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Abstract

Polarization of Heavy Quarkonium Production

in the Color Evaporation Model

A series of quarkonium production and polarization calculations are presented. All calcu-

lations are based upon the color evaporation model (CEM) as well as the newly-developed

improved CEM (ICEM). We employ these models to consider the polarized production of

quarkonium by restricting the final state quark-antiquark pair to be in the desired spin

state. The first calculation separates the polarized yield from the total yield according

to the Jz of the quark-antiquark pair. The second calculation separates the polarized

yield from the total yield according to the J and Jz of the quark-antiquark pair, while

also considering the feed down production from higher energy bound states. The third

and fourth calculations consider the pT -dependence of the polarization and production,

by considering off-shell initial state gluons using the kT -factorization approach for prompt

J/ψ and prompt Υ(nS). The last calculation computes the pT -dependence of the polar-

ization and production using the collinear factorization approach for direct J/ψ. As our

calculations become successively more complex, we find that our polarization predictions

using the CEM are in better agreement with experimental data without losing the ability

to describe the production yield.
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Introduction
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1.1 The Standard Model

The Standard Model of particle physics [1–3] describes three fundamental interactions

in the universe and classifies elementary particles into three categories: leptons, quarks,

and gauge bosons. It also contains a scalar boson, the Higgs boson. All the elementary

particles are shown in Fig. 1.1. It is based on the gauge group SU(3)C× SU(2)L× U(1)Y

where the SU(3)C subgroup refers to the quantum chromodynamics (QCD) sector and the

SU(2)W× U(1)Y subgroup refers to the unbroken electroweak sector. The symmetry of the

electroweak subgroup is broken via the Higgs mechanisms [5–9] leaving the symmetry of

the electromagnetic subgroup, U(1)QED, preserved in the electroweak symmetry breaking.

The QCD sector describes the strong interactions of quarks (denoted as q in general) and

gluons (g). The Standard Model is well established and can explain a wide variety of

experimental phenomena in particle physics.

Figure 1.1. (Taken from Ref. [4]). Elementary particles in the Standard Model of
particle physics. Particles are either quarks (redorange), leptons (emerald), gauge
bosons (cyan), or the Higgs boson (purple).

1.2 Quarks and gluons

Quarks are elementary particles of the QCD sector in the Standard Model. They are

fermions with spin 1/2 (~ = 1). A quark carries one of the three color charges: red, green,
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and blue which form the fundamental representation of SU(3)C . There are six types of

quarks: d (down), u (up), s (strange), c (charm), b (bottom), and t (top), and they are

accompanied by their anti-particles, anti-quarks (denoted as q̄ in general): d̄ (anti-down),

ū (anti-up), s̄ (anti-strange), c̄ (anti-charm), b̄ (anti-bottom), t̄ (anti-top). Anti-quarks

have the same masses and spins, but with opposite color and electric charges: anti-red,

anti-green, and anti-blue. Gluons are the gauge bosons of the QCD SU(3)C non-Abelian

theory. They are massless spin-1 particles and carry colors in the adjoint representation

of the SU(3)C symmetry. In the parameterization of SU(3) rotations, there are 32−1 = 8

degrees of freedom, and so there are eight kinds of gluons. Since gluons carry both color

charges and anti-color charges, they are responsible for mediating the strong interaction

between quarks and anti-quarks.

Quarks are separated into three generations because the charged weak coupling is

significantly stronger for quarks within the same generation. Each generation has similar

properties but the mass is significantly heavier from one generation to another. Also, the

difference in quark mass within a generation becomes larger across generations. The first

generation contains the lightest two quarks, the down quark and the up quark. They are

responsible for the net electric charges of protons and neutrons. A proton is a bound

state of two up quarks and a down quark (uud). A neutron is a bound state of an up

quark and two down quarks (udd). Since a proton carries +1 electric charge (relative to

the absolute charge of an electron) and a neutron carries 0 electric charges, up and down

quarks must carry fractional charges. A down quark carries −1/3 electric charge and an

up quark carries 2/3 electric charge. Although the down and up quarks account for the

electric charges of protons and neutrons, the majority of the proton mass comes from the

interactions of quarks and gluons inside the proton.

