1.7 ± 2.3 5.6 ± 2.8 ± 3.2 1.7 ± 2.3 5.6 ± 2.8 ± 3.2 1.4 ± 2.3 5.6 ± 2.8 ± 3.2 1.4 ± 2.3 ± 1.3 ± 2.3 ± 1.4 ± 2.3 ± 1.3 ± 2.3 ± 1.4 ± 2.3 ± 1.3 ± 2.4 ± 2.9 ± 3.3 ± 1.2 ± 3.3 ± 1.7 ± 2.8 ± 2.9 ± 1.3 ± 2.3 ± 1.4 ± 2.1 ± 1.3 ± 2.4 ± 2.9 ± 1.3 ± 2.4 ± 2.9 ± 1.3 ± 2.4 ± 2.9 ± 1.3 ± 2.1 ± 1.3 ± 2.3 ± 1.1 ± 1.1 ± 1.1 ± <t< td=""><td></td><td></td><td></td><td>- - -</td><td>л •</td><td>-</td><td></td><td>n •</td><td></td><td></td></t<>				- - -	л •	-		n •			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				P1277-	X-X-X						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					*	0				-	
BERVILIUM $\frac{1}{2}$ $\frac{d^2 r}{dtdm}$ in µb/sr./lev/c ² vs. m(MeV/c ²).p(GeV/c) and t ₁ (GeV/c) ² = 0.col 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 = 1113 ± 2.2 5.7 ± 3.0 13.1 ± 4.2 6.1 ± 5.2 7.9 ± 5.5 5.4 ± 2.5 11.0 ± 1.3 14.4 ± 2.3 5.6 ± 2.8 5.5 5.5 12.9 ± 1.3 14.4 ± 2.3 7.1 ± 2.3 5.6 ± 2.8 5.5 5.5 12.9 ± 1.3 14.4 ± 2.3 7.1 ± 2.3 5.6 ± 2.8 5.5 5.5 12.9 ± 1.4 14.7 ± 2.2 17.1 ± 2.3 5.6 ± 2.8 5.5 5.5 12.9 ± 1.4 14.7 ± 2.2 17.1 ± 2.3 5.6 ± 2.8 5.7 ± 3.0 12.9 ± 1.5 17.9 ± 2.4 2.2 9 ± 3.3 11.7 ± 2.7 13.9 ± 5.6 ± 2.8 5.7 ± 3.0 2.9 ± 3.3 11.7 ± 2.7 13.9 ± 5.6 ± 2.8 5.7 ± 0.1 ± 1.5 2.9 ± 2.1 13.0 ± 2.1 ± 1.4 8 ± 2.7 1 ± 2.2 5 16.7 ± 2.0 14.5 ± 4.7 8 ± 3.0 2.9 ± 3.1 2.0 1 ± 1.5 5.7 ± 0.1 ± 2.2 5 16.7 ± 2.0 5.7 ± 0.1 ± 2.3 5.6 ± 2.8 ± 2.0 14.7 ± 2.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 2.4 13.0 ± 2.9 19.9 ± 3.3 12.0 ± 1.3 0.2 ± 1.3 0.2 ± 2.1 0.1 ± 2.7 5 16.7 ± 3.0 2.9 ± 3.3 2.0 ± 1.4 8 ± 2.0 14.7 ± 2.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 4.7 13.9 ± 2.6 10.3 ± 2.1 13.0 ± 4.9 ± 2.6 -3.7 ± 1.3 0.2 ± 1.3 1.2 ± 1.4 1.5 ± 2.6 1.5 ± 2.6 1.5 ± 2.8 11.7 ± 2.6 1.5 ± 2.8 11.7 ± 2.6 1.5 ± 2.8 11.7 ± 2.6 1.5 ± 2.8 11.7 ± 2.4 1.5 ± 2.8 11.7 ± 2.4 1.5 ± 2.8 11.7 ± 2.4 1.5 ± 2.8 11.7 ± 2.4 1.5 ± 2.6 1.5 ± 2.8 11.7 ± 2.4 1.5 ± 2.4 1.5 ± 2.6 1.5 ± 2.4 1.5 ± 1.6 ± 1.6 ± 1.6 ± 1.6 ± 1.6 ± 1.6 ± 1	*	*		;							
BERVIL IUM $\frac{1}{4 (1.dm)}$ In µb/sr./lev/c ² vs. m(MeV/c ²).p(GeV/c) and t ₁ (GeV/c) ² Image: Colspan="2">Image: Colspan="2">Or Colspan="2">Image: Colspan="2">Or Colspan="2">Image: Colspan="2">Or Colspan="2" Image: Colspan="2" Image: Colspan="2" Or Colspan="2" Image: Colspan="2" Or Colspan="2" Or Colspan="2" Or Colspan="2" Or Colspan="2" Image: Colspan="2" Or Colspan="2" Image: Colspan="2" Image: Colspan="2" Or Colspan="2" Or Colspan="2" Or Colspan="2" Image: Colspan="2" Or Colspan="2" Or Colspan="2" <th block"="" colspa="</td><td></td><td></td><td></td><td></td><td></td><td>0.8</td><td>• • •</td><td>0.7</td><td></td><td>1005 1</td></tr><tr><td>BERVLL 1UM <math>\frac{1}{4 \cdot 0 \cdot 0 \cdot 0}</math> I 0.001 1 0.005 1 0.007 1 0.001 <th colsp</td><td></td><td></td><td>ī</td><td>2.4</td><td>0.3
+ 7</td><td>1.0</td><td>+ 6.0</td><td>0</td><td>0.4
+ 1</td><td>975 i</td></tr><tr><td><math display=">\begin{array}{c c c c c c c c c c c c c c c c c c c </th>	\begin{array}{c c c c c c c c c c c c c c c c c c c		5 5	9.3 <u>+</u>	2.1	2.7 +	1.2	+ 6.1	0.9	0.7 ±	945]
Hydr 1 $\frac{d^2 c}{d(dm)}$ in µb/sr. ikeV/c ² vs. m(MeV/c ²), p(GeV/c) and $t_L (GeV/c)^2$ H 1 0.003 1 0.005 1 0.007 1 0.009 H 1 0.003 1 0.005 1 0.007 1 0.009 H 1 0.003 1 0.005 1 0.007 1 0.009 H 1 1 1 0.005 1 0.007 1 0.009 H 1 1 1 1 1 1 0.005 1 0.007 1 0.009 H 1 1 1 1 1 1 1 1 1 0.005 1 0.007 1 0.009 H 1	-0.6 1	1.6	3.1 +	1.4	2.7 +	0.9	1.2 ±	0.7	2.9 +	915	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					- 14	,	1) • • • +	1 688	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	• 1 •	• •	• •				- 14			1 660	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								 - -			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ם או + ו	2	+ 1	ا د • د	> + I	2 7 1	+				
BERVLL IUM $\frac{1}{A} \frac{d^2r}{d(1 dm)}$ in µb/sr. HeV/c ² vs. m(MeV/c ²), p(GeV/c) and t ₁ (GeV/c) ² H = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 H = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 H = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 H = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 H = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 H = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 H = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 H = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 H = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 H = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 H = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 H = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.00 1 0.000 0.000 H = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.00 1 0.000 0.000 H = 1 0.005 1 0.0 1 0.0000 0.000 0.000 0.000 0.0000 0.000 0.000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0	17.7 +	2.8	18.5 +	2.4	0 8 +	2.0 2	21.5 +	1.4	25.8 +	795	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26.2 +	3.1	29.9 +	3.0	9.1 +	2.7 2	f1.1 +	1.8	39.9 +	765	
BERVLL IUM $\frac{1}{A} \frac{d^4 r}{(A d m)}$ in µb/sr. AuV/c ² vs. m(MeV/c ²), p(GeV/c) and t_1 (GeV/c) ² $\frac{1}{2}$ = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 $\frac{1}{2}$ = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 $\frac{1}{2}$ = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 $\frac{1}{2}$ = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 $\frac{1}{2}$ = 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 $\frac{1}{2}$ = 1 0.005 1 0.005 1 0.007 1 0.009 $\frac{1}{2}$ = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 $\frac{1}{2}$ = 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.009 $\frac{1}{2}$ = 1 0.005 1 1.0 \pm 1.8 10.9 \pm 2.6 10.5 \pm 3.5 10.2 \pm 4.7 13.5 \pm 2.5 10.2 \pm 4.7 13.5 10.1 \pm 2.5 10.2 \pm 4.7 13.5 10.1 \pm 2.1 10.1 \pm 2.3 11.7 \pm 2.3 5.6 \pm 2.8 8.2 \pm 6.5 10.3 \pm 2.7 10.1 \pm 2.7 10.1 \pm 2.7 10.1 \pm 2.7 10.1 \pm 2.1 10.1 \pm 2.0 10.1 \pm 2.1 10.1 \pm 2.2 10.1 \pm 2.2 10.1 \pm 2.0 10.1 \pm 2.1 10.1 \pm 2.1 10.1 \pm 2.2 10.1 \pm 2.0 10.1 \pm 2.1 10.1 \pm 2.0 10.1 \pm 2.1 10.1 \pm 2.0 10.1 \pm 2.1 10.1 \pm 2.1 10.1 \pm 2.0 10.1 \pm 2.1 10.1 \pm 2.0 10.1 \pm 2.1 10.1 \pm 2.0 10.1 \pm 2.1 1	33./ ±	ين د	26.9 ±	2.9	5 7 +	2.6 2	37.2 ±	1.9	38.6 +	735 1	
BERYLLIUM $\frac{1}{A} \frac{d^4 r}{d(1.dm)}$ in µb/sr./heV/c ² vs. m(MeV/c ²), p(GeV/c) and $t_1 (GeV/c)^2$ -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005	20.0	3.2	22.1 +		1+	2.6 2	1 4 82	1.1	30.6 <u>+</u>	1 501	
BERYLL IUM $\frac{1}{A} \frac{d^4 \sigma}{d\Omega dm}$ in µb/sr. AleV/c ² vs. m(MeV/c ²), p(GeV/c) and $t_1 (GeV/c)^2$ -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.001 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.001)					
BERYLLIUM $\frac{1}{A} \frac{d^4 \sigma}{d(1.6 m)}$ in µb/sr./heV/c ² vs. m(MeV/c ²), p(GeV/c) and $t_1 (GeV/c)^2$ -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 T = 1 0.001 1 0.003 1 0.005 1	14 4 +	י ה י י		о г л (۲ در ۱ ۱					
BERYLLIUM $\frac{1}{A} \frac{d^4 \sigma}{d(1.6 m)}$ in µb/sr./heV/c ² vs. m(MeV/c ²),p(GeV/c) and $t_1 (GeV/c)^2$ -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.009 $-T = 1 0.001 1 0.003 1 0.00 \pm 3.0 0.009$ $-T = 1 0.001 1 0.001 1 0.00 \pm 3.0 0.009$ $-T = 1 0.001 1 0.001 1 0.00 \pm 3.0 0.009$ $-T = 1 0.005 1 1.0 \pm 1.0 0.005 1 0.00 \pm 3.0 0.009$ $-T = 1.0 1.0 \pm 1.0 0 1.00 \pm 3.0 0.009$ $-T = 1.0 1.0 \pm 1.0 0 1.00 \pm 3.0 0.009$ $-T = 1.0 1.0 \pm 1.0 0 1.00 \pm 3.0 0.009$ $-T = 1.0 1.0 \pm 1.0 0 1.00 \pm 3.0 0.009$ $-T = 1.0 1.0 0 \pm 3.0 0 1.00 \pm 3.0 0 \pm 3.0 0.009$ $-T = 1.0 1.0 0 \pm 3.0 0 \pm 3.0 0 \pm 3.0 0.009$ $-T = 1.0 0 1.00 0 \pm 3.0 0 \pm 3.0 0 \pm 3.0 0.009$ $-T = 1.0 0 1.00 0 \pm 3.0 $	13.6 +	2.4	8 - 1 + 1	2.5	2.R +	2.1 1	15.8 +1	1.4		747 I	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18.8 +	3.7	13.6 +	2.9	4•33 +	2.8 1	18.8 +	1.6	15.9 +	615	
BERYLLIUM $\frac{1}{A} \frac{d^4 \sigma}{d\Omega dm}$ in µb/sr./heV/c ² vs. m(MeV/c ²),p(GeV/c) and $t_1 (GeV/c)^2$ -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1	8.1 +	3.7	10.0 +	3.7	; 88 1+	3.0 1	16.2 ±	1.9	12.7 +	585	
BERYLL IUM $\frac{1}{A} \frac{d^4 \sigma}{(A dm)}$ in µb/sr. Alev/c ² vs. m(MeV/c ²), p(GeV/c) and $t_1 (GeV/c)^2$ -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.	0.0	3 • 5	1.8	4.3	0	3.3 1	10.01	2.0	13.0 ±	1 669	
BERYLLIUM $\frac{1}{A} \frac{d^4 \sigma}{d(1.6 m)}$ in µb/sr./heV/c ² vs. m(MeV/c ²),p(GeV/c) and $t_1 (GeV/c)^2$ -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005		, 0 , 4						• •		1020	
BERYLLIUM $\frac{1}{A} \frac{d^4 \sigma}{d(1.6 m)}$ in µb/sr./heV/c ² vs. m(MeV/c ²),p(GeV/c) and t_1 (GeV/c) ² -T = 1 0col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0col 1 0.003 1 0.005 1 0.00	•	•	10 0								
BERVLL IUM $\frac{1}{\lambda} \frac{d^4 \sigma}{d\Omega dm}$ in µb/sr. Alev/c ² vs. m(MeV/c ²), p(GeV/c) and t_1 (GeV/c) ² = $\frac{1}{1} = 1 - 0.001 + 1 - 0.003 + 1 - 0.005 + 1 - 0.007 + 1 - 0.009$ = $\frac{1}{1} = 1 - 0.001 + 1 - 0.003 + 1 - 0.005 + 1 - 0.007 + 1 - 0.009$ = $\frac{1}{1} = 1 - 0.001 + 1 - 0.003 + 1 - 0.005 + 1 - 0.007 + 1 - 0.009$ = $\frac{1}{1} = 1 - 0.001 + 1 - 0.003 + 1 - 0.005 + 1 - 0.007 + 1 - 0.009$ = $\frac{1}{1} = 1 - 0.001 + 1 - 0.003 + 1 - 0.005 + 1 - 0.007 + 1 - 0.009$ = $\frac{1}{1} = 1 - 0.001 + 1 - 0.003 + 1 - 0.005 + 1 - 0.007 + 1 - 0.009$ = $\frac{1}{1} = 1 - 0.001 + 1 - 0.003 + 1 - 0.005 + 1 - 0.007 + 1 - 0.009$ = $\frac{1}{1} = 1 - 0.001 + 1 - 0.003 + 1 - 0.005 + 1 - 0.007 + 1 - 0.009$ = $\frac{1}{1} = 1 - 0.003 + 1 - 0.005 + 1 - 0.005 + 1 - 0.005 + 1 - 0.005 + 1 - 0.005 + 1 - 0.005 + 1 - 0.005 + 0.005 + 1 - 0.005 + 1 - 0.005 + 0.005 + 1 - 0.0$				7 7 7 7 7 1		r 4 a	л. 	0			
BERYLLIUM $\frac{1}{A} \frac{d^4 \sigma}{d(1.dm)}$ in µb/sr./heV/c ² vs. m(MeV/c ²),p(GeV/c) and t ₁ (GeV/c) ² -T = 1 0.col 1 0.003 1 0.005 1 0.307 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.307 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.307 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.307 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.307 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.307 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.307 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.307 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.307 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.307 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.307 1 0.005 1 0.005 1 0.5 1 0				FV/C	. 6. 7 G	¢ u				z	
