STAR as a Fixed Target Experiment?

Brooke Haag Hartnell College / University of California, Davis Presented at the Meeting of the California Division of the APS November 13, 2009

The Basics

matter in the universe is made of atoms

> nucleus = protons + neutrons

mesons = 2 quarks baryons = 3 quarks nucleons are hadrons (made of quarks)

STAR

Creating mini-big bangs in the laboratory

Goal: Use relativistic collisions of nuclei to create hot dense matter which reproduces the earliest stages of the universe

QCD phase diagram

• We have discovered the QGP !

• We have not located the critical point.

• A beam energy scan will explore regions of lower temperature and higher chemical potential to find the critical point.

• Can we extend the physics analysis at lower energies by introducing a target into the STAR detector ?

Kinematic Calculations

Collision Energy (GeV)	Single Beam Energy	Single Beam P _z (GeV/c)	Fixed Target √s	Single Beam Rapidity	Center of Mass Rapidity
22.4 Cu+Cu	11.2	11.16	4.66 Cu+Al	3.18	1.59
19.6 Au+Au	9.8	9.76	4.47 Au+Al	3.04	1.52
9.2 Au+Au	4.6	4.50	3.21 Au+Al	2.28	1.14

√s_{NN} = center of mass energy

- $\sqrt{s_{NN}} = \sqrt{2m^2 + 2Em}$ m = 0.9315 GeV/c²; E = 9.8 GeV
- $\sqrt{s_{NN}} = 4.47 \text{ GeV}$
- $p_z = \sqrt{E^2} \cdot m^2 = 9.76 \text{ GeV/c}$

rapidity (y)

• $y_{beam} = 0.5*[ln(E + p_z)/(E \cdot p_z)]$

$$y_{beam} = 3.0$$

$$y_{cm} = 1.5$$

Event Selection

Cu+AI Event Cuts:

- |zVertex| > 75 cm
- rVertex > 2 cm
- multiplicity > 11
- $\Sigma p_z * z Vertex < 0$

Spectra

- Fits to spectra assume Boltzmann distributions
- With efficiency corrections we can extract a temperature for comparison with previous measurements by other experiments

Next Steps

- We need to understand the acceptance of the detector in the forward region
- One important issue

 looking in the
 forward region with
 the TPC for particle
 identification

Conclusions and Outlook

- We can do physics with STAR as a fixed target experiment !
 - We have been able to extract spectra from several species for fixed target collisions at lab rapidity
 - Will it contribute to the critical point search?
 - need to understand detector efficiency at high rapidities
 - need much better statistics this study is a proof of principle
 - want to get yields and slopes which compare favorably with published data in this energy range