The second generation contains two heavier quarks, the strange quark and the charm

quark. They have the same properties as the down and up quarks respectively except their

masses are higher. The third generation contains two even heavier quarks, the bottom

and the top quarks. Similarly, they have the same properties as the strange and charm

quarks respectively but their masses are much higher. Because of the significant mass
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difference, the up, down, and strange quarks are referred to as the light quarks while the

charm, bottom, and top quarks are referred to as the heavy quarks. Often, a light quark

is denoted as q and a heavy quark is denoted as Q. The quark flavors with masses and

electric charges are listed in Table 1.1.

Table 1.1. The quark flavors q, their current bare mass mq, and their electric charge
relative to the electron charge eq. Antiquarks have the same masses but oppotite
electric charges.

quark flavor (q) mq eq

up (u) 2.2+0.5
−0.4 MeV 2

3

down (u) 4.7+0.5
−0.3 MeV −1

3

strange (s) 95+9
−3 MeV −1

3

charm (s) 1.275+0.025
−0.035 GeV 2

3

bottom (s) 4.18+0.04
−0.03 GeV −1

3

top (t) 173.0±0.04 GeV 2
3

1.3 The strong interaction

The QCD Lagrangian is given by

LQCD =
∑
q

ψ̄q,a(iγ
µ∂µδab − gsγµtCabACµ −mqδab)ψq,b −

1

4
FA
µνF

A,µν , (1.1)

where repeated indices (µ, ν, a, b, A, and C) are summed over. Here, µ and ν are Lorentz

indices which run from 1 to 4 (space-time symmetry), a and b are color indices which run

from 1 to 3 (three colors of quarks), and A and C are the adjoint color indices which run

from 1 to 8 (8 kinds of gluons). The quark spinors and gluon fields are denoted as ψq,a

and ACµ respectively. The generators of the SU(3)C group are denoted as tCab. The γµ are

the Dirac matrices. The quantity gs is the QCD coupling constant and is the only input

parameter of QCD. It is related to the strong coupling constant, αs, by

g2
s = 4παs . (1.2)

Finally, F , the field strength tensor and is given by

FA
µν = ∂µAAν − ∂νAAµ − gsfABCABµACν , (1.3)
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where

[tA, tB] = ifABCt
C , (1.4)

are the structure constans of the SU(3)C group.

The strong coupling constant, αs, describes the strength of the strong interaction in

vacuum. However, the effective strength of the strong interaction is not a constant. Since

QCD is renormalizable, this coupling constant can be expressed in terms of an unphysical

renormalization scale, µR, by the renormalization group equation,

µ2
R

dαs
dµ2

R

= β(αs) = −(b0α
2
s + b1α

3
s + b2α

4
s +O(α5

s)) , (1.5)

where b0 = (33 − 2nf )/(12π), b1 = (159 − 19nf )/(24π2), and b2 = (2857 − 5033nf/9 +

325n2
f/27)/(128π3) for SU(3). Here, nf is the number of “light” quark flavors defined

compared to the renormalization scale as mq � µR. Truncating the sum at O(α2
s) (also

called as 1-loop) and solving for αs as a function of µR gives

αs(µ
2
R) =

12π

(33− 2nf ) ln
µ2
R

Λ2
QCD

, (1.6)

where ΛQCD ≈ 200 MeV is the QCD scale defined where αs diverges. When µR is brought

near the scale of the momentum transfer, QT , in a given process, αs(µ
2
R ' Q2) is then

an indicative measure of the effective strength of the strong interaction. For example,

the strong coupling constant, when Q is taken at the mass of the Z boson measured by

experiments averages to a value of αs = 0.1187± 0.0052 [10].

One can observe that the effective strong coupling constant in Eq. (1.6) gets smaller

as a function of Q. This traces back to the minus sign in Eq. (1.5). This is the origin

of asymptotic freedom, which leads to a decreasing strong coupling for increasing energy

scale or decreasing length scale. On the other hand, the strong force gets stronger when

the energy scale decreases or when the length scale increases. This is known as color

confinement and is the reason why free quarks and gluons do not exist in nature.

Asymptotic freedom allows the use of perturbative Feynman calculus in QCD to cal-

culate scattering amplitudes. This is because the scattering amplitude in a given QCD

5



process is a sum of the allowed interactions embedded in the Lagrangian in Eq. (1.1).

When gs is in the limit gs � 1, the scattering amplitudes are perturbatively calcula-

ble. Since the masses of the charm and bottom quarks are much heavier than the QCD

scale, the effective coupling is small enough so that perturbative QCD can be employed

to calculate scattering amplitudes involving heavy quark production.