BERYLL IUM $\frac{1}{A} \frac{d^4 \sigma}{d\Omega dm}$ in µb/sr./heV/c ² vs. m(MeV/c ²),p(GeV/c) and t ₁ (GeV/c) ² = 0.001 1 0.003 1 0.005 1 0.007 1 0.009 = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 = 5.8 GEV/C = 5.5 11.0 ± 1.8 6.9 ± 2.6 9.5 ± 3.5 5.4 ± 2.5 4.9 ± 5.5 112.9 ± 1.6 7.7 ± 2.2 112.1 ± 3.5 15.2 ± 4.7 13.5 ± 5.5 112.9 ± 1.6 7.7 ± 2.2 112.2 ± 3.5 15.2 ± 4.7 13.5 ± 5.5 112.9 ± 1.5 17.9 ± 2.4 2.3 7.1 ± 2.3 5.6 ± 2.8 8.2 ± 6.45 11.0 ± 1.8 15.9 ± 2.4 2.2 ± 2.3 11.7 ± 2.3 5.6 ± 2.8 8.2 ± 6.45 12.0 ± 1.4 14.7 ± 2.1 13.0 ± 2.3 5.6 ± 2.8 8.2 ± 6.45 13.0 ± 1.5 17.9 ± 2.4 2.2 ± 2.3 23.4 ± 2.6 19.0 ± 3.1 20.1 ± 7.65 13.2.1 ± 1.8 15.9 ± 2.6 10.3 ± 2.7 16.7 ± 3.0 29.8 ± 7.65 13.2.1 ± 1.4 8.15 29.7 ± 2.1 30.1 ± 2.9 129.9 ± 3.0 29.8 ± 7.65 13.2.1 ± 1.4 8.15 29.4 ± 2.6 10.3 ± 2.7 16.7 ± 5.7 10.1 ± 8.55 12.0 ± 1.3 6.7 ± 2.2 5.4 ± 2.6 10.3 ± 2.7 16.7 ± 5.7 10.1 ± 8.55 12.1 ± 1.4 8.1 ± 2.1 7.1 ± 2.5 4.0 ± 2.1 9.9 ± 8.55 12.1 ± 1.4 8.1 ± 2.1 7.1 ± 2.5 4.0 ± 2.1 9.9 ± 8.55 12.1 ± 1.4 8.1 ± 2.1 7.1 ± 2.5 4.0 ± 2.1 9.9 ± 8.55 12.1 ± 1.4 8.1 ± 2.1 7.1 ± 2.5 4.0 ± 2.1 9.9 ± 8.55 12.1 ± 1.4 8.1 ± 2.1 7.1 ± 2.5 4.0 ± 2.1 9.9 ± 8.55 12.1 ± 1.4 8.1 ± 2.1 7.1 ± 2.5 4.0 ± 2.1 9.9 ± 8.55 12.1 ± 1.4 8.1 ± 2.1 7.1 ± 2.5 4.0 ± 2.1 9.9 ± 8.55 12.1 ± 1.4 8.1 ± 2.1 7.1 ± 2.5 4.0 ± 2.1 9.9 ± 8.55 12.1 ± 1.4 8.1 ± 2.1 7.1 ± 2.5 4.0 ± 2.1 9.7 ± 8.55 12.1 ± 1.4 8.1 ± 2.1 7.1 ± 2.5 4.0 ± 2.1 9.7 ± 8.55 12.1 ± 1.4 8.1 ± 2.1 7.1 ± 2.5 4.0 ± 2.1 9.7 ± 8.55 1.1 ± 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1				1 1 1 1 1	1						
BERYLLIUM $\frac{1}{A} \frac{d^4 \sigma}{d (d m)}$ in µb/sr./heV/c ² vs. m(MeV/c ²),p(GeV/c) and $t_1 (GeV/c)^2$ BERYLLIUM $\frac{1}{A} \frac{d^4 \sigma}{d (d m)}$ in µb/sr./heV/c ² vs. m(MeV/c ²),p(GeV/c) and $t_1 (GeV/c)^2$ -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.005 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.005 1 0.000 1								1.1	1.1 +	1005	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								0.5	0.5	975	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.3	1.2 +	1.3	1.2 +	1.3	2.3 +	0.8	1.7 +	945	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5.0	12•4 ±	2.9	4 8 +	1.3	2.3 +	0.8	1.7 ±	915	
BERYLLIUM $\frac{1}{A} \frac{d^4 \sigma}{d\Omega dm}$ in µb/sr./heV/c ² vs. m(MeV/c ²),p(GeV/c) and t_1 (GeV/c) ² = 0.001 1 0.003 1 0.005 1 0.007 1 0.009 = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 = 5.8 GEV/C = 5.5 11.0 ± 1.8 6.9 ± 2.6 9.5 ± 3.5 5.4 ± 2.5 4.9 ± 5.5 11.0 ± 1.8 6.9 ± 2.6 9.5 ± 3.5 5.4 ± 2.5 4.9 ± 5.5 51 12.0 ± 1.4 14.7 ± 2.5 11.1 ± 3.5 15.2 ± 4.7 13.5 ± 5.6 ± 4.7 13.5 ± 5.6 ± 4.7 13.5 ± 5.6 ± 4.7 13.5 ± 5.6 ± 4.7 13.5 ± 5.6 ± 4.7 13.5 ± 5.6 ± 4.7 13.5 ± 5.6 ± 4.7 13.5 ± 5.6 ± 4.7 13.5 ± 5.6 ± 4.7 13.5 ± 5.6 ± 4.7 13.5 ± 5.6 ± 5.7 ± 3.5 11.1 ± 2.3 7.1 ± 2.3 5.6 ± 2.8 8.2 ± 1.5 ± 1.5 26.2 ± 2.3 7.1 ± 2.3 5.6 ± 2.8 8.2 ± 1.3 0.1 ± 2.3 23.4 ± 2.6 19.0 ± 3.1 20.1 ± 3.6 ± 3	-3.1 ±	2.6	U 0 +	2.0		1.3	2.1 +	1.2		1 488	
BERYLLIUM $\frac{1}{A} \frac{d^4 \sigma}{d\Omega dm}$ in µb/sr./keV/c ² vs. m(MeV/c ²),p(GeV/c) and t ₁ (GeV/c) ² = 1 0.c01 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.c01 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.c01 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.c01 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.c01 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.c01 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.c01 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.c01 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.c01 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.c01 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.c01 1 0.003 1 0.005 1			• •	•			- 14				
BERYLLIUM $\frac{1}{A} \frac{d^4 \sigma}{d\Omega dm}$ in µb/sr./heV/c ² vs. m(MeV/c ²),p(GeV/c) and t ₁ (GeV/c) ² = 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1	 		• •			5 r •					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+	-	4-0+1	у I Л	+ 1	1 1	+ 1		12.1 +	8 25	
BERYLLIUM $\frac{1}{A} \frac{d^4 \sigma}{d(dm)}$ in µb/sr./keV/c ² vs. m(MeV/c ²),p(GeV/c) and t ₁ (GeV/c) ² = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1.005 1.003 1 0.005	10.1 +	5.7	16.7 +	2.7	0 • •	2.6 1	15.9 +		20.2 +	795	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.1 ±	ىں س	19.9 +	2.9	+ 0.0	2.6 2	27.9 +	1.8	32.1 +	765	
BERYLLIUM $\frac{1}{A} \frac{d^3 \sigma}{d\Omega dm}$ in µb/sr. AeV/c ² vs. m(MeV/c ²), p(GeV/c) and t ₁ (GeV/c) ² -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -M 1 2.2 5.7 ± 3.0 13.1 ± 4.2 6.1 ± 5.2 7.9 ± 525 11.0 ± 1.8 6.9 ± 2.4 6 9.5 ± 3.5 5.4 ± 2.5 4.9 ± 555 12.0 ± 1.7 11.5 ± 2.2 11.1 ± 3.5 15.2 ± 4.6 9.8 ± 585 12.9 ± 1.6 7.7 ± 2.2 11.1 ± 3.5 15.2 ± 4.7 13.5 ± 645 117.0 ± 1.3 14.4 ± 2.3 17.1 ± 2.3 5.6 ± 3.5 13.6 ± 645 12.0 ± 1.5 17.9 ± 2.4 22.9 ± 3.3 11.7 ± 2.7 13.9 ± 645 12.8 ± 1.5 17.9 ± 2.4 22.9 ± 3.3 11.7 ± 2.7 13.9 ± 705 130.6 ± 1.5 26.2 ± 2.3 23.4 ± 2.6 19.0 ± 3.1 20.1 ±		3.0	29.9 ±	2.9	i i i i i i	2.1 3	29.7 +	1.5	36.1 ±	735 1	
BERYLLIUM $\frac{1}{A} \frac{d^4 \sigma}{d c d m}$ in µb/sr./keV/c ² vs. m(MeV/c ²),p(GeV/c) and t ₁ (GeV/c) ² -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1.005 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1.005 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1.005 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1.005 1 0.003 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -5.5 11.0 ± 1.10 ± 1.00 1 1.0 ± 2.2 5.7 ± 3.5 5.4 ± 2.5 4.9 ± 5.5 11.0 ± 1.0 ± 1.15 ± 2.5 12.2 ± 3.2 14.6 ± 4.6 9.8 ± 5.6 15 11.0 ± 1.3 14.4 ± 2.3 7.1 ± 2.3 5.6 ± 2.8 8.2 ± 6.6 5 117.0 ± 1.4 14.7 ± 2.1 13.0 ± 2.1 7.8 ± 3.5 13.6 ± 5.6 5 2.7 13.9 ± 2.4 22.9 ± 3.3 11.7 ± 2.7 13.9 ± 5.7 13.9 ± 5.4 5.4 ± 5.7 13.9 ± 5.4 5.4 ± 5.7 13.9 ± 5.4 ± 5.7 13.9 ± 5.4 ± 5.7 13.9 ± 5.4 ± 5.7 13.9 ± 5.4 ± 5.7 13.9 ± 5.4 ± 5.7 13.9 ± 5.4 ± 5.7 13.9 ± 5.4 ± 5.7 13.9 ± 5.4 ± 5.7 13.9 ± 5.4 ± 5.7 13.9 ± 5.4 ± 5.7 13.9 ± 5.4 ± 5.7 13.9 ± 5.4 ± 5.7 13.9 ± 5.4 ± 5.7 13.9 ± 5.4 ± 5.4 ± 5.7 13.9 ± 5.4 ±	20.1 +	3.1	19.0 +	2.6	13.4 +	2.5 2	26.2 +	1.5	30.6 <u>+</u>	1 507	
BERYLL IUM $\frac{1}{A} \frac{d^4 \sigma}{d\Omega dm}$ in µb/sr.fleV/c ² vs. m(MeV/c ²),p(GeV/c) and t ₁ (GeV/c) ² -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.005 1 0.007 -T = 1 0.col 1 1 0.003 1 0.005 1 0.005 1 0.007 -T = 1 0.col 1 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.005 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.009 -T = 1 0.005 1 0.	13.4		11	ين ب	1		1.4 +		+ 8.12	1 5 1 6	
BERYLLIUM $\frac{1}{A} \frac{d^3 \sigma}{d\Omega dm}$ in µb/sr. HeV/c ² vs. m(MeV/c ²), p(GeV/c) and t ₁ (GeV/c) ² -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -M 1 2.2 5.7 + 3.0 13.1 ± 4.2 6.1 ± 5.2 7.9 ± 525 1 11.0 ± 1.8 6.9 ± 2.6 9.5 ± 3.5 5.4 ± 2.5 4.9 ± 525 1 12.9 ± 1.6 7.7 ± 2.2 11.1 ± 3.5 15.2 ± 4.7 13.5 ± 615 1 16.1 ± 1.3 14.4 ± 2.3 17.1 ± 2.3 7.6 ± 2.6 9.8 ± 516 1 5.1 ± 1.3 14.4 ± 2.3 17.1 ± 2.3 7.6 ± 2.6 9.8 ± 525 1 12.9 ± 1.6 7.7 ± 2.2 11.1 ± 3.5 15.2 ± 4.7 13.5 ± 615 1 16.1 ± 1.3 14.4 ± 2.3 17.1 ± 2.3 7.6 ± 2.6 ± 3.5				 				 			
BERYLL LUM $\frac{1}{A} \frac{d^4 \sigma}{d\Omega dm}$ in µb/sr./heV/c ² vs. m(MeV/c ²),p(GeV/c) and t ₁ (GeV/c) ² -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.col 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.005 1 0.007 1 0.009 -T = 2.8 GEV/C -S = 2.8 GEV/C -S = 2.8 GEV/C -S = 2.5 1.2.2 ± 3.5 1.4.6 ± 4.6.9.8 ± -S = 5.2 ± 4.6.1 ± 4.6 9.8 ± -S = 5.6 ± 5.6 ± 5.8 ± -S = 5.6 ± -S = 5.8 ± -S =		ייע	v • •	3 I -		3 I I					
BERYLLIUM $\frac{1}{A} \frac{d^3 \sigma}{d\Omega dm}$ in µb/sr.HeV/c ² vs. m(MeV/c ²),p(GeV/c) and t ₁ (GeV/c) ² -T = 1 0.col 1 0.003 1 0.005 1 0.007 1 0.009 -M 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -M 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -M 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -M 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -M 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -M 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -M 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -M 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -M 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -M 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -M 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -M 1 0.005 1 0.005 1 0.007 1 0.007 1 0.009 -M 1 0.005 1 0.005 1 0.007 1 0.007 1 0.009 -M 1 0.005 1 0.005 1 0.007	8.2 +	2.8	5 5 + 1	5.3	7-1+1	د د	+ + + +	- 3	16-1 +	615	
BERYLLIUM $\frac{1}{A} \frac{d^3 \sigma}{d\Omega dm}$ in µb/sr. HeV/c ² vs. m(MeV/c ²), p(GeV/c) and t ₁ (GeV/c) ² -T = 1 0.601 1 0.003 1 0.005 1 0.307 1 0.009 -T = 1 0.601 1 0.003 1 0.005 1 0.307 1 0.009 -M 1 2.2 5.7 + 3.0 13.1 ± 4.2 6.1 ± 5.2 7.9 ± 525 1 11.0 ± 1.8 6.9 ± 2.5 6 9.5 ± 3.5 5.4 ± 2.5 4.9 ± 525 1 12.0 + 1.7 11.5 + 2.5 12.2 + 3.2 14.6 ± 4.6 9.8 ±	13.5 +	4.7	15.2 +	ω •	+1	2.2 1	7.7 +	1.6	12.9 +	585	
BERYLLIUM $\frac{1}{A} \frac{d^4 \sigma}{d\Omega dm}$ in µb/sr.fleV/c ² vs. m(MeV/c ²),p(GeV/c) and t ₁ (GeV/c) ² -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.005 1 0.005 1 0.005 1 0.007 1 0.009 -T = 1 0.001 1 0.005 1 0.005 1 0.005 1 0.005 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.005 1 0.009 -T = 1 0.001 1 0.003 1 0.005 1 0.005 1 0.005 1 0.009 -T = 1 0.001 1 0.005 1 0.005 1 0.005 1 0.009 -T = 1 0.001 1 0.005 1 0.005 1 0.005 1 0.009 -T = 1 0.001 1 0.005 1 0.005 1 0.005 1 0.009 -T = 1 0.005 1 0.005 1 0.005 1 0.005 1 0.009 -T = 1 0.005 1 0.005 1 0.005 1 0.005 1 0.009 -T = 1 0.005 1 0.005 1 0.005 1 0.009 -T = 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.009 -T = 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.009 -T = 1 0.005	9.8 +	4.6	14.6 +	3.2	2.2 +	2.5 1	11.5 +	1.7	12.0 +	555	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 9 +	2.5	5.4 +	3.5	9.5 +	2.6	+ 6.9	1.8	11.0 +	525 \$	
BERYLLIUM $\frac{1}{A} \frac{d^3 \sigma}{d\Omega dm}$ in µb/sr.HeV/c ² vs. m(MeV/c ²),p(GeV/c) and t ₁ (GeV/c) ² -T = 1 0.CO1 1 0.003 1 0.005 1 0.307 1 0.009 -M 1	7.9 ±	5.2	6.1 +	4.2		3.0 1	5.7 ±	2.2	11.3 ±	495	
BERYLLIUM $\frac{1}{A} \frac{d^2 \sigma}{d\Omega dm}$ in µb/sr.AeV/c ² vs. m(MeV/c ²),p(GeV/c) and t ₁ (GeV/c) ² -T = 1 0.001 1 0.003 1 0.005 1 0.007 1 0.009				EYZC	5.8.6	P				3	
$\frac{1}{2} \frac{d^2 \sigma}{d t} = \frac{1}{2} \frac{d^2 \sigma}{d t} \frac{d^2 \sigma}{d$											
HERYLLIUM $\frac{1}{A} \frac{d^3 \sigma}{d\Omega dm}$ in µb/sr.HeV/c ² vs. m(MeV/c ²),p(GeV/c) and t ₁ (GeV/c) ²	0.009	-	0.307	-	0.005	-	0.003		0.001	-1 = 1	
$\frac{1}{160 \text{ Gravity}} = \frac{1}{2} \frac{d^2 \sigma}{d^2} = \frac{1}{160} \frac{d^2 \sigma}{d$	(uev/c/	T_ 10	olucity o				. 10 / 11	10 dm	N N	BERYLL	
	1001012	5 1 +	N(GAV/c) a	w/c ²)	ve m(Ma	1111112 ·	in uh/en	٩٫٩	-		
										IABLE 2	

