Analysis of fixed target collisions with the STAR detector

Brooke Haag for the STAR Collaboration
Hartnell College / University of California, Davis
Presented at the Meeting of the California Section of the APS
November 11, 2011

Creating mini-big bangs in the laboratory

Goal: Use relativistic collisions of nuclei to create hot dense matter which reproduces the earliest stages of the universe

hadron production

QCD phase diagram

- We have created a new state of matter at $\sqrt{(s_{NN})}$ = 200 GeV consistent with the QGP!
- In 2010 (and continuing through 2011) an extensive beam energy scan was undertaken at RHIC with a major goal to find the critical point.
- Fixed target collisions could extend the physics analysis to even lower √s.

STAR has fixed target events

- gold beam ions collide with aluminum beam pipe atoms
- the events are asymmetrical
- acceptance is not optimal ...

Kinematic Calculations

Collision Energy (GeV)	Single Beam Energy	Single Beam P _z (GeV/c)	Fixed Target \sqrt{s}	Single Beam Rapidity	Center of Mass Rapidity
19.6 Au+Au	9.8	9.76	4.47 Au+Al	3.04	1.52
II.5 Au+Au	5.75	5.67	3.53 Au+Al	2.51	1.25
7.7 Au+Au	3.85	3.74	2.99 Au+Al	2.10	1.05

 $\sqrt{(s_{NN})} =$ center of mass energy

•
$$\sqrt{(s_{NN})} = \sqrt{(2m^2 + 2Em)}$$

m = 0.9315 GeV/c²; E = 9.8 GeV

•
$$\sqrt{(s_{NN})} = 4.47 \text{ GeV}$$

•
$$p_z = \sqrt{(E^2 - m^2)} = 9.76 \text{ GeV/c}$$

rapidity (y)

•
$$y_{beam} = 0.5*[ln(E + p_z)/(E - p_z)]$$

- $y_{beam} = 3.0$
- $y_{cm} = 1.5$

Event Selection STAR

- Run 11 19.6 Au+Au collider data
- Au+Al $\sqrt{(s_{NN})} = 4.5 \text{ GeV}$
- 137k events pass selection cuts from 146 M total Au+Au triggered events

Particle identification via dE/dx

- dE/dx from beampipe events as per selection criteria in slide 7
- particle bands are well separated

π^- spectra comparisons

- uncorrected STAR data points
- slopes of π^- spectra STAR data, AGS data, and UrQMD compare reasonably
- AGS yields are predictably above STAR for Au+Au (AGS) vs. Au+Al (STAR)

π^+/π^- yield ratios

- Net positive charge in the collision zone
 - expanding spherical source
 - → effective potential
- Extracted parameters include initial ratio R and the full coloumb potential Vc
- Coulomb potential (Vc) of the source modifies momentum distribution
 - greater effect for low– momentum π
- R-primordial ratio from initial yields, unmodified by the coloumb source

STAR Au+Al 4.5 GeV π^+ measurement pending

Overall Pion Ratio, R

Y1: 8.54 + -0.78

Y11: 8.07 + /- 0.61

WA98: 9.83 +/- 0.63

E866: 16.32 +/- 1.92

Y1: 0.960 +/- 0.005 Y11: 0.953 +/- 0.002

WA98: 0.935 +/- 0.004 E866: 0.771 +/- 0.011

Conclusions and Outlook

- We can do physics with STAR as a fixed target experiment!
 - We have been able to extract pion spectra for fixed target collisions at lab rapidity
 - working to understand detector efficiency at high rapidities via simulated events
 - checking pion contamination, stability of multiplicity as a function of zVertex
 - Yields and slopes compare favorably with published data in this energy range
 - We can extend the search for the critical point to lower energies
 - We have more fixed target data at $\sqrt{(s_{NN})}$ of 3.0 and 3.5 GeV

Backup Slides

Source Coulomb Potential

$$\frac{\pi^+}{\pi^-} \left(m_T - m_\pi \right) \ = \ R \frac{\exp\left[\left(E + V_{\rm eff} \right) / T_\pi \right] - 1}{\exp\left[\left(E - V_{\rm eff} \right) / T_\pi \right] - 1} \cdot J \quad \text{Ratio as a function of transverse kinetic energy with transformed B-E distribution}$$

$$J \ = \ \frac{E - V_{\rm eff}}{E + V_{\rm eff}} \frac{\sqrt{\left(E - V_{\rm eff} \right)^2 - m_\pi^2}}{\sqrt{\left(E + V_{\rm eff} \right)^2 - m_\pi^2}} \quad \text{Jacobian of the transformation}$$

$$V_{\rm eff} \left(\gamma_\pi \beta_\pi \right) \ = \ V_C \left(1 - e^{-E_{\rm max} (\gamma_\pi \beta_\pi) / T_p} \right) \quad \text{Effective Coulomb potential accounting for the reduced charge seen by low momentum } \pi$$

Maximum kinetic energy of the corresponding π velocity

- Net positive charge in the collision zone
 - Expanding spherical source → effective potential

 $E_{\max}(\gamma_{\pi}\beta_{\pi}) = \sqrt{(m_p \gamma_{\pi}\beta_{\pi})^2 + m_p^2} - m_p$

- Coulomb potential (V_c) of the source modifies momentum distribution
 - Greater effect for low-momentum π
- R primordial ratio from initial yields, unmodified by the coulomb source
- Extracted parameters include initial ratio R and the full coulomb potential V_c

matter in the universe is made of atoms

mesons = 2 quarks baryons = 3 quarks nucleus = protons + neutrons

nucleons are hadrons
___ (made of quarks)