1.4 The parton model

Quarks and gluons are also called partons because they are found inside the proton

in deep-inelastic scattering (DIS) experiments where an electron of momentum k scatters

off a proton of momentum p by emitting a highly off-shell photon of momentum q, repre-

sented by e−p→ e−X. The virtual photon is then able to interact with the parton inside

the proton electromagnetically. Deep in DIS refers to the limit where the photon virtu-

ality, defined as Q2
T = −q2

T , much greater than the squared proton mass, but below the

squared Z boson mass. Inelastic in DIS refers to the limit where the invariant mass of the

unobserved final state hadronic system is greater than the proton mass. The differential

cross section for this process in this limit is

d2σ

dxdQ2
T

=
4πα2

Q4
T

[
(1− y)

F2(x,Q2
T )

x
+ y2F1(x,Q2

T )

]
, (1.7)

where α is the electromagnetic coupling, F1(x,Q2
T ) and F2(x,Q2

T ) are proton structure

functions, x is the fraction of the total momentum carried by the parton struck by the

virtual photon given by x = Q2
T/(2p · q), and y is defined as (q · p)/(k · p) and known as

the inelasticity of the collision.

In the parton model, the underlying ineraction in DIS is the QED elastic scattering

of e−q → e−q, where the differential cross section can be written as

dσ

dQ2
T

=
4πα2e2

q

Q4
T

[
(1− y) +

y2

2

]
, (1.8)

where eq is the electric charge of the quark, q. Although the down and up quarks are

responsible for the electric charge of a proton, the interaction between the quarks and

gluons within the proton will give rise to pair production of qq̄ such as uū and dd̄ at
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smaller distance scale or probing at a high-energy scale. The down and up quarks that

make up the proton are then called the valence quarks and the pair-produced quarks

are called sea quarks. Both valence and sea quarks interact with the electron according

to Eq. (1.8). Even though we expect the valence quarks to carry approximately 1/3 of

the proton momentum, because quarks and gluons are constantly interacting with each

other, the momentum of the quarks within the proton is distributed over all fractional

momenta. We denote the probability density function of finding a parton of flavor i with

momentum fraction x of the proton’s momentum as fi(x). This function is also called the

parton distribution function (PDF). Therefore, the cross section in Eq. 1.8 contributed

by a particular quark flavor, qi of electric charge eqi can be written as

dσi
dQ2

T

=
4πα2

Q4

[
(1− y) +

y2

2

]
e2
qi
fqi(x)dx , (1.9)

where fqi(x)dx is the number of quarks with momentum fraction between x and x + dx.

Summing over all quark flavors gives

d2σ

dxdQ2
T

=
∑
i

4πα2e2
qi

Q4
T

[
(1− y) +

y2

2

]
fqi(x) , (1.10)

which allows comparison with the DIS cross section in Eq. 1.7,

F2(x,Q2
T ) = x

∑
i

e2
qi
fqi(x) (1.11)

F2(x,Q2
T ) = 2xF1(x,Q2

T ) . (1.12)

1.4.1 Cross Sections

Since partonic interactions are the underlying processes, and the partons distributions

are described by the PDFs, the cross section of any given final state is thus a convolution

of the parton densities of the collision partners with the partonic cross section. In a

hadronic collision, the cross section is

σ = f1 ⊗ f2 ⊗ σ̂ , (1.13)

where f1 and f2 are the PDFs of the hadrons, and σ̂ is the partonic cross section. Note

that this equation is valid only if both collision partners are hadrons. PDFs are non-
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perturbative in QCD and are obtained by fitting the experimental data. In perturba-

tive QCD (pQCD), a factorization approach is used to calculate the cross section of

a process by separating the perturbative short-distance partonic cross section from the

non-perturbative long-distance PDFs. In the collinear factorization approach, the parton

momentum is collinear with the proton momentum. At leading order, the cross section

for any given final state in p+ p collisions can be expressed as

σ =
∑

i,j=q,q̄,g

∫
dx1dx2 fi/p(x1, µ

2
F )fj/p(x2, µ

2
F )σ̂ij(µR) , (1.14)

where i and j are summed over all partons, x1 and x2 are the longitudinal momentum

fraction carried by the partons of the proton momenta, µF is the factorization scale, and

σ̂ij(µR) is the partonic cross section calculable in pQCD at the renormalization scale, µR.