CARBON $\frac{1}{A} \frac{d^2 \sigma}{d\Omega dm}$ in µb/sr.MeV/c² vs. m(MeV/c²),p(GeV/c) and t₁ (GeV/c)²

-T =	0.001	1	0.003	1	0.005	1	0.007	1	0.009	
	-				- 5 9 0					
495	10.9 +	1.8	5.2 +	3.4	<u>2+0 0</u> 5-0 +	2.6	6.2 +	3 6		
525	14.9 +	1.9	13.7 ±	3.2	11.4 +	3.2	10.2 +	3.5	4.9 +	2.6
555	13.1 ±	2.1	10.8 +	2.5	7.4 +	2.9	11.1 +	3.8	9.4 +	4.5
585	17-1 ±	2.0	11.1 <u>+</u>	2.6	13.4 ±	4.0	10.6 ±	5.1	12.0 ±	5.5
615	16.8 ±	1.5	13.1 <u>+</u>	2.3	18.8 <u>+</u>	3.8	11.3 ±	4.9	13.5 ±	5.0
645	22.2 ±	1.8	20 .2 <u>+</u>	2.5	14.2 ±	2.3	8.4 <u>+</u>	5.2	12.5 <u>+</u>	3.8
705	20.0 2	1.1	25.3 <u>+</u>	2.7	20.2 +	3.2	12.0 ±	2.9	16.3 ±	5.0
735		1.7	20.8 +	2.4	21.0 +	2.1	24•2 <u>+</u>	3.3	16.4 ±	4.6
765	39.8	2.0	$31 \cdot 5 \cdot 1$	2.0	34.9 +	3.6	31+5 ±	3.0	29.8 +	3.4
795	26.8 +	2.0	23.8 +	3.8	13.8 +	3.8	17 9 4	3.5	20.9 +	3.4
825	16.2 +	1.8	17.7 +	3.0	18.9 +	4.5	10 9 4	6 1	5.0 <u>+</u>	9.1
855	10.6 +	1.6	4.0 +	2.1	7.1 +	2.3	$10.5 \pm$	4.2	0.2 +	4.U 1.9
885	6.6 ±	1.3	2.1 +	1.3	0.3 +	1.4	1.9 +	1.9	-4.2 +	5.9
915	3.3 ±	0.8	4.0 ±	1.2	1.9 ž	1.2	3.2 +	1.9	3.1 +	2.8
945	1.4 ±	0.6	1.2 ±	0.6	2.0 +	1.1	2.9 +	1.3	0.8 +	0.9
975	0.3 ±	0.3	0.0 <u>+</u>	0.8	2.2 ±	1.3	-0.4 ±	2.2	2.0 ±	1.6
1005	1.4 <u>+</u>	0.8			1.0 ±	1.3			-	
M 1	- 			 D						
495	14.4 +	4.2	-3.8 +	8.7	98.9 +	<u>19.6</u>	5.4 + 1	52 7		
525	12.2 +	2.5	13.5 +	3.9	11.5 +	3.8	19.1 +	7.4	9.5 +	1.8
555	14.4 ±	2.0	14.2 +	3.1	8.6 +	3.2	13.4 +	3.6	2.6 +	4.8
585	18.4 <u>+</u>	2.1	16.2 +	3.6	17.3 ±	4.5	18.0 +	5.2	7.2 +	3.0
615	16.6 <u>+</u>	1.9	18.8 ±	3.5	19.9 🛨	3.6	19.2 -	4.9	9.3 +	4.5
645	22.9 <u>+</u>	1.6	22.1 ±	2.7	14.2 <u>+</u>	2.8	11.8 ±	3.2	15.8 🛨	4.1
675	31•4 <u>+</u>	1.7	25.8 <u>+</u>	2.6	23.5 ±	2.7	18.1 <u>+</u>	3.3	15.6 ±	2.6
705	31.5 ±	1.9	35•3 <u>+</u>	2.9	33.5 ±	3.8	27.6 <u>+</u>	3.5	34.5 ±	6.8
765	40.4 +	2.1	40.6 +	2.9	33+6 <u>+</u>	3.1	34.3 ±	3.6	37.4 <u>+</u>	4.9
795	32.4 +	1.5	41.5 <u>+</u>	2.9	3/ + 0 +	3.4	36+6 ±	3.3	29.5 ±	2.9
825	17.6 +	1.5	19.2 +	3.7	4.5 +	1.7	10.5 ±	2.1	15.4 +	6.9
855	8.8 +	1.4	9.0 +	1.9	12.4 +	3.2	13.5 +	4.3	5.2 +	2 5
885	5.6 •	1.2	6.1 +	2.0	1.3 +	1.1	6.9 +	3.0	4.2 +	3.4
915	2.7 <u>+</u>	0.7	3.9 ±	1.4	6.3 +	3.9	5.1 +	2.8	1.7 +	2.1
945	2.9 ±	0.8	0.5 🛓	0.8	1.5 ±	1.1	4.8 ±	2.4	5.5 +	3.7
975	2.0 <u>+</u>	0.8	1.9 <u>+</u>	1.0	0.0 <u>+</u>	1.1	1.5 ±	0.9	1.7 ±	1.0
1005	0.9 <u>+</u>	0.4	0.0 <u>*</u>	0,8	1.0 <u>+</u>	0.8			_	
M 1					= 6.6 0					
495										
525	16.5 <u>+</u>	9.7	24.3 +	16.1	32.9 +	17.2	13.0 + 1	17.9		
555	15.1 <u>+</u>	3.2	23.0 ±	6.5	16.5 🛉	5.1	23.8 ±	7.1	20.9 +	6.7
585	22.5 <u>+</u>	2.8	25.2 ±	5.0	6.1 ±	2.7	7.6 -	3.3	17.8 -	6.2
615	27.2 ±	3.0	13.7 <u>+</u>	4.1	20•1 <u>+</u>	5.1	4.6 ±	5.8	8.8 -	5.3
645	25.3 ±	2.3	24.3 ±	3.5	18.6 ±	3.7	18.1 ±	3.8	11.5 ±	5.3
1 675	32.5 +	2.0	32.7 ±	3.2	25.1 <u>+</u>	3.5	24.8 <u>+</u>	4.2	19.3 <u>+</u>	4.2
735	47.5 +	2.3	40.9 <u>+</u>	3.4	33.9 ±	3.0	24.4 <u>+</u>	3.7	22.8 ±	3.6
765		2.5	44.4 <u>+</u>	3.6	42.0 +	4.1	59.3 <u>+</u>	3.9	31.4 ±	5.4
795	34.0 +	2.44	-+0.0 <u>+</u> 31.1 +	2.2	74.5	4.4	32+3. <u>+</u>	3.0 2.0	52.9 ±	4.5
825	17.6 +	1.2	18.4 +	2.1	17.8 +	2.1	8.7 4	J.0	17+1 <u>+</u>	2.8
855	8.6 +	1.2	11.8 +	1.8	6.6 +	2.5	7.7 +	2.9	4.0 +	1.7
885	6.0 +	1.1	7.5 +	1.9	1.2 +	2.1	4.0 +	3.6	4.9 +	3.3
915	3•2 ±	0.9	5.9 +	1.9	5.2 +	2.0	4.5 +	2.0	3.6 +	2.2
945	4.2 ±	1.0	2.6 ±	1.2	3.2 Ŧ	2.3	1.6 ±	1.6	6.0 <u>+</u>	4.6
975	2.5 ±	0.8	2.3 <u>+</u>	1.1	0.7 <u>+</u>	1.4	2.7 ±	2.8	-1.5 ±	3.1
1005	1.3 ±	0.6	1.2 ±	0.9	,				1.3 <u>+</u>	1.1

1005	975	945	915	885	855	825	795	765	135	105		27.7	645	615	680			л. О	495	z		1005	975	945	516	688	800	202		705	765	735	705	675	645	615	585	555	525	495		:	1005	975	646	515			יות איז ת	805	705	1 2 2	775	705	675	645	615	585	555	525	695	IZ			ALUMI
	-		-			-	-	-		•			-	-	-				-		į.		-				-						-	-	-		-	-		• •••	۲	• !				•										-						-	!	٠ł	z
1.1	0.6	2.9	7.8 4	10.1	16.9 1	33.2 4	55.7 4	78.5 1	11.0				38.0 4	23.0 1	28.6 1							3.6	+ + +	2.3	4 • 3 _4	 				47.74	73.0 +	83.8	65.4 1	47.5 ±	37.3 ±	26.4 1	23.7 1	22.7 1	14.5 1	14.3			3.4 +	1.6 ±	1.0 1						40.7 +	× • • •	6 A	5 4 4	32.5 +	30.8 +	26.3 +	23.8 +	23.4 +	15.6 +	17.6 +		0.00		₩ <u></u>
14.1	Τ,	Ŧ 1	•	•		T	17					• •	Τ.	•				•			į.	-			17	17					T 1	Ŧ		•			••				į.	į	••	•••				•••	• •	• •	•••	•••	• •		• •	•							÷۳		<u>.</u>
1.2	0.7		9.1	1.8	2.0	2.0	3.0	4.1	•				س 4	4°3	4.1							1.5	2.4	1.9	1.3	1.9				5	3•1	3.6	ىں ق	2.7	2.5	2.8	ч С	3.5	3.8	7.6			2.5	1.3	0.9			5 r	5	2.7	2		5	5	2 5	2.5	2•3	2.8	3.2	2.9	3.8		-		39
		3•1	7.4	5.2	17.5	22.9	40.8	0.00	01.4	1.70		, or	25.2	24.1	11.3	4 - 4	7 10					4.6	دی 5	2.8		8				11.7	67.4	61.5	45.2	41.1	23.6	27.4	20.3	21.5	11.2	15.9			11.5	5.7	ו•	s u •	3 C 4 U		18-6	5.40	27.3		40.4	8.91	34 8	27.0	12.9	16.6	20.8	17.3	12.8		0.0		in µb∕∶
	1	+1	+	+	+	1+	1+	1+	14	• 14	• •	+ 1	+	+	14	- 14	۲.			į	İ.	I+	1+	1+	1+	1+	14	• 1-	• 1•	+ 1	+	+	1+	+	1+	1+	ł+	1+	1+	1+		- !	1+	1+	+	• • •	• 1 •	► I	+ 1	+ I	+ 1	+ I-	+ 1	+ 1	+1	+	+	+1	+ 1	+ 1	+		18		ŝ
		1.6	2.8	2.2	2.7	2.9	4.0			•		4 - 4	4.4	6.5	0.9		1.2 4					2.6	2.3	2.2		. u	1 4			در	ۍ د	4.3	4.3	4.2	3.6	4.3	4.4	5.4	•••	11.4			12.2	4.1						, ול י י	6			۲. ۲.	5	ω 8	2.9	4.2	4.1	5 0	5.6	P			.MeV/c ²
		0.5	8.1.	5.9 T	14.6 1	11.4						36-6 4	30.2 1	22.4 1	14-0		×	11.8 4		-=_6_6_			-1.4 4	ו 5		• U • • •				+ C _ CF	51.8 4	46.5 1	50.5 1	27.3 1	24.7 1	16.3 ±	15.3 ±	16.9 1	12.3 1		-= 0.2		1.6 ±	2.6 +	3.1			- 0		15-8 +	46-0+		45.0 +	28-2 +	19.6 +	16.7 +	11.0 +	18.3 +	14.5 +	11.2 +	10.0 +	= 5.8	0.00		vs. m(M
		2.1	2.9		υ. 9				10			5	ς 9	6.9			л - -			GEV/C			2•8	N. U						- F	5.0	4.9	6.3	3.6	÷.5	֥3	5.9	0	0	91.0	CEX7C			2.8	0	- c			. در ۲	6 (1	201	л. 	7	ج	• - 1	س	3.7	5,9	4 .5	5 0	5.4	GEV/C			ev/c ²),p
		4.9+	6.0 +	+ + +	8•1 +	18.0 +	1.17					16.8 +	11.2 ±	$14.4 \pm$	11.4		37-0 +						1.8 +	11.7 +		- 11				19,8 + I	52.2 +	46.8 +	31.1 +	30.4 <u>+</u>	8.2 ±	14.7 +	14.0 ±	5.1+	23.4 +	198.5 ±2				3.8 +	!+	, 1		л (16.4 +	4 	40.0 H		н - 1 + 1	+ 0.5	27.1 +	6.6 +	7.8 +	6.5 +	+ 6.9	14.3 +	10.6 +		0.007		(GeV/c) a
		3•1	2.9	3.1	4.I					л (•	7	4.6	3.9	1.0		, , , , , , , , , , , , , , , , , , ,	11.2						6.1	a.4						4-0	4. 8	5.8	5.0	5.6	3.9	5.1	6.1	3.9	11.7	03.3				4.2	2.1	, 1		л (10.4		2	0	5	5 3	5.2	• •	+ • +	5 . J	9.7				nd t ₁ (
	3.7	4.5	5.2	1.9	6.9		2.2			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	יינ	18.1	14.3	5.1			9.7 4						2.2	0.5	-0	> u > -			. F. C.	24.5	37.6	27.6	25.2 1	19.5	9.2 3	0.0	7.2	0.8	11.3					3.6 4	2.8	2				20.4	50.4			23.5	15 A	20.6 4	9.3	2.0	11.4 4	14.4 4	÷ 3 4				GeV/c) ²
	2.8	± 2.8	÷ 3.5	± 3.7	1+ 	· · ·			n . n .		- I 	+ 4.7	7.0	+• α		+ I 	د - ۲ د -						1 ~.0			- 0		n (• ·	+ I 4 -	÷ ••3	6.0	t 7.9	: • • •	· · · · ·	÷ 2.9	÷: 8	÷ 6.9	- U-	1 2				+ 4.1	5.2	, ,		- 10 - 10 - 10	۰۱ ج ۱۰ م			л 4 3 -		7	7 I	• •	 	+ 2.9	5 9	• ·	4.8				.5

ANIUM	
in µb/sr.MeV/c ²	
vs. m(MeV/c ²),p(GeV/c	
) and t_1 (GeV/c)	

1005	975	945	915	688				795	765	735	203		214	645	619		л г Л	ר נייני נייני	525	565		:	*00.	1005	975	945	c1.6			855	6.7 R		795	765	735	105		775	645	615			555	525	495		5001		о . л .	945	915	588	5,0	020	243		7,7	735	705	675	645	619			ת תת	525	495			<u>-</u> "		TITAN
4.7		1 5.8	1 8.7	1 14.8				77.5	1112.7	1118.3	94.2		63.0	47.4	1 38.1			31.9	48.8	·	·		-	1 2.7		0.9			1 1 2	23.1	31.5		63.7	99.5	97.3	10.1		ת ת מת	1 46.2	33.0			23.8	1 22.1	1 18.9	1	 1 1.5			9.8 1	- 4.4	1 8.8	1 22.8				1 94 2	1 81.0	55.6	1 52.6	43.7	7 . 7 5				1 23.4	23.5			1 0.		IUM
+ N	+ا	i+ ⊷	1+ 2	1+ N	∙i∙	• • •	+ + . د	+ +	+۱ س	।+ ত	+ +		+ I	+	۱+ 0		+ I	+	1+ 28				1.	+ 1	+ 2	+۱	1+	• 1-	+ I	+ س	+۱ د	۰ ا ی ر	ا+ س	+ +	+I +I	+1 +	• i•	ا+ ، در	+ 3	+ا ب	- I+ 	۲I	+ •	+ س	+ 10		 1+	· I •	+ i	+ I	1+ 2	i+ N	1+ 	- 14	• I • • •	• •	+ 1	+ ا	+ س	i+ س	+۱ س	••	• 1• 3 C	⊢i 	+ I	+ •	i+ ហ			1 00	2	34- 21-0-
0	•	. 7	თ	.8			5	"	• • •	•5 7			5		• •			-	•				ć		9	9	ċ		ות	N	•• ••			•	-9 -1	ċ	> .	، • در	-	•				ۍ ان	5		 •		J (œ	•	-	-				0	8	*	•	ŵ	a			، ادر	• •	-		1	-	5	ปุจ
2.5	6.5	3.6	7.3	1.9				0.80	35 9	19.0	12.5		5	ბ 	9.0.8			3					r •	2.0.		2.4	. U		ה ס	4.0	6.11			15.4	15.6			ў	. 6.85	34.2			9	0.61	21.4		 4.2	,		8	ა თ	9.9	5.0				5	52.4	58.4	32.2	30.9	19.9			2.4	17.4	12.1			0.0		in µb∕
~	۱+ ب	~	÷۱	1 7				• ,	~	-	•		л ,	•			0	14					•	•		ω •			ا ب	۰ ۳	0		+ I	+ 6,	6 •	. u	n		+ 	i+ ب			+ 	+ و	15.		 α.	>	:	+ 1	+ا س	+ا ب	+ + +	. 0	• 14	• •	+ 1 	+	+ س	+ ភ	++ *	0	- I-	• I	• •	+ 6.	+ ~			03		sr.MeV
8 13	1 3	1 4	2 4	6 11				38	10	3 52	191		2	316	22			23						ں ر	0	8	-			۲ و	5 16		אנ אנ	1 48	0 58	4 40		י י הי	2 26	4 21			8 20	4 14	ω	-P	J.	, ⊢		30	ა თ	0	2 10	1 23		5 .	л - О -	53	6 39	1 31	7 26	+ 	 	 		3 11	دی س	- - -				1/c ² v:
- +	بن +۱	*> +	:_ +	ָּיָּי ו+	1	• •		+1	+	• 00 (+	;+		- 1	+	.+ ;+		• i	•			5-5-5		1	+ i	+	* +	ن ب	- 1-	מ + ו	• •	;+	• •	+1	••	•0 1+	1+	4 F	 + .	•	• + +		• •	+	• +		5-2-6		-	•	ļ	•~ +	• +	1+				ייי + ו	+	• •	~ +	•2 +	1	, c	+ 1	- ; + ;	ي. +ا	• + +	5.8.9		0.005		5. m(M
8.1	4.6	3.7	2.7	4.6				ບາ • ເບ	9. 1	7.0	5.0	•	n 0	ۍ پ	1.8		, , , , , , , , , , , , , , , , , , ,	11.4			EX77			יית כ	5.9	2.8	2.0		0	• •1	f. 0		л •	6.4	7.0	0.	4 N	5	5°3	6.0			7.5	8 .9		FATE"		0.0	μ Ν		4.2	2.6	а а				7.7	6-6	ა ი	5 . 8	4.4	. 4		л (ינג יינ	5.8	5.9	EX7C				ev/c ²)
	5.2 ±	+ + +	+ e• •	17.8 ±				27.8 +	48.2 +	46.3 ±	44.6 #	1 6 6 1		21.4 +	12.0 ±		о I л I н I	24.2 +					10.00		2.7 +		+ + +			18.8 +	11.2 1		34.6	55.2	46.1 ±	31.1 3		C	11.4 ±	9.4 1			4	9.9 1						بر 9	9.2	10.0 1	13.9	1441	0000			47.4 4	28.6 1	11.3 9	4.5 4	21.1	 			0.1	0.5			0.00		,p(GeV/c
	5•9	6.2		7.4	0			7.1	••	6•3	7.2		n	5.6	8.6		יים אית	. 12.5							2.7		5. 0	, 4 , 4		7.2			יי	6.6	7.1	0.0	 	ר אי איני	6	••I			* *	7.8				0.0	י א פי פ	یں و	8.2	11.1	0.9		10.4		7	6.2	6.2	4.8	6.5			, 1 , 2	2	2.8	10.4		,	1 70) and t_1
	6.4 1	7.5 1	0.7 1	1.9 1	0.0	1.00		18.4	35.4 4	40.4 1	36.7 1	C • 7 7	ן כ י כ י נ	28.0 4	13.3 4		1 2 2 2 2 2	5 5 4						2		20.5 1	1.2.4	• •	3	12.2 4	13.1 3		2 5	44.3 4	43.2 1	21-2 1	2 C - C - C - C - C - C - C - C - C - C	22.20	7.5	9.8		- L 	بر •	14.3	133.1 4					1.7		-8.3		11.4			16.8	29.8	18.0 .	24.1	15.7				2	3.0	11.4			0.01		(GeV/c)
	1.0	0.5	υ.υ υ.υ —	4•1	4.0		n (ر در	6.6	9.2	6.7		, , , ,	1.1	7.5	-		· · ·						+ 7		26.0	2.3			8.0	6.0		л	6.0	8.8		- u	י א י א	6.0	1.0			10-2	+ 7.2	139.3		 _			۲ ۲		11.8	1				т I л (л (5.0	• 8 •	+ 9.4	5.8			е I Р 1 Л 1	н I Л 1 1	3.0	+ 9.2		1	60		2

A. ALVENSLEBEN et al.

Table 2 (continued)

TABLE 2	WALLNOED	
COPPER	$\frac{1}{A} \frac{d^2 \sigma}{d\Omega dm}$	in μ b/sr.MeV/c ² vs. m(MeV/c ²),p(GeV/c) and t ₁ (GeV/c) ²

-T -	1 0 001	<u></u>	0.003		0.005		0.007	1 2 009
						'		
M	1			е	= 5.8 G	EY/C		
495	20.4 ±	4.2	14•8 ±	8.9	20.7 ±	8.0	4.9 <u>+</u> 5.2	13.5 <u>+</u> 9.8
525	19.3 <u>+</u>	3.7	11.4 <u>+</u>	6.1	13.0 ±	5.7	9.3 <u>+</u> 6.6	2.4 ± 2.4
575	1 23.0 ±	4.9	1/•0 <u>+</u>	1.5	19.9 +	7.0	1/+L <u>+</u> /+4	12.4 ± 8.1
615	1 34.8 +	3.9	27.3 +	4.4	22.3 +	5.7	-1.0 ± 5.3 2.0 + 6.3	1.0 ± 5.9
645	42.4 +	4.0	34.4 +	4.8	28.0 +	4.5	14.0 + 9.5	13.6 + 5.1
675	57.2 +	3.6	43.0 ±	5.4	34.8 +	6.2	20.6 ± 5.3	33.8 ± 10.1
705	72.0 1	3.5	54.6 ±	5.2	38.5 ±	5.2	20•7 ± 5•1	33.9 ± 9.9
735	95.4 ±	3.9	69.0 <u>+</u>	4.9	59.5 <u>+</u>	6.5	45.3 ± 5.6	20.0 ± 4.6
765	95.7 ±	4.7	54.7 ±	5.8	48.7 ±	6.8	22•1 <u>+</u> 5•8	15.8 <u>+</u> 5.0
795	68.7 ±	5.0	38.7 +	1.7	39.6 ±	8./	20.8 + 14.9	22.8 ± 21.6
825	1 30 + 2 *	4.1	32+4 <u>*</u>	6.2	23•2 <u>+</u>	4.5	2.2 + 5.1	6.2 + 5.3
885	1 5.7 +	2.5	16.9 +	5.2	3.2 +	3.8	7.7 + 7.7	-7.7 + 10.9
915	4.6 +	2.4	5.8 +	3.2	1.4 +	2.9	3.2 + 5.1	
945	5.6 ±	3.2	6.8 ·	3.4	5.2 <u>+</u>	3.9	2.4 ± 2.6	
975	2.8 <u>+</u>	1.7	0.3 <u>+</u>	4.7			-2.1 ± 11.4	2.5 <u>+</u> 5.0
1005	1 7.3 ±	4.3						
					= 6 2 0	 FV/C		
495	$\frac{1}{25.4}$ +	9.1	-11+2 +	24.2			-55.7 +111.3	
525	1 31.5 ±	6.7	36.4 +	10.1	15.7 ±	7.8	16.5 ± 11.6	8.8 ± 5.3
555	28.4 1	5.0	19.2 ±	6.5	17.6 ±	7.9	21.9 ± 7.2	1.0 ± 10.9
585	43.7 ±	5.2	24.6 <u>+</u>	7.7	20.2 <u>+</u>	8.5	7.4 <u>+</u> 6.8	10.6 <u>+</u> 6.0
615	28.3 <u>*</u>	3.9	24.2 <u>+</u>	6.1	37.2 <u>+</u>	7.2	12.5 ± 6.1	-0.6 <u>+</u> 3.7
645	1 52.8 ±	3.4	34•4 <u>+</u>	4.8	18.4 ±	4.6	14-8 ± 5-3	17.8 ± 8.3
675	1 66.0 <u>+</u>	3.4	41.9 ±	4.6	$31 \cdot 7 \pm 16$	4.4	24.7 ± 5.3	
705	$1 90.1 \pm$	4.2	84.7 +	5.8	49.9 <u>*</u>	6.1	33.9 ± 6.2	10.2 + 5.1
765	1110.5 +	4.5	80.0 +	5.8	55.8 +	6.3	41.5 + 5.5	26.4 + 4.6
795	1 74.9 ±	3.9	47.7 +	4.7	36.6 ±	5.1	31.8 + 5.8	19.7 2 4.6
825	1 45.2 ±	3.7	11.4 ±	5.0	6.6 <u>+</u>	3.7	9.9 ± 3.6	11.0 <u>+</u> 5.4
855	25.9 ±	3.6	16.5 <u>+</u>	4.0	20.9 ±	6.7	0.0 ± 5.3	12.7 ± 6.1
885	13.9 ±	2.8	16.7 <u>+</u>	4.8	4.5 ±	4.7	6.0 ± 4.2	-0.5 ± 1.5
915		2.2	2.4 ±	2.3	2.8 ±	2.9 6 Q	11.0 + 7.2	1.4 ± 0.2
075		2.0	$7 \cdot 3 \cdot 2$	7.3	0•1 <u>·</u>	4.7		2.9 + 3.5
1005	3.4 +	1.8	-0.7 +	3.8	2.7 +	2.8		4.4 + 4.5
M	<u> </u>			е	<u>= 6 6 G</u>	EVZC		
495	1 21 7 4	17 0	617±	ובר	13.5 +	173	55.5 + 60 3	
555	1 15.2 +	6.2	38.6 +	14.1	10.2 +	6.5	31.4 + 13.3	13.7 + 9.0
585	46.9 +	6.6	31.1 ±	9.6	28.7 +	8.3	17.2 ± 7.9	17.1 ± 8.8
615	42.4 +	6.2	22.5 ±	9.8	17.7 ±	8.9	16.6 ± 15.3	-1.2 ± 9.7
645	1 57.3 ±	5.1	30.7 ±	6.1	21.2 ±	6.1	22.2 ± 6.4	16.4 ± 10.7
675	68.1 ±	4.1	46.0 ±	5.5	43•1 ±	6.3	29.9 ± 7.0	21.7 + 8.4
705	1 96+4 <u>+</u>	4.6	78.1 ±	6.5	41.5 +	5.0	45.U ± 6.6	32.6 - 74
765	1116.7 *	2+1 5.6	86.2 +	6.4	50.1 +	7.5	44.7 + 6.9	46.5 + 6.9
795	87.7 +	4.4	62.6 +	5.7	46.7 +	5.5	27.5 - 6.2	24.9 ± 5.3
825	1 43.4 +	2.8	34.1 ±	4.3	30.3 ±	4.4	16.3 ± 3.8	4.4 ± 4.0
855	25.3 ±	3.1	21.8 🗄	3.6	5.8 ±	4.6	2.8 ± 3.9	8.8 ± 3.9
885	17.7 ±	2.8	9.2 <u>+</u>	3.4	6.0 ±	5.6	9.6 ± 7.0	2.6 + 6.0
915	1 7.4 ±	2.1	6.1 <u>+</u>	3.2	3.7 ±	2.9	$-1 \cdot 2 + 2 \cdot 2$	1.5 + 4.9
945	1 0.8 <u>+</u>	2.1	6.8 <u>+</u> 4 4 ▲	3.U 2.7	-0.1 <u>+</u>	1.4	7.4 + 6.0	-8.7 + 17.3
1005	1 7•5 <u>+</u> 1 4•4 +	4.5	$\frac{7}{3},9$ +	3.0		5.1	10.2 + 12.0	
1								

A. ALVENSLEBEN et al.

Table 2 (continued)

1005	645	915	885	855	825	795	765	735	705	675	645	615	585	555	525	495	z		1005	015	242	5-00	885	ן ה ריי ריי	825	795	765	735	705	675	645	615	585	555	525	495			1005	975	945	915	885	20 0 J 1 J 1	8	705	765	725	705	675	010	280	 	1 5 2 5	495			4	САЛМ
5 • 4 4	6.2 4	12.0	21.4 1	30.7	55.3	101.2	153.6 4	147.0	117.0		61.2	67.3	46.2	34.8	47.0		_							24-0	49.3	86.6	125.4	131.3	1104.1	67.9	63.5	44.5	35.5	33.7	22.4	32.5	1		3.6	-0-6	۔ د س	10-3	14-8	1 24 8	40.6	1 71 0		106 0		- 44 - 2		- 37.5	34.0	32.2	24.7		-		
2.2	1.9	.ω 	3.7	ω •	3	5	- (- (، س . دد	•••	• •	+ 8.7	8.3	10.4	• 32.1			1.4		- I -		φι • •	+ - ب ر ر	۱+ ، س	+1	+ • •	+1 5.6	+ 6•3	4.6	ι+ ω.5	1+ 3.8	+ 4.9	+ 6.2	1+ 5.9	+ 6.9	+ 15.7			+	+ - 		+	+ ۱ م	• ا + • بر	+ + +	+ + n \u	+ i 4 n - ₽ 0 - 4	+ + 	+ + 	+ + 		• + • •	1+ 5.2	1+ 55	+ 6.5			5	Dam in
4 8 5 9 1+ 1+	5.0 +	16.4 ±	19.0 +	24.2 +	31.5 +	59.2 +	79.9 +	99 4 +	74.1 +	48.4 +	38.8E +	18.2 +	45.2 +	2.0 +			:		n c • i+	• I+		2 C 2 4 4 4			22.8 +	46.7 7	82.8 +	79.3 -	66•3 1	40.8 +	28.9 <u>+</u>	32.6 ±	25.8 +	20•2 <u>+</u>	17.1 ±	26.6 +		***			• •	л • • •						 n U - +			21.4 +	21.7 +	32.7 +	14.0 ±	÷ 0.6			2	µb/sr.Me
4.7	2.4	4.5	4.6	4.3 1	4.9	ند. د		7.7		6.1	7.1	9.4	11.7]	14.4]			•	4 0	• u • •	ی د • •						Г	7.1	6.3	5.9	4.7	5.1	6.1	6.5	8.0	11.7	19.2	P			א ה 	о л-						4 U 9 -	•••		, , ,	ۍ ۱۰۰	- 6- - 3	6.4	7.9		P.		-	V/c ² vs.
	1.0 +	5.4 +	6.6 +	4•6 +1	2 0 +1					4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		17.7 +	18.8 + 1	16.2 +	18.8 +	<u> </u>			-0.0))	0		л Ц 0 ф			32 6 +1	47.9 +	46.9 +	41.6 +	35.2 +	21.7 ±	23.5 +	12.4 +	12.0 +	19.5 <u>+</u>		<u>= 6.2</u> G		1								42.2 +	24.3 +	26.4 +	19.4 <u>+</u>	12.5 ±	6.7 ±	13.7 ±	12.2 ±	÷ 6.6	= 5+8 (0.005		m(MeV/c ²
-	3.2 1	3.0	3.8	5.7	4.7	ה ת קיי קיי		~ ~ ~	5 C	6-0 1	8-0	8-0	7.5 1	10.8 1	24.4				1.6	1	C•4		· +		л (л (7-2	9	6.1	4.5	5.3	6.1	7.9]	7.1	12.0		EV/C			 		n 4 0 4		• + •		7.2	6.6	5.4	4.8	3.6	5.0	5.1	5.5	7.3	8.6	EX7C	-	-),p(GeV/
3.5 + 1	1.4 ± 1	1.4 +	5 	8 3 + 1	+	л - - r + l·	4 0 5 0 F 14	u • •	- - 	R 4 4	ייק + ו	י ד + ו	4 +	8.4 +					3-2 +	•	1.1	• •	- 1+			+ 1	+		14.6+	9 	6.8 + 1	[4.3 +	15.4 +	15.6 +	30.9 +			 		0 • C †		4 + 1			10.1	12.3 +	22.7 ±	17.3 ±	13.7 ±	3.4 +	21.5 ±	10.0 ±	11.9 <u>+</u>	6.4 +	-0.5 +		0.00		(c) and t
6.0	1.5	2.3	3.6	5.6		5 - C		л ц л ч 	n c 0 4	• •		9	7.9	13.5 1					3.2		4.0		4 • •		N 1	л . - с	л ()) ,		4 5	4.9	4.7	5.7	7.9	7.2 -	18.5 1					3.4	-	0.2	د ر. به د			6.1	4.9	6.1	4-6	6.2	7.7	7.6	7.0	4.9	12.2				t⊥ (GeV/o
3.5 +		1.7 ±	4 30 1+1	9 + 1	+ 1			• •		ה יו וים וים	6 6 + I	ים ווג ו + ו	3 2 + 1	2.3 + 1						/•8 +	+ C + + + +	• • ∪ • +	· /·				ліі О 4 н І-	+ +	5 (~ () ند 1 ح 1 + ا	3 6 +	7.7 +	N 0 1	-5•2 +1	16.8 +						0.4 +	+ U U	- I+	11-2 +	16.8 +	5.9 +	17.0 ±	12.6 ±	7.7 ±	9.1 ±	2•7 ±	7.4 ±	4.2 +	5 	6.3+				2) ²
9.9	_	2.3	4.2	4	0 0		n u			л с •		л -	0.7	0.2				_		9.4	2.5		7.2	+ + •	• •	2 4 2 5		л (5) الو • •	3 0	9.8	5.7	9.2	8.7						6.9	24.0	4.2	4.7	16.0	4.3	5.1	8 • I	5.2	3.8	4.2	4.5	4.1	9.9 9	7.8				

0 7 7 7 8 8 7 7 0 9 9 7 7 7 8 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 9 7 9 7 9 9 7		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		5449264234411414141414141414141414141414141414
201 201 201 201 201 201 201 201 201 201		FE − 04440004004000000000000000000000000
0 0 4 2 4 4 8 0 8 F W H 1 4 0 5 4 4 4 4 6 0 F C 0 8 0 0 F C 0 4 0 0 F C 0 0 0 0 0 F F C 0 F C 0 0 0 0 0	N N H 8 N W 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pb/sr.Me 0.00 11.5 26.6 11.5 27.9 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7
	N N N W W Y N N O O O O O O O O O O O O O O O O O	4
" 6 2290.6 6 310.8 10 20.1 10 20.1 10 20.1 10 20.1 10 20.1 10 30.2 10 30.1 10 30.1 10 30.1 10 30.2 10 30.3 10	-2.0	
Image: Second	1 1 1 1 1 1 2 3 3 5 5 5 3 3 4 5 5 5 5 5 5 4 4 1 1 1 1 1 1 5 5 5 5 5 5 5 5 6 5 5 5 5 5 5 5 7 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 7 1 1 1 <td>I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+</td>	I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+
	u u u u u u u u u u u u u u u u u u u	BeV/c) and
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 00-W122000000000000000000000000000000000	С с с с с с с с с с с с с с с с с с с с
0.0661191919191919191919191919191919191919	1 + + + + + + + + + + + + + + + + + + +	C)2
11 8.8 5.6 2.0 7 12.0 8 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	40440040000 000 400 0000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A. ALVENSLEBEN et al.

Table 2 (continued)

TABLE 2 CONTINUED TANTALUM $\frac{1}{A} \frac{d^2\sigma}{d\Omega dm}$ in µb/sr.MeV/c² vs. m(MeV/c²),p(GeV/c) and t₁ (GeV/c)²

-1 =	0.001	1	0.003	1	0.005	1	0.007	1	0.009	
	- <i>-</i>			 p	= 5.8 6					
495	20.7 +	5.5	11.4 +	7.4	9.0 +	6.6	-4.0 +	5.7	7.7 +	7.6
525	27.5 ±	4.7	11.1 ±	6.4	6.5 ±	4.9	4.1 ±	3.2	2.4 +	1.9
555	30.9 ±	4.6	26.4 ±	5.4	14.0 +	5.0	4.1 ±	3.8	3.4 ±	2.7
585	1 39.6 <u>+</u>	4.5	19•1 ±	5.8	7.5 ±	6.3	5.3 t	4.9	2.6 ±	2.2
615	43.8 <u>+</u>	3.4	20.2 <u>+</u>	4.2	13.6 ±	4.4	1.5 ±	1.9	2.1 ±	2.8
645	54.3 ±	3.9	23•7 ±	4.1	10.3 ±	2.6	2•2 ±	4.4	$1 \cdot 1 \pm$	1.5
675	59•3 ±	3.8	20.1 <u>+</u>	4.3	21.9 ±	4.0	9•1 <u>+</u>	3.4	0.5 <u>+</u>	2.4
705		4.0	40.0 <u>+</u>	4.1	12-1 +	3.0	11.6 +	3.8	4.9 <u>+</u>	4.8
745		4.2	55 4 A	4.7 5 0	31.0 ±	4.1	$10 \cdot 1 + 10 \cdot 1$	2.9	10.1 ±	2.1
705		5.0	$37.4 \pm$	5.6	10.8 4	5.1	$10 \cdot 5 \cdot 1$	4.5	-3 3 4	6 6
825		3.7	25-1 +	5.5	12.7 +	4.1	7.3 +	3.2	-3.5 +	2.2
855	20.7 +	2.9	9.1 +	3.8	8.6 *	2.8	4.9 +	3.8	2.6 +	2.3
885	12.6 +	3.0	5.1 +	2.6	0.3 +	2.3		5.0	-3.4 +	9.5
915	6.6 +	2.3	5.7 +	3.2					···	
945	6.6 ±	2.8	4.2 <u>+</u>	2.9						
975	-0.5 ±	1.1								
1005	1 9.6 ±	5.8								
					= 6.2 6	 EV/r				
495	1 16.4 +	11.6	44.5 +	23.1		- # <i>6</i> <u>1</u> <u>1</u> <u>1</u>				
525	32.6 +	7.0	0.9 +	7.2	10.8 +	8.4	6.2 +	6.8	3.4 +	3.2
555	38.8 +	5.7	17.7 +	6.8	15.0 +	6.4	8.0 +	4.3	-2.7 +	4.9
585	37.6 +	5.7	28.6 +	6.2	9.0 +	6.0	8.4 +	4.9	2.1 +	2.0
615	43.5 +	4.4	30.5 +	5.4	16.0 ±	4.8	14.5 ±	5.0	-0.5 ±	1.6
645	60.5 ±	3.7	25.1 ±	4.7	14.5 ±	4.3	~0.3 ±	2.6	4.2 <u>+</u>	2.0
675	75.2 ±	3.8	45.5 <u>+</u>	4.8	26.5 ±	3.9	7.8 ±	3.3	3.1 ±	1.4
705	1106.4 ±	4.7	52.8 <u>+</u>	5.2	29.1 <u>+</u>	5.2	14•4 ±	3.7	4-8 <u>+</u>	3.5
735	129•1 <u>+</u>	5.4	62.3 <u>+</u>	5.3	36.1 ±	5.5	$10.6 \pm$	3.8	3.9 ±	3.1
765	1122.5 ±	4.9	57.0 <u>+</u>	5.3	34.4 ±	5.4	12.5 ±	3.1	6.8 ±	2.3
195	1 85.6 ±	5.9	41.1 +	4.4	22.8 +	4.0	$\frac{1}{2}$	3.4	4+1 ±	1.9
827		3.1		1.0	12 7 4	3.4	5 4 ±	2.4	0 3 ±	3.7
895	1 16 1 4	2.4	7.3 +	3 6	4.6 +	2.7	1.5 +	1.4	1.7 +	1.4
915	1 8.5 +	1.7	5.5 +	2.4	3.8 +	1.9	6.9 +	3.8	0.6 +	3.1
945	7.0 +	3.4	2.7 +	2.2	, , , , , , , , , , , , , , , , , , ,	•• •	2.2 +	2.7		
975	8.5 +	4.7	10.4 +	5.7	0.1 +	5.6				
1005	1.1 ±	1.2	4.8 ±	3.4	6.2 ±	4.5				
405	<u> </u>			P	<u>= 0.0 G</u>					
490	F 1 01 0 +	30 6								
555	31.4 +	9.0	33.0 +	16.0	1.6 +	6.2	13.8 +	10.4		
585	53.0 +	7.8	36.2 +	9.5	16.7 +	6.1	16.5 +	6.6	-2.6 +	3.0
615	56.4 +	7.6	33.9 +	9.4	21.1 +	8.0	5.0 +	6.7	-0.1 +	2.0
645	72.9 +	5.9	41.2 +	6.6	18.2 ±	6.6	7.5 🕺	3.7	1.2 ±	2.7
675	90.1 ±	5.0	48.4 <u>+</u>	6.0	20.5 ±	4.3	3.5 ±	3.9	3.6 +	2.0
705	1118.6 ±	5.5	57.6 ±	6.2	24.7 +	4.1	14.5 <u>+</u>	4.0	5.1 ±	2.3
735	1159.7 ±	6.4	75.3 ±	6.9	54.9 <u>+</u>	6.7	16.0 ±	3.6	1.0 <u>+</u>	2.5
765	149•8 ±	6.5	80.7 ±	6.5	39•4 <u>+</u>	7.4	11.8 ±	4.2	9•9 ±	2.6
795	106.1 ±	5.1	60.4 <u>+</u>	5.8	21.7 ±	3.9	9.8 ±	4•Z	1.7 +	1.8
825	64 • 8 <u>+</u>	3.5	28•3 <u>+</u>	3.9	13+3 <u>+</u>	3.2	b •3 <u>+</u>	2.5	-0.2 *	1.7
055	1 29.5 ±	3.3	<u> </u>	5.4	4.4 +	2.2	2.9 <u>+</u>	2.0	1.1 +	2.0
915	$1 21.44 \pm 12.1	2.5	7•1 <u>*</u> 6.2 •	2.5	7.5 <u>r</u>	2.0	0.9 1	0.9	0.8 +	1.3
945	12+1 <u>×</u>	1.7	6.1 +	2.1	0.4 +	2.0	0.7 <u>r</u>	J.,	1.6 +	2.3
975	6.0 +	1.9	2.8 +	3.0	2.7 +	2.9				
1005	4.1 +	3.5	3.9 +	4.0			52.1 ± 9	94.2		i

TABLE 2 CONTINUED TUNGSTEN $\frac{1}{A} \frac{d^2\sigma}{d\Omega dm}$ in µb/sr.MeV/c² vs. m(MeV/c²),p(GeV/c) and t₁ (GeV/c)²

-1 =	1 0.00	1	0.00	3 I	0.005		0.00	7 1	0.009	,
M	 			 P	= 5.8 6	EV/C				
495	1 30.5 ±	8.4	11.3 ±	10.7	-0.6 ±	7.4	-1.0 ±	12.1	11.0 ±	10.8
525	1 30.3 ±	6.5	5.0 <u>+</u>	8.7	12.0 <u>+</u>	7.8	5.5 ±	4.6	5•1 ±	3.2
555	25.6 ±	5.7	21.9 ±	5.6	6.7 ±	4.5	8.1 ±	5.9	2.6 ±	2.7
585	1 35 • B ±	5.2	22.7 +	7.7	1.2 <u>+</u>	7.5	0.4 ±	6.2	2•3 ±	2.1
615	48•4 <u>+</u>	3.9	21.1 +	5.2	3.8 +	3.8	9•4 <u>+</u>	5.3	2•2 ±	3.0
647		4.7	37.5	2.1	27 0 4	5.4		2.9	3+1 <u>T</u>	2.2
705	1 89.7 +	4.0 5.0	43.8 +	6.4	29.8 ±	5.1	8.1 +	5.0	3.1 +	5.5
735	$1105.7 \pm$	5.2	56.7 +	5.7	29.5 +	5.8	24.5 +	4.7	8.7 +	3.4
765	1101.3 +	6.1	47.2 +	7.2	29.0 +	7.1	3.3 +	5.5	8.3 +	3.8
795	1 74.9 ±	6.5	31.8 +	7.6	18.4 +	6.6	22.9 ±	9.7	0.9 +	13.4
825	1 38.6 ±	6.4	26.3 ±	9.5	22.8 ±	6.9	9.3 ±	5.3	7.5 ±	4.2
855	1 27.3 ±	5.7	21.0 ±	7.3	16.1 <u>+</u>	5.9	4.1 ±	3.7	2.7 ±	2.8
885	1 10.1 ±	6.3	8.7 ±	4.6	-1.3 <u>+</u>	2.6	6.1 <u>+</u>	6.8		
915	<u>i 5.9 +</u>	3.5	1.6 ±	3.1	6.0 <u>+</u>	6.6	4.8 <u>+</u>	9.6	9•2 <u>+</u>	7.7
945	1.6 ±	1.6	3.3 <u>+</u>	3.3	4•7 <u>+</u>	4.9			4.8 <u>*</u>	5.2
975	1 4.0 ±	5.7				0 F				
1005	 				8.0 <u>+</u>	9.5				
M	1			P	<u>= 6.2</u> G	EYZC				
495	1 10.1 ±	15.5	32.4 +	23.9			279.2 ±	242.7		
525	1 44.8 ±	10.4	5.2 <u>+</u>	11.8	0.9 <u>+</u>	10.9	26.6 <u>+</u>	16.8		
555	27.7 ±	6.8	10.9 ±	8.7	10.9 <u>+</u>	7.7	11.7 ±	6.1	~3.3 <u>+</u>	8.6
585	42.1 ±	7.8	32.7 ±	7.6	16.2 ±	9.4	8.3 <u>+</u>	6.4	7.2 ±	3.2
615	42•4 ±	5.6	36.0 ±	6.8	17.4 <u>+</u>	5.4	14.6 <u>+</u>	5.4	-0.3 ±	2.6
645	1 02.2 ±	4.4	18.7 ±	5.4	10.3 ±	5.0	2.0 +	4.0	2.9 <u>+</u>	1.9
705	1 19+3 ±	4.0	42.1 1	2.0	13.7 +	4.3	13.1 1	4.0	2+3 *	2.0
735	1130.6 +	6.4	71.8 +	6.9	29.4 +	6.9	17.3 +	5.4	-0.1 <u>+</u>	4.0
765	1128.7 +	6.0	68.6 +	7.1	30.8 +	6.6	16.1 +	4.5	8.4 +	3.3
795	89.6 +	5.2	42.2 +	5.6	18.1 +	5.0	12.6 +	5.2	2.0 +	2.3
825	57.9 ±	4.7	24.0 ±	10.6	17.6 +	5.5	7.0 ±	2.5	8.7 +	3.9
855	23.3 ±	5.7	9.0 ±	7.4	9.8 -	4.1	7.7 ±	4.8	-0.4 ±	5.7
885	12.5 ±	5.1	3.6 ±	13.7	2.0 ±	2.8	5.8 ±	3.2	_	
915	12.0 ±	3.3	2.2 <u>+</u>	2.3	9.9 <u>+</u>	6.4	2.4 <u>+</u>	2.7		
945	-3.9 ±	7.8	-1.6 ±	3.2					4.6 <u>+</u>	9.2
975	0.1 ±	4.3			0.1 ±	8.9	3.4 ±	3.5		
1005	1 1.8 <u>+</u>	1.8			9•1 ±	7.0			6.0 ±	6.0
<u>м</u>	t			 Р	= 6.6 G	EV/C				
495	1					*****				
525	19.8 ±	23.3	37.9 <u>+</u>	40.8						
555	37.6 ±	13.0	9•6 ±	19.4	10.0 <u>+</u>	10.7			11.0 ±	9.9
585	47.7 ±	10.2	32.0 ±	11.1	12.2 <u>+</u>	7.6	11.0 <u>+</u>	7.1	-3.6 ±	4.1
615	63.3 ±	10.1	53•6 ±	13.8	15+8 <u>+</u>	8.1	10.5 <u>+</u>	10.3	2.1 ±	3.6
645	69•1 <u>+</u>	1.1	35 · 1 +	1.5	24.9 +	9.8	6.3 ±	4.4	9•9 ±	6.6
705		2.1	57+0 ±	7 7	10.1 +	2+L 5 2	121	5.9	4•/ ±	2.7
735	143.0 +	7.0	80.7 4	8.2	50.5 <u>+</u>	5.5	14.3 4	4.7	2+3 ±	4.1
765	1154.8 +	7.7	84.6 +	8.2	39.1 +	9.4	1.2 +	7.2	14.2 4	3.4
795	106.7 +	6.1	64.5 +	7.0	29.0 +	5.4	8.1 +	5.8	3.9 +	3.2
825	52.6 +	3.8	32.7 +	5.1	5.9 +	4.0	3.1 +	2.9	2.9 +	2.9
855	1 31.6 ±	4.4	18.2 +	3.6	1.8 +	3.8	1.6 ±	4.1	1.4 ±	2.3
885	22.0 +	5.1	10.1 ±	5.1	4.3 <u>+</u>	3.5	_		0.8 ±	1.7
915	6.5 ±	6.3	10.0 <u>+</u>	5.2	2.7 ±	2.9	3.2 <u>+</u>	2.6	1.2 ±	2.3
945	9.0 ±	2.7	1.4 ±	1.6	0.1 <u>+</u>	6.0			1.6 <u>+</u>	1.9
975	10.5 ±	5.0	8•2 <u>+</u>	6.3						
1005 :	1 8.9 ±	5.5								

A. ALVENSLEBEN et al.

Table 2 (continued)

1005	975	546	915	588	800		2025	795	765	661			675	645	619		ת ת ת	555	525	664		z		1005	516			915	885	200		825	795	601		725	705	619	10		615	585	555	020			z	1	1005	975	945	616			201	825	795	765	735	50.1	1013			513	585	500	525	442		z	-	-	GOLD		TABLE
-	-		-	-	-		-	-	-	-			-	-	-		-	-	-	-	-ŀ	-	į.	-	-							-		-		_	_	-			-		-	-		-ŀ	-	į.	-		-	-						_	-	-	•			-	-		-	•	-ŀ	-	! -	-		٢	S
3•1 <u>+</u>	4 • 0 +	9.2 +	9.2 +	27.9 ±	31.1 +		57.9 +	+ 6.96	55.7 +	-00-8 +			90-4 +	61.1 +	04.8 +		ה- היי או	36.3 +	19.7 ±					ۍ د 1	0.1			15.6 +	12.6 ±	T 1007		50.9 +	92.3 +	1 4 20		34-0 +	.03 .3 +	1.88 · 1			46.6 +	37.1 ±	34.0 ±			37 7 4			4	0.1+	9.4 +	10.1			25.0 +	4 4 95	67.9 +	105.1 +	102.6 ±	89.5 +				18-0 -	40.0 +	37.3 ±	22.7 ±	1 1				2	A dadr		INTINI
3.8	2.9	2.8	6.2	5.5	4.1		-	5.7	7.0	6.5		n 1	٦. در	6.7	4.0		10	12.5	23.2					3 •	4.1		4 4	۲. ۲	4.9	0.0		4.7	ა ა	1.0		÷ - 5	4. 9	4.2	+		ე	7.2	6.8		1.2.1					2.4	4.0				ית יית	5.4	6.5	6.6	ა ა	4.9	4.0			- F	5.2	6.0	5.8						ц.	Ŀ	9
5.9		6.0	6.3	8.2	10.3		1 - AE	42.5	72 . 3	11.1		100	49.5	36.8	31.0		28.0	10.9						دي •	4.0			4	10.6	0.1		19.3	31.3	14.4		7A 1	46.3	40.9	20.0		. 60	26.6	27.3			3				5.0	6.	~~~~			24	۲ د د	32.5	47.	47.8	30.				10.	22•	24 • 0	20.	-	4			-	µb/sr.		
1+	. 1	+	+	1+	1+	• •	+ I	+	+	1+	1	ł	+ I	+	1+	· I·	+ 1	+			i		ļ	+	1+		• 1•	+	+	14	. p	+	+	14	• 1•	+ 1	+	+	14	• 1•	+	+	1+	14	- 1-			i		+	1+	1+	- 14	• 1•	+ 1	+ 1	+ I	ين + ا	i+	1+	14	1	- I-	+ 1	+	I+	1+	1+				2	MeV/		
6.0		з. 1	4.2	4.5	3.0	•	л , у	8	7.1	1.2			ň . ń	7.4	12.1		20.5	18.6				0		3.7	4.4		n (•	-	13.4	1.4		10-0	ω.	1.3	4 C	6.7	5.6	5.0			6.2	6.9	10.0	10.2		3	0			6.8	4.5	3.0		n -		در	7.4	7.3	5.7	6.0	•			4	7.6	6.1	9.7	- 9 - 9		0		-	c' vs.	S	
		2.5	7.4	0.9	9.9		14.2	20.6	30.1	35.1	01.1		54-3	15.1	11.2		27_N	4.8			N 8 8	 	 		-2-8	2			6.5	11.3		л , А	18.0	20.0		7.02	23.1	22.2	11.0		18.6	20.4	13.1	- 2 - 4									-1.1		10.4	0150	29.8	26.5	25.1	15.3	24.0	11.0		-	0.3	7.3	7.5	4.2	<u> </u>	# 			m(MeV/o		
	1	 +	+	1+	14	• •	+1	+ :	+	1+	1	• 1	+ 1	+	1+	• •	+ 1	+			K F	с П	4		1+				+	1+	• 1•	+	+	14	• •	+ 1	+	1+	14	·I·	+ (+	1+	14	•	k	ה ח	1					14	• •	► I:	+ 1	+1	+	!+	1+	14	• 1 •	• 1 •	+ 1	+	+	1+	1+	ķ	ה ח		2	;	ა	
		9.9	4.7	2.0	÷			-	7.2	•	•		ת יי	8.1			-	6.8			118					1			6.8	4.3		5	4. 8	0.0		2	5. -	4.0			л , ,	9.9	7.8	a	2	1.4.4							C • C	3 L 3 F	ח נ 	ייק ו מ	7-6	6.9	5.9	5.2	+			л -	5.4	4.6	6.8	1.1	i.t.		-	-	p(GeV/		
				69.2 ±	-0.0 +		ר אייי + אייי	9.8 +	11.1 ±	11.8 ±		 	7-6 +	9.5+	11.3 +		7 R -	7.4 +	+ + • +				•			14.0 1		+ 2.2	5.9 +	3.8 H		ריע דיע	8.1 +	11.1 2		1 7 + 1	5.0 +	12.1 ±			12.6 +	4.9 +	6.7 ±	a) ,										2 C C		13_8 +	5.2 +	15.9 +	2.6 +	0.0			5	8.7 +	4.8 +	3.4 +	-5.7 ±			0.00		(c) and		
				96.4	ו0		2.9	5.2	4.9	3.1			5.4	4.U	4.2		2	8 . 3	8.8							7.61		2.5	з . -	3.0	•	2 - R	4.7	÷.,		Р Л	یں س	3.8	ו8		4.0	5.0	4.8	4.2))										ມ ເ	. بر • ٥	7 - 1	5.2	4.1	4.2		 - 		0	6.7	4.7	ч •	8.0	,			-	t⊥ (GeV/		
		3.0		1.7	-1.1		2,5	9.9	7.1	-0.2			1.6	4.7	0.4			6.6											1.9	0.2) (2.4	3°0	5.5		נע -	10.4	1.9	8.1		2	φ. 3	-2.6	2.0	,						4.9						2	8. 0	7.5	8.9	3.2				1.9	6.3	3.5	4.9			0.0	,	c) <	د	
		•		I+	14	• 1•	+ 1	+	•	1+		• •	+ 1	•	14	• •	+1	+											•	1+	• • •	+	•	1+	• • •	+ I	+	+	1+	• • •	+ 1	+	i+	1+							I+				۱۰ م	► ŀ	+	+1	+	۱+ م	1+	1+		• •	+ 1	+	i+	1+	1		99	3			
		5		2.4	÷.			9	2.4	.0	0		20	ω ω	3.4		0	4											.4	0.0		5	2.2	0.5	•	-	~	 	• •		-	• 4	7.2		,						0 3				•		2	3-7	3.2	5.6	3.0			5	. 7	9	ς. ω	5.9							

1005	075		200	885	855	825	CAL		765	735	705	610		645	615	000		222	525	495		:		1005	975	945	616		222	855	825	661		765	735	705	070			615	585	200	100	л. 	495			\$ 001		075	945	516	885	999	0 2 2			276	7 7 7	705	675	549	619		л \ 0 \ Л \	ר ת ת	525	565			 	•	LEAD		TABLE
9.5				18.4 +	28.8 +	1 62.9 +	- P - 201		1152.7 +	148.6 +	1121.2 ±	1 00 - 1 1		- 59,5 +	56.4 +	- 4 0 4 + 1		28-0 +	38.7 +			-	-		- 4.4 +	3.6 +	1 10.0 1	50	+	30.8 +	54.9 ±	1000		1137_4 +	1137.6 ±	99.0 +	a			48.5 +	46.2 ±	1 33+L ±			29.5 +						2.6 +	6.1 +	1 12.2 ±	1 0.67						79.9 +	64.0 +	1 46.4 ±	1 6 - 2 4			135.7 +	30.5 +	33.4 <u>+</u>		-		-	A dada		2 CONTINUE
5.8				7 - 7	3.7	3.6	0.0			5.8	5.2	4 . a		5.7	6.8	0.0		7.2	20.4					0	3.2	4.9	2.1		0	4-8	4.2	4.1		ار. د	6.2	4.4	3.1			4.9	с. Э	4.9		~ ~ 7	10.1			3.9			4.5	3.7	4.4	4.2	- 4 - 4		n (л - с	Л	4.1	3.7	3.6	•			4 8	4.2	4.9				-	- - - -		Θ
4 • 4 • 4 • +				11.7 +	14.8 +	25.7 ±			72	73.5 +	67.1 ±	47.1 2		37.7 +	13.3 +	44.2 4		17.8 +	14.6 +				(• •		3.0 +	2.3+	0.0 		× ; ; ;	+ 6 11	20.0 +	1.65		65.3 +	61.0 +	47.4 +	1.90			15.0 +	25.7 +	20.0 +		י ת כי ו ל	-7.9 +				0 • •) 	4.7 +		6.5 +	10.9 1					5	40,3 +	35.6 +	23.4 ±	7.61		- Г Л Г ▶	24.1 +	7.6 +	7.0 ±	, , ,		0.00	2	µb/sr.Me		
4 U	л н р 0			4.4	ч 0	4.1			, .	6.6	6.3	0.9		6 - 6	8.5	a		11,5	15.7					2	یں س	2.4	U	, - , -	7	4.7	7.8			5 5 20	υ 	U1 0	4 • •	1		س	6.5	0.0		5 I S	22.4	P				-	بن ج		3.I	υ. α						ۍ س	•	•			ית יונ	ر ال	5.7	7.1			3		sh/c, As	2	
		4.0	> •	<u>-</u> , o	2.1 4	14.0 1	18.9		20.7	36.0 4	28.7 1	10-01		5.7	11.7	20.4 1		23.94	8.2		= 0.0									14-1 4	1.6	C . 0 7		2022	27.5	28.6	10.0			15.8	13.2	12.1			141.1 4	= 6.2					س ج	4.2	2.2	0.0						13.5 4	17.0	9.0	12.2			8.8	10.3	6.2			0.00	2	. m(MeV,		
	, r		- (2 A	ω 	3.6				5.0	4.1	***		- - -	5.7	5.4			10.6		PEALC								، در ۱	÷	3.6	· · ·		י ד קייי ס	5.0	4.5	U.		 	4 . 	6.4	0.1			168.4	GEV/C				F	ب ج س	f.7	2.5	2.8				n (л. 	4 • 1	ω. 6	2.5	+++++++++++++++++++++++++++++++++++++++			÷ -	÷.0	5.1	GEATE		5		′c [←]),p(G	2	
	4.6			رد در ار	1.1	3.8	4	F 0 • 0		11.8	6.6	9.8		2,0	-4.4	C • T		14-0	14.8					1	2.4		0.8			6-1	5.8	1.1		10-0	13.2	10.7	10.0			10.8	2.6	4. 0		, c	-23.9				-0-1	- 4 -		6.8	7.1	3.9		10.0				14.4	4.0	-0.1	ו0			3-6	2.8	0.7	,		0.0	,	ıeV∕c) aı		
	1. 1.	• • •		+ 7 - 0	+ 3.0	+ 2.3	1+		• • •	+ 3	+ 3.2	1+ 0.0		+ 7	+ 7.0	1		+ 7.0	+ 23.1					1	+ 2.4		+ 1.0		• •	+ ۲.	1+ 2.0	1 3.1		+ + · اد	+ 3.7	+ 3+2	1 3.0		- - 	+ 1	:+ 3•2	+ 2+3	۱۹ د د د د	н 	+ 95.9				12.00	+ 13 3	1	+ 9.6	+ 7.2	+ 3.2				• ·	+ ۱ 	+ + .	+ 2.8	+	14			+ \ }	+ 3.1	÷ 4.5				;) Ti pu		
) N • •	J (در	1.0	0.7	. N.		ח ת 	2.4	2.7	0.0			* • *	-0.0		7.0										2.1	200	1000	4.6	2.1	, , ,	2	1.2	2.4	÷••	•	- 0	0.6	0.8	-1.8	· · 0	J 0								* *			2.1	10.01				2.9	4 •3	1.1	C	•		2.9	0.5	1.7				,	èv∕c) [∠]	, ,	
ŀ	• •	• • •	- 1- 	+ 1	+ 1.	۰÷	1+			+	+ 	•		+ 1	+ س	**	• •	+ 4										••	• i •	+	+ 2•	;+ 	• • •	+ I	+ 2.	+ 2.	••	• • •	• •	+	+ 1.	+ * •	1	+ J							!	+ 6.			•			• • •	+ 1·	ا + س	+ 2+	۰+ ۲	•	• • •		+ 7	•	:+ 2•			600				
Ċ		· ~	• •	-	٩	7	N	, -	4	4	Ŷ	-	• •	ጉ		C	0 0	r			Ł							-		2	თ	α		2	w	لان	N	• •	- (D.	σ	-	C	>			1				1	w			σ	-	- 4		20	30	-	ىب	a	, ,	0	D	J	J.	1	- 1					

1

A. ALVENSLEBEN et al.

Table 2 (continued)

5.4 ± 1.8 5.0 ± 2.7 0.4 ± 3.3 5.1 ± 3.2 3.2 ± 4.0 0.8 ± 1.6 1.4 ± 2.7 2.0 ± 4.0	15.8 ± 5.3 8.5 ± 4.5 3.3 ± 2.6	29•5 ± 3•2 16•3 ± 2•5 1•1 ± 3•2		99.6 ± 4.4 43.9 ± 4.5 14.2 ± 3.1	150.5 ± 5.8 70.6 ± 5.6 22.7 ± 5.3	150.0 ± 5.6 70.8 ± 6.0 31.1 ± 4.4	117.3 ± 5.0 57.5 ± 5.3 18.1 ± 3.2	82.0 ± 4.6 37.7 ± 5.2 18.4 ± 4.1	68.0 ± 5.9 31.2 ± 5.8 5.1 ± 5.5	41.7 ± 7.2 15.3 ± 7.7 12.7 ± 5.1			56.7 ± 33.4 53.1 ± 40.0 28.4 ± 26.1	P_=_6+6_GEY/(1.2 ± 1.8 2.6 ± 3.7	3•3 ± 4•8 0•1 ± 5•4	1•9 ± 6•3 3•8 ± 4•3 1•9 ± 3•7	6.1 ± 2.0 1.6 ± 1.9 4.2 ± 3.4	21.8 + 4.6 10.6 + 10.1 2.5 + 2.5	$31_8 + 4_7 - 7_3 + 5_0 - 7_7 + 2_6$	7.5 + 7.81 7.4 + 7.75 7.7 + 0.58	7 * * * 5 5 5 * * * * * * * * * * * * *		78.0 ± 3.5 33.9 ± 4.0 11.8 ± 2.1	$66.0 \pm 3.7 \ 20.4 \pm 4.2 \ 12.2 \pm 3.6$	46.1 ± 4.7 21.9 ± 4.8 19.3 ± 4.7	40.7 + 6.0 26.5 + 5.7 5.5 + 5.2			$P = 6 \cdot 2 \cdot GEY/S$	3•6 <u>7</u> 8•1 6•6 <u>7</u> 8•2 1•6 <u>7</u> 8•2		3.6 ± 3.6 1.1 ± 2.1	7.8 ± 4.6 6.3 ± 3.5 1.1 ± 2.2	18.3 ± 4.0 8.1 ± 3.4 6.3 ± 2.1	41.8 ± 4.8 15.2 ± 6.0 13.3 ± 4.1	68.8 ± 4.6 24.9 ± 5.3 8.9 ± 3.0	93.2 + 4.3 43.5 + 4.9 22.6 + 4.1	10-C 2 0-F1 C-F 2 1-1F C-C 2 2-01		44.3 ± 3.3 18.8 ± 4.2 6.4 ± 3.3	36.0 ± 4.3 16.7 ± 5.7 10.0 ± 5.	39•7 ± 5•0 14•7 ± 3•9 7•7 ± 3•5	21.3 ± 4.5 8.2 ± 6.5 12.3 ± 6.5	$\frac{-14.4 + 5.4 - 23.5 + 9.3 - 3.6 + 5.6}{-14.4 + 5.4 - 23.5 + 9.3 - 3.6 + 5.6}$	p = 5.8 GFV/	0.001 0.003 0.005	IM A dadm II pu/sr.mev/c vs. m(mev/c),
0.4 ± 3.3 0.9 ± 0.8 ± 1.6 3.8 ±	3•3 ± 2•6 1•0 ±		7.3 + 2.6 2.2 +	14.2 ± 3.1 4.8 ±	22.7 ± 5.3 6.7 ±	31-1 ± 4.4 8.9 ±	18-1 ± 3-3 7-8 ±	18•4 ± 4•1 5•4 ±	5.1 + 5.5 5.5 +	12•7 ± 5•7 6•3 ±	4 · 1 · 4 · 1 · 6 ·	20.6 ± 10.0 4.5 ±	28.4 ± 26.1	= 6+6 GEY/C		0-1 ± 5-4 1-1 ±	1.9 ± 3.7	4.2 + 3.4 1.6 +	2.5 + 2.5 0.4 +			+ c 0 y y + c c + B* J J* + T D* + Z	22.5 + 3.9 4.4 +	11.8 ± 2.7 4.9 ±	12.2 + 3.6 3.8 +	19.3 + 4.7 4.7 +	5.5 + 5.3 6.3 +	*•C + 0•0	• •	- 6.2 GEY/C	 0+0		•	1•1 ± 2•2 0•9 ±	6.3 + 2.8 7.1 +	13.3 ± 4.1 9.4 ±	8.9 + 3.9 11.8 +	22.6 + 4.5 9.6 4				10.0 ± 5.7 2.1 ±	7.7 ± 3.5 0.6 ±		$3 \cdot 6 + 5 \cdot 6 - 3 \cdot 3 +$	0 = 5,9 GEV/C	0.005 0.00	vs. m(mev/c),p(uev/c) a
1.9	1.2 0.9 1		1.6 0.8 +	3.0 1.9 ±	3.0 3.0 +	2.3 1.1 ±	2.5 1.0 ±	3.5 1.5 +	3.0 1.3 +	5.3 1.8 +	4.2 1.9 +	5.1 4.2 +	1 • •			2.2		1.9 1.5 +	0.8 1.3 +		 + 0 - C - 2 - 2 - C		2.1 2.5 +	2.2 1.8 ± (2.2 0.7 + (2.5 -0.2 +	3.7 1.3 +		5			2.6	i	: 1.7	3.4 3.4 ±	3.3 3.1 +	5.1 5.1 +	3.4 6.6 +		3.2 1.0 +	2.9 1.6 ±	: 3.3 I.9 <u>+</u>	2.4 1.6 ±	2.6	4.7		7 1 0.009	HU LI (NEV/C)

Fig. 3. (a) The cross section $Z = d\sigma/d\Omega dm(\mu b/sr \cdot MeV/c^2 \cdot nucleon)$ as a function of $m (MeV/c^2)$ and t_{\perp} in units of $-0.001 \text{ GeV}^2/c^2$ for $p = 6.2 \pm 0.2 \text{ GeV}/c$. The curves are the best fits to eq. (8) with $R_1(m)$. The background is not drawn. This figure shows about 2% of the data. (b) Mass spectra after removal of production mechanism. (Note that in the absence of background, all spectra would be identical.)

4. ANALYSIS AND RESULTS

The analysis of reaction (1) in terms of ρ -production is complicated because there is no unique theory for wide resonances and the form of the background is not known. It is for these reasons that we have presented the experimental data in table 1 and table 2 free from theoretical assumptions.

4.1. Analysis of hydrogen data

To analyze the hydrogen data we have fit the cross sections in table 1 with the following equations

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega\mathrm{d}m} = Cg(p)2mR_1(m) + BG(m,p) \ , \tag{2}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega\mathrm{d}m} = Cg(p)2mR_2(m) + BG(p,m) , \qquad (3)$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega\mathrm{d}m} = Cg(p)2mR_3(m) + BG(p,m) , \qquad (4)$$

with

$$R_1(m) = r(m) \left(\frac{m\rho}{m}\right)^4, \qquad R_2(m) = r(m) + I(m) ,$$

$$R_3(m) = r(m) \left(\frac{m\rho}{m}\right)^4 + I(m) ,$$

$$r(m, \Gamma_{\rho}(m)) = r(m) = \frac{1}{\pi} \frac{m_{\rho} \Gamma_{\rho}(m)}{(m_{\rho}^2 - m^2)^2 + m_{\rho}^2 \Gamma_{\rho}^2(m)} ,$$

$$\Gamma_{\rho}(m) = \frac{m_{\rho}}{m} \left[\frac{\left(m/2\right)^2 - m_{\pi}^2}{\left(m_{\rho}/2\right)^2 - m_{\pi}^2} \right]^{\frac{3}{2}} \Gamma_{o} , \qquad g(p) = p^2 (1 + \frac{M}{p})^2 ,$$

$$I(m) = \frac{D}{2m} \frac{m^2 - m_{\rho}^2}{(m_{\rho}^2 - m^2)^2 + m_{\rho}^2 \Gamma_{\rho}^2(m)}$$

$$BG(p,m) = \left(\sum_{i=1}^{4} a_i p^{i-1}\right) \left(\sum_{j=1}^{4} b_j m^{j-1}\right) \ge 0,$$

where g(p) is the energy dependence of the forward production cross section. If $g(p) = p^2$ (M = 0) we have classical diffraction scattering with a con-

stant total cross section. When $g(p) = p^2 (1 + M/p)^2$ and M > 0, then $d\sigma/dl(t=0)$ decreases with increasing ρ energy. The background function BG(m,p) is the product of two general third-order polynomials in m and p. The function I(m) is an empirical interference like term different from the one suggested by Soeding [9]. The terms r(m) and $\Gamma_{\rho}(m)$ are the relativistic p-wave resonance formulae proposed by Jackson [10].

Eq. (2) represents the fitting of the dipion spectrum to a ρ -production term where the resonance formula is modified by a phenomenological "Ross-Stodolsky" term [11] $(m_{\rho} \ m)^4$ plus a general background. The factor $(m_{\rho} \ m)^4$ also appears in a model by Kramer and Uretsky [11] and has been used at DESY and SLAC [1] to account for the shift and shape distortion of the photoproduced ρ -spectrum. Eq. (3) represents another commonly accepted procedure to fit the spectrum with the mass shift and shape distortion accounted for by an empirical term I(m) whose magnitude D is determined by the fit. Eq. (4) assumes both mechanisms can be present.

Fitting was done in two ways. Firstly, each of functions (2), (3) and (4)was fit to the data of table 1 using the CERN fitting program MINUIT [12]. The following quantities were free parameters in the fits: $a_i, b_i, C, m_0, \Gamma_0$, M and D. A lower cut-off limit m_0 , used in fitting the data was chosen in the following way: fig. 4a shows two mass spectra from 460 to 1000 MeV c^2 . One was taken with a peak bremsstrahlung energy at 7.4 GeV and the other at 7.0 GeV. Both had a central spectrometer momentum of 6.0 GeV c. Since the two spectra are in agreement above 610 MeV c^2 one concludes that the inelastic contribution above this mass is small. The same result was found for spectra at $k_{\rm max} = 5.55$ GeV and 5.25 GeV. Therefore, $m_{\rm o}$ was chosen to be 610 MeV c^2 . Checks were made by varying 610 $< m_{\rm o} < 760$ MeV/ c^2 and the values of m_{ρ} , $\Gamma_{\rm o}$, *C*, *M*, *D* and the background were found to be insensitive to these changes. Studies were also made on the background function BG(m, p) and it was found that the results of a product of second-order polynomials were consistent with those of the higher order function described above. The values of $m_{
m p}$ and $\Gamma_{
m o}$ obtained from all fits done in this manner were consistent with $m_{
m
ho}=765\pm10~{
m MeV}/c^2$ and $\Gamma_0 = 145 \pm 10$ MeV/ c^2 .

Secondly, using the values $m_{\rho} = 765 \text{ MeV}/c^2$ and $\Gamma_0 = 145 \text{ MeV}/c^2$ obtained above, the mass spectrum for each momentum was fit separately to functions (2), (3) and (4). In this way the cross sections and the background were left with an arbitrary momentum dependence in contrast to the first method where both the cross section and the background were required to be smooth functions of the momentum. The cross sections obtained from these fits were found to be insensitive within the limits of $m_{\rho} = 765 \pm 10$ MeV/ c^2 and $\Gamma_0 = 145 \pm 10 \text{ MeV}/c^2$ quoted above. Fig. 4b shows the values of $d\sigma/d/(l=0)$ obtained in this way and they are seen to be insensitive to assumptions (2), (3) or (4). Fig. 4b also includes the results of other experiments where the background has been treated. As seen, these data are in good agreement with the present experiment.

Fig. 4. (a) Comparison of mass spectra for hydrogen for different peak bremsstrahlung energy with the same central spectrometer momentum. The agreement of the spectra above 610 MeV/ c^2 indicates the inelastic contribution to the spectra above this mass is small. (b) Comparison to other experiments and results of our measurements on hydrogen obtained by fitting the data matrix (table 1) with eq. (2). (3) and (4). In obtaining d σ/dt (t=0) from $d\sigma/d\Omega dm$ the normalization uncertainty of $\pm 10\%$ due to the mass spectrum functions used. is not shown. Also shown is a comparison of the best fits to our cross sections as a function of p, and the πN cross section as a function of p normalized to the same scale.

4.2. Conclusions from the hydrogen data

(i) The cross sections $d\sigma/dt(t=0)$ obtained from the fits to expressions (2), (3) and (4) exhibit the following characteristics:

(a) The values for $d\sigma/dt(t=0)$ obtained by fitting eq. (2) (Ross-Stodolsky factor) show a behaviour

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t}\bigg|_{t=0} \propto \left(1 + \frac{1.0 \pm 0.3}{p}\right)^2. \tag{5}$$

(b) When eq. (3) (empirical) is used in the fit, we observe

$$\left. \frac{\mathrm{d}\sigma}{\mathrm{d}t} \right|_{t=0} \propto \left(1 + \frac{1.3 \pm 0.3}{p} \right)^2 \,. \tag{6}$$

(c) For fits using eq. (4) (both Ross-Stodolsky and empirical) the observed dependence is

$$\left. \frac{\mathrm{d}\sigma}{\mathrm{d}t} \right|_{t=0} \propto \left(1 + \frac{1.0 \pm 0.4}{p} \right)^2 \,. \tag{7}$$

This is to be compared to the momentum dependence of $\pi^+ p$ and $\pi^- p$ cross sections in the energy region from 3.0 to 7.0 GeV [8].

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t}\Big|_{t=0} \propto \sigma_{\pi^+ \mathrm{p}}^2 (1+\beta_+^2) \propto \left(1+\frac{1.1\pm0.1}{p}\right)^2,$$
$$\frac{\mathrm{d}\sigma}{\mathrm{d}t}\Big|_{t=0} \propto \sigma_{\pi^- \mathrm{p}}^2 (1+\beta_-^2) \propto \left(1+\frac{1.2\pm0.1}{p}\right)^2,$$

where p is in GeV/c and β_{\pm} = real part/imaginary part for $\pi^{\pm}p$ scattering. Therefore, independent of our assumptions, the energy behaviour of ρ -production is found to be very similar to πN scattering in the same energy region.

(ii) The mass of the rho measured from $\rho \rightarrow \pi^+ \pi^-$ is about the same as measured by $\rho \rightleftharpoons e^+ e^-$, but the width of the rho is about 30 MeV/ c^2 higher [13].

4.3. Analysis of complex nuclei data

Following the conclusions drawn drom fig. 3, that the dipion spectra are dominated by ρ -production and that the background cannot be neglected, the complex nuclei data were analyzed in the following manner.

The four-dimensional data matrix $d\sigma/d\Omega dm(A,m,p,t_{\perp})$ was fit by a theoretical function of the form

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega\mathrm{d}m}(A,m,p,t_{\perp}) = \frac{1}{\pi} p^2 2mR_n(m) \left(f_{\mathrm{c}} + f_{\mathrm{inc}}\right) + BG(A,m,p,t_{\perp}) . \tag{8}$$

The first term represents the main contribution from ρ -photoproduction and the second term the contribution due to a non-resonant background.

$$f_{\mathbf{c}} = f_{\mathbf{c}}(A, I_{\perp}, I_{\parallel}, \sigma, \beta) = \left(\frac{\sigma'}{\sigma}\right)^{2} \left[2\pi f_{0} \int_{0}^{\infty} bdb \int_{-\infty}^{\infty} dz \ J_{0}(b\sqrt{|I_{\perp}|}) \right]$$

$$\times \exp\left(iz\sqrt{|I_{\parallel}|}\right) \rho(z, b) \exp\left[-\frac{1}{2}\sigma'(1-i\beta) \int_{z}^{\infty} \rho(z', b)dz'\right]\right|^{2},$$

$$\sigma' = \sigma(1 - \eta\xi\sigma), \qquad \xi = \frac{1}{16\pi a} \int \exp\left(-\frac{b^{2}}{4a}\right) g(z, b)d^{2}bdz,$$

$$\eta = \eta(\sigma) = \int \exp\left(-\frac{1}{2}\sigma T(b)\right) Q(b)d^{2}b/\int \exp\left(-\frac{1}{2}\sigma T(b)\right) T(b)d^{2}b,$$

$$Q(b) = \int_{-\infty}^{\infty} \rho^{2}(z, b)dz, \qquad T(b) = \int_{-\infty}^{\infty} \rho(z, b)dz,$$

$$\sigma = \sigma_{ON}, \qquad a = 8(\text{GeV}/c)^{-2}.$$

Here $f_{\rm C}$ is the forward-coherent-production cross section [14] where the ρ -meson produced with an effective forward-production cross section $|f_{\rm O}|^2$

on a single nucleon is attenuated by $\exp\left(-\frac{1}{2}\sigma'\int\limits_{z}^{\infty}\rho dz\right)$ in nuclear matter as

it leaves the nucleus. (Gottfried has shown that corrections arising from ρ instability within the nucleus are negligible [15].) The factor $\rho(z,b) J_{\rm O}(b\sqrt{|l_{\perp}|})$ comes from the nuclear shape and the term $\rho = \rho_{\rm O} \cdot (1 + \exp[(r - R)/s])$ is the Woods-Saxon density, where *R* is the nuclear radius and s = 0.545 fm. The difference in initial and final mass produces a term $\exp(iz\sqrt{|l_{\parallel}|})$ and σ' is the effective ρ -nucleon total cross section where we have taken into account second-order correlation effects between nucleons inside the nucleus.

We used the model of von Bochmann et al. [16] to account for the correlation length ξ and the correlation wave function g(b, z). The inclusion of correlation causes a 4% correction to our final results. The ratio of the real part to the imaginary part of the scattering amplitude on a single nucleon, β , was taken to be -0.2, following the analysis of γp cross section measurements [17] at 6.0 GeV. This value is consistent with our preliminary results obtained from interference between $\rho \rightarrow e^+e^-$ and Bethe-Heitler pairs [17]. The incoherent production cross section f_{inc} describes the case where the recoil nucleus is left in an excited or fragmented state [18]. The incoherent contribution is largest for low $A (\approx 10\%)$ and becomes negligible for A > 100. The background function $BG(A, m, p, l_{\perp})$ is a general polynomial in (A, m, p, l_{\perp}) space.

To keep the results general, we tried various commonly used forms for the Breit-Wigner and we list five examples: $R_1(m) \dots R_5(m)$, defining

 $R_4(m) = r(m, \Gamma_0)$, $R_5(m) = r(m)$. The function $R_5(m)$ is the relativistic pwave resonance formula proposed by Jackson [10] and $R_4(m)$ is $R_5(m)$ with a constant width. We have discussed $R_1(m)$, $R_2(m)$ and $R_3(m)$ in the hydrogen analysis above.

Comparison of the data in the four-dimensional measured cross-section matrix with the theoretical function (8) enables us to determine directly the parameters m_{ρ} , Γ_{o} , $\sigma_{\rho N}$, R(A), $|f_{o}|^{2}$, $d\sigma_{n}/dt(A, \theta = 0^{\circ})$. Again the fitting was done with the CERN program MINUIT. To reduce

Again the fitting was done with the CERN program MINUIT. To reduce the contributions from the incoherent term f_{inc} and the background, we selected data in the region $|t_{\perp}| < |t_c|$, $t_c = -0.01 (\text{GeV}/c)^2$, 4.8 $GeV/c and <math>m > m_c$ with $m_c = 600 \text{ MeV}/c^2$. Thus we restricted the data to the region where most of the π -pairs come from coherent ρ -production. The determination of the various parameters can be visualized simply in the following way:

(i) To determine the background function $BG(A, m, p, t_{\perp})$, fits were made with and without a background term of the form

$$BG(A, m, p, t_{\perp}) = \left(\sum_{i=0}^{l} a_{i}(A)m^{i}\right) \left(\sum_{j=0}^{m} b_{j}(A)p^{j}\right) \left(\sum_{k=0}^{n} c_{k}(A)t_{\perp}^{k}\right) \,.$$

The goodness of fit improved considerably for l=2, m=n=0 (see fig. 3a). Thereafter no improvement was noticed by increasing l, m or n. The results of the fits were insensitive to changes in $m_c (\pm 100 \text{ MeV}/c^2)$ or $|t_c| < 0.01 (\text{GeV}/c)^2$. The percentage background is considerable for low A, but decreases with increasing A and m, being small on uranium (see fig. 3b).

(ii) To determine R(A), the nuclear density parameters, the t_{\perp} dependence of the data was compared with eq. (8). For each element, independent fits were made to the t_{\perp} dependence of each of the six mass intervals between 690 and 860 MeV/ c^2 . In this way six independent determinations of the radius were made for each element, thus avoiding the need to simultaneously fit for R(A), m_{ρ} , Γ_{0} , and a mass dependent background. The weighted average of the six radii determinations yields a measurement of the radius and they are shown in table 3 and fig. 5.

The radii for light elements (Be and C) are somewhat different from one mass bin to another. The radius measurement for these elements is therefore sensitive to the form of the nuclear density distribution and the form of the background function used. For this reason, a larger error has been assigned.

For heavy nuclei $(A \ge 27)$ the radii determined from each individual mass bin are consistent and also in agreement with the value obtained when the radius, m_{ρ} , Γ_{0} , and background are all variables. Therefore the radius determination of heavy nuclei is independent of m_{ρ} , Γ_{0} , Breit-Wigner mass distribution formula, the normalization and the vector-dominance model. In addition they are insensitive to s and β . Being determined from neutral mesons they are free from complications of Coulomb interference. The data yield $R(A) = (1.12 \pm 0.02) A^{\frac{1}{3}}$ fm which is the most accurate determination of strong-interaction nuclear radii to A_{α} te [19]. Our radii are to be

H. ALVENSLEBEN et al.

Table 3

Summary of measured radii R(A). typical cross sections $\sum_n = d\sigma/dt \ (\theta = 0^\circ, t_n = -0.002, p = 6.54) \ \mu b/((GeV/c)^2 \ nucleon), \chi^2(A)/DF(A), |f_o|^2, \sigma_{\rho N} \ and \gamma_{\rho}^2/4\pi$. The cross sections do not include an uncertainty of $\pm 10\%$ due to the normalization of the mass distribution $R_n(m)$. The errors include uncertainties in R(A), m_{ρ} , Γ_o and BG.

λ	R(A) fm	Σ_1	Σ2	Σ3	Σ_4	Σ5
Beryllium	2.35 + 0.26	627 + 31	652 + 50	673 + 20	628 + 20	581 + 59
Carbon	2.50 + 0.23	772 <u>+</u> 52	8CO + 50	822 + 40	767 <u>•</u> 31	692 + 101
Aluminium	3.37 <u>+</u> 0.16	1322 <u>+</u> 63	1279 <u>•</u> 51	1348 + 36	1319 + 46	1287 + 87
Titanium	3.94 + 0.10	1796 + 78	1706 <u>+</u> 66	1749 + 44	1760 <u>+</u> 102	1622 + 84
Copper	4.53 <u>+</u> 0.11	2099 <u>+</u> 115	2102 <u>+</u> 68	2179 <u>+</u> 60	2203 <u>+</u> 77	2137 <u>+</u> 196
Silver	5.35 <u>+</u> 0.09	2591 <u>+</u> 79	2585 <u>+</u> 73	2631 <u>+</u> 61	2725 <u>+</u> 139	2594 + 177
Cadmium	5.40 <u>+</u> 0.14	2636 <u>+</u> 93	2583 <u>+</u> 74	2662 <u>+</u> 60	2801 <u>+</u> 90	2584 <u>+</u> 113
Indium	5.56 <u>+</u> 0.23	2696 <u>+</u> 90	2634 <u>+</u> 74	2713 <u>+</u> 50	2801 <u>+</u> 157	2651 <u>+</u> 115
fantalum	6.50 <u>+</u> 0.15	2938 ± 154	2900 ± 131	2980 <u>+</u> 124	3049 <u>+</u> 130	2903 <u>+</u> 199
Tungsten	6.30 + 0.12	2923 <u>+</u> 140	2877 <u>+</u> 75	2959 <u>+</u> 76	3045 <u>+</u> 112	3035 <u>+</u> 229
Gold	6.45 <u>+</u> 0.27	2948 <u>+</u> 128	2966 <u>+</u> 147	3017 <u>+</u> 69	3118 <u>+</u> 103	3025 <u>+</u> 111
Lead	6.82 <u>+</u> 0.20	3112 <u>+</u> 93	3167 <u>+</u> 76	3234 <u>+</u> 39	3368 <u>+</u> 174	3105 <u>+</u> 161
Uranium	6.90 <u>+</u> 0.14	3070 <u>+</u> 93	3035 <u>+</u> 58	3144 <u>+</u> 45	3235 <u>+</u> 91	3144 + 114
χ ² (A)/DF(A)	-	~ 1.2	~1.2	~ 1.2	~ 1.5	~ 2.4
$m_p (MeV/c^2)$	-	765 <u>+</u> 10	773 <u>+</u> 10	765 + 10	743 + 10	742 + 10
1fo12 ub/(GeV/0	.) ² -	118 <u>+</u> 6	120 <u>+</u> 7.4	125.3 <u>+</u> 9	112 + 6	103 + 10
OPN (mb)	-	26.7 <u>+</u> 2.0	27.7 🔸 1.7	27.9 + 2.4	24.5 <u>+</u> 1.9	23.5 + 2.5
$\gamma_{P}^{2}/4\pi$	-	U.S7 + U.10	0.59 + 0.08	0.58 <u>+</u> 0.11	0.50 + 0.09	0.50 + 0.11

Fig. 5. Nuclear radii obtained from the measured t_{\perp} dependence of the cross section. Also shown is the best fit to the form $R = R_0 A^{\frac{1}{3}}$.

compared to those determined from electron scattering [20] ($R(A) = 1.08 A^{\frac{1}{3}}$ fm). A more complete description of our determination of these radii will appear in a later paper.

(iii) To determine m_{ρ} and Γ_{0} , the mass and width of the ρ , eq. (8) was compared to the mass dependence of $d\sigma \ d\Omega dm$ for fixed A, p, l_{\perp} . This measured directly the mass and width of the ρ . Independent of the form of the mass distribution used the width $\Gamma_{0} = 140 \pm 5 \ \text{MeV} / c^{2}$. Table 3 shows the fitted results for m_{ρ} . The mass m_{ρ} varies from 740 MeV c^{2} to 775 MeV c^{2} depending on the exact forms of $R_{n}(m)$ used. The best fit values from $R_{1}, R_{2}, R_{3}(m)$ yield $m_{\rho} = 765 \pm 10 \ \text{MeV} / c^{2}$.

(iv) To determine the coherent cross section $d\sigma_n/dt(A, \theta = 0^{\circ})$ the data matrix was compared with eq. (8) inserting the measured values of R(A), m_{ρ} , Γ_{0} and BG. Table 3 summarizes some typical cross sections $\sum_{n}^{n} = d\sigma/dt(\theta = 0^{\circ}, |t_{\parallel}| = 0.002, p = 6.54) \ \mu b' (\text{GeV}/c)^{2} \cdot \text{nucleon}$, with $k_{\text{max}} = 7.4 \text{ GeV}$. The index *n* refers to the mass distribution $R_n(m)$ used to fit the data. The errors in the cross sections include uncertainties in R(A), m_{ρ} , Γ_{0} and BG. Also listed are values for the ratio of chi-squared to degrees of freedom $\chi^2(A)/DF(A)$ for each fit. Bolh lhe "Ross-Stodolsky" form $R_1(m)$ shown in fig. 3a (with $\chi^2(A)/DF(A) \approx 1.2$) and the empirical forms $R_2(m)$ and $R_3(m)$ yield decisively better fits to the data and we choose them as our best results. Fig. 6 shows the fitted cross sections $d\sigma/d\Omega dm(\theta = 0^{\circ}, p = 6.2 \text{ GeV}/c)$ for $R_1(m)$ as a function of *m* for all elements. The background is also shown and as seen, its contribution (per nucleon) is similar. for all elements, indicating that it is incoherent in nature. The ratio of the background to the coherent cross section is considerable for low-A elements but becomes small for high-A elements. Fig. 7 shows the fitted cross sections Σ_1 as a function of A.

cross sections Σ_1 as a function of A. (v) To determine $\sigma_{\rho N}$, $|f_0|^2$ and $\gamma_{\rho}^2/4\pi$ the cross sections were compared with eq. (8) inserting $\beta = -0.2$ and our measured values of R(A). The results corresponding to the various Breit-Wigner forms $R_n(m)$ are listed in table 3. These values are seen to be consistent with each other and we choose representative values based on Σ_1 which are (see fig. 7)

$$\sigma_{\rho N} = 26.7 \pm 2.0 \text{ mb}$$
, $|f_0|^2 = \frac{d\sigma}{dt} |_{t=0} (A=1) = 118 \pm 6 \,\mu \text{b}/(\text{GeV}/c)^2$

and

$$\gamma_{\rho}^2/4\pi = 0.57 \pm 0.10$$
 .

4.4. Comments on the data and the analysis

We consider the following to be improvements compared to earlier work [3, 4]:

(i) This experiment has such good statistics that it enables us to make a more detailed measurement of the background, the ρ line shape, the nuclear physics parameters, etc. than was previously possible. (ii) This experiment used twice as many elements. In particular, there are 8 elements with A > 100 compared with 1 or 2 elements of previous experiments. The

Fig. 6. Fitted cross sections (to $R_1(m)$) d $\sigma/d\Omega dm(\theta = 0^{\circ}, p = 6.2 \text{ GeV}/c)$ and backgrounds as a function of *m* for all complex nuclei.

large amount of heavy-nuclei data enables us to obtain reliable results with the Margolis model [14] which applies best to heavy nuclei. (iii) The effects of the real part β and nuclear correlations are included in the analysis.

4.5. Consistency checks

We present the following examples of checks made to the data (table 2) and analysis:

(i) The directly measured cross sections $d\sigma/d\Omega dm$ agree with the values by Asbury et al. [3].

(ii) To ensure that our results are not sensitive to the nuclear physics of light nuclei, we have analyzed the A dependence by eliminating the data of Be, C, and Al. We also analyzed the data by systematically eliminating each element in turn. The results did not change.

(iii) We have fit various selected subsets of the data with restricted m, p and t_{\perp} ranges. The results were in good agreement with all values quoted.

(iv) We analyzed the data with a large set of Breit-Wigner mass distributions and the results were consistent with each other (five examples are listed in table 3).

(v) A change in s (=0.545 fm) of $\pm 10\%$ changes the results by < 2%.

Fig. 7. The values for \sum_{1} together with the best fit to these results from which we obtain $\gamma_{\rho}^2/4\pi = 0.57 \pm 0.10$ and $\sigma_{\rho N} = 26.7 \pm 2.0$ mb.

(vi) A change in β of $\pm 50\%$ changes $\gamma_{\rho}^2/4\pi$ by 10% and changes R(A) by < 1%.

(vii) The measured radii $R(A) = (1.12 \pm 0.02) A^{\frac{1}{3}}$ fm are in agreement with the commonly used values of $R(A) = 1.14 A^{\frac{1}{3}}$ fm (the latter being a $\pm 10\%$ value) [19].

(viii) A change in R(A) by 5% (to $R(A) = 1.18 A^{\frac{1}{3}}$ fm) changes the $\sigma_{\rho N}$ by 1 mb.

(ix) The value $|f_0|^2$ agrees with our measured hydrogen cross section $d\sigma/dt(t=0) = 119 \pm 7 \mu b/(\text{GeV}/c)^2$ at 6.0 GeV/c (fig. 4b).

(x) The value $\gamma_D^2/4\pi$ is consistent with the independent determination from measurement of total hadronic cross sections $\sigma_{\gamma A}$ from DESY [21], from the analysis of other vector meson data from complex nuclei by Margolis [22] and with the results of Asbury et al. [3]. (The original value of Asbury et al. was 0.45 ± 0.10 . This was obtained using a different nuclear model and did not take into account β and ξ - they are opposite effects - which could produce $\approx 15\%$ effect.) H. ALVENSLEBEN et al.

4.6. Conclusions of complex nuclei data

(i) This experiment provides a measurement of the strong interaction nuclear density parameters. (ii) The measured ρ -nucleon cross section agrees with the π -nucleon cross section in the same energy region ($\approx 25 \text{ mb}$). (iii) Comparing our values for $\gamma_{\rho}^2/4\pi$ with the value determined from $\rho \rightleftharpoons e^+e^- \text{decay} [13]$ of 0.52 ± 0.07 we conclude that to an accuracy of $\pm 20\%$, the ρ -photon coupling strength does not depend on m_{γ} , the photon mass, in the range $0 \le m_{\gamma} \le m_{\rho}$. (iv) The results on $\gamma_{\rho}^2/4\pi$ and $\sigma_{\rho N}$ are in good agreement with the predictions of vector dominance model [5].

We are grateful for the support of Profs. W. Jentschke, V. F. Weisskopf, P. Demos, A. G. Hill and H. Joos, who made this collaboration possible. We wish to thank Drs. S. D. Drell, J. S. Trefil, B. Margolis, A. Dar, R. Wilson, E. Lohrmann, M. Nauenberg, H. Quinn and J. Weber for interesting comments. We are grateful to Drs. H. O. Wuester, D. Lublow, H. Kumpfert, Miss I. Schulz, Miss H. Bock and Mr. P. Berges for technical assistance.

REFERENCES

- [1] Cambridge Bubble Chamber Collaboration, Phys. Rev. 146 (1966) 994; 163 (1967) 1510;
 J. Ballam et al., Phys. Rev. Letters 21 (1968) 1541; 1544;
 L. J. Lanzerotti et al., Phys. Rev. 166 (1968) 1365;
 H. Blechschmidt et al., Nuovo Cimento 52A (1967) 1348;
 W.G. Jones et al., Phys. Rev. Letters 21 (1969) 586;
 ABBHHM collaboration. Phys. Rev. 175 (1968) 1669; Phys. Letters 27B (1968) 54;
 Y. Eisenberg et al., Phys. Rev. Letters 22 (1969) 669;
 M. Davier et al., Phys. Rev. Letters 21 (1968) 841; Phys. Letters 28B (1969) 619.
 [2] G. McClellan, N. Mistry, P. Mostek, H. Ogren, A. Silverman, J. Swartz, R. Talman, K. Gottfried and A. Lebedev, Phys. Rev. Letters 22 (1969) 374.
 [3] J.G. Asbury et al., Phys. Rev. Letters 19 (1967) 865; Phys. Rev. Letters 20 (1968) 227.
- [4] G. McClellan et al., Phys. Rev. Letters 22 (1969) 377;
 J. Swartz and R. Talman, Phys. Rev. Letters 23 (1969) 1078:
 F. Bulos et al., Phys. Rev. Letters 22 (1969) 490.
- [5] J.J.Sakurai, Lectures in theoretical physics, volume 11 (Gordon and Breach, N.Y. 1968);
 - H.Joos, Acta Phys. Austriaca, suppl. 4 (1967) 320.
- [6] J.G.Asbury et al., Phys. Rev. 161 (1967) 1344.
- [7] M.J.Longo and B.J.Moyer, Phys. Rev. 125 (1962) 701.
- [8] M.N.Focacci and G.Giacomelli, CERN-report 66-18.
- [9] P.Soeding, Phys. Letters 19 (1966) 702.
- [10] J.D.Jackson, Nuovo Cimento 34 (1964) 1644.
- [11] M.Ross and L.Stodolsky, Phys. Rev. 149 (1966) 1172;
 G.Kramer and J.L. Uretsky, Phys. Rev. 181 (1969) 1918.
- [12] F.James and M.Ross, CERN 67/623/1.
- [13] S.C.C. Ting, Electromagnetics at small distances, leptonic decays of vector mesons and photoproduction of vector mesons, Proc. 14th Int. Conf. on highenergy physics, Vienna, 1968 (CERN, Geneva, 1968) 43.
- [14] K.S.Koelbig and B.Margolis, Nucl. Phys. B6 (1968) 85.

- [15] K.Gottfried, Bull. Am. Phys. Soc. 13 (1968) 175.
- [16] G.v.Bochmann, B.Margolis and L.C.Tang, Phys. Letters 30B (1969) 254.[17] J.Weber. Ph.D.Thesis. DESY 1969;
- H.Alvensleben et al., to be published.
- [18] J.S. Trefil, Nucl. Phys. B11 (1969) 330.
- [19] J.R.Glauber and G.Matthiae, ISS 67/16;
- R.Wilson, Nuovo Cimento Letters 1 (1969) 952.
- [20] R.Hofstadter, Ann. Rev. Nucl. Sci. 7 (1957) 231.
- [21] H. Meyer, private communication:
- E.Lohrmann,DESY 69/21.

[22] G.v. Bochmann and B. Margolis, Phys. Rev. Letters 23 (1969) 939.

NOTE ADDED IN PROOF

After the completion of this work we learned of a recent experiment from a SLAC-UCRL-Tufts group (H. H. Bingham et al., SLAC-Pub-727) on $\gamma p \rightarrow \rho p$ with linearly polarized photons. Taking into account the uncertainty of -10% in our Ross-Stodolsky spectral function normalization, their result at 2.7 GeV for $d\sigma/dt$ (t=0) from a Ross-Stodolsky fit agrees with our value. At 4.7 GeV, they are about two standard deviations away from ours.

Their fitted results based on the Soeding model, are about $50 - 60 \ \mu b/(\text{GeV}/c)^2$ smaller than our values obtained from the empirical fits. This most probably comes from the entirely different approaches used in fitting the data. Due to the theoretical difficulties with the Soeding model, such as double counting, gauge invariance, real part of production and omission of other diagrams, etc., we have used a *different* model which is a simple empirical interference-like term plus an important third-order power series in *m* and *p*. (See sect. 4 ibid.) The total term is *t*-independent and does not use any of the pion-nucleon scattering information or any other physical quantities. The term itself is independent of any theoretical assumptions.

In the region $m > 610 \text{ MeV}/c^2$, $t \approx 0$, the 9 fitted coefficients of eq. (3) make it behave like a power series in m and p and yield an effect like the Ross-Stodolsky factor. This approach is completely different from the Soeding model used by the SLAC-UCRL-Tufts group. Their Soeding model, among other things, is *t*-independent and used the pion-nucleon scattering amplitude calculated from the phase-shift data. Their rho-amplitude is assumed to be helicity conserving in the s-channel c.m. system.