The partonic cross section, in general, contains powers of the strong coupling constant,

αs, which depends on the renormalization scale. Naturally, both the renormalization

scale and the factorization scale are taken to be of the same order as the scale of the

interaction (µR ' µF ' Q). The factorization approach is assumed to hold as long as the

interaction scale is much larger than the QCD scale (Q� ΛQCD). In analogy with strong

coupling, the scale dependence of the PDFs has to follow the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) equations [11–14], which can be expressed as a convolution of

the probability of obtaining such parton from all other partons via QCD interactions (P )

and the PDFs of other partons

df

d lnQ
= P ⊗ f . (1.15)

The probabilities are also known as the splitting functions. When written explicitly in

terms of individual splitting functions and PDFs, the DGLAP equation takes the form

Q2dfi/p(x,Q
2)

dQ2
=

∑
j

∫ 1

x

dy

y
Pi/j

(
x

y
, αs(Q

2)

)
fj/p(y,Q

2) (1.16)

where j is summed over all parton flavors and Pi/j are the probabilities for obtaining

parton i from the splitting of parton j. There are three splittings allowed by the QCD

Lagrangian: g → qq̄, q → qg, and g → gg. Note that the first two splittings are also

8



allowed by the QED Lagrangian but the third splitting is exclusive to QCD, which makes

the strong coupling constant stronger at longer distance scales and leads to confinement.

As we probe at shorter distance scales (same as increasing the factorization scale), we can

see more deeply into the proton where there are more splittings and thus giving us access

to smaller x. Thus, at higher Q2, the PDFs reveal a higher density of low x partons,

and due to momentum conservation, the density of high x partons is reduced shown in

Fig. 1.2 using the CT14 PDFs [15]. Note that the density of gluons is at least an order

of magnitude higher at low x (x < 0.01) than the light quark density. Therefore, objects

that can be produced in gg interactions are going to have the largest contribution to the

cross section from that channel, except at very low energies or very high x where the

gluon density is low compared to the light quarks.
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Figure 1.2. The momentum distribution, xf(x,Q2), of gluons (left) and the total
(sum of valence and sea contributions) up quarks (right) as a function of x using
the CT14 central set [15]. The interaction scale is set at Q2 = 10 GeV2 (solid),
100 GeV2 (dashed), 10000 GeV2 (dotted). As the interaction scale increases, the
access to low x parton becomes more availale. The increase of the up quark density
at lower x (x < 0.01) is from the rise of the sea contribution in fu = fuV + fus .

In the collinear factorization approach, the transverse momenta of the partons are

neglected. However, the DGLAP equation fails at small values of x where the splitting

functions diverge. This happens in high-energy collisions where the typical ratio x '
Q2/s, (s is the center-of-mass energy squared) becomes very small. This results a large

logarithmic contributions in the perturbation series in αs ln(1/x).

The BFKL approach [16–18] resums the leading ln(1/x) terms in the divergence based
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on gluon Reggeization that assumes the incoming gluons have a finite transverse momen-

tun and are off mass shell. The approach describes the evolution of gluon transverse

momentum distribution, Φ(x, k2
T , Q

2), which is also known as transverse momentum dis-

tribution (TMD), as a convolution of the BFKL kernel (K) and the TMD, analogous to

Eq. 1.15

dΦ

d ln(1/x)
= K ⊗ Φ . (1.17)

When both collision partners are being probed at x values that are sufficiently low to be

in the regime where BFKL approach holds rather than collinear factorization, the cross

section in p + p collisions, is then a convolution of the TMD’s and the partonic cross

section

σ = Φ1 ⊗ Φ2 ⊗ σ̂ . (1.18)

A hybrid approach where an unintegrated PDF for one collision partner and a collinear

distribution for the other collision partner at higher x can also be used if the conditions

are not matched. The BFKL approach is also known as the kT -factorization approach.

Note that the partonic cross section here equations is not the same as in the collinear

factorization approach as gluons in the scattering matrix elements are off shell. At leading

order, the cross section for any given final state in p+ p collisions in the kT -factorization

approach can be expressed as

σ =
∑

i,j=q,q̄,g

∫
dx1

x1

dx2

x2

dk2
1Tk

2
2T

dφ1

2π

dφ2

2π
Φi/p(x1, k

2
1T , µ

2
F )Φj/p(x2, k

2
2T , µ

2
F )σ̂ij ,(1.19)

where φ1,2 are the azimuthal angles of the parton and Φi/p(x1, k
2
1T , µ

2
F ) is the TMD. TMDs

are also known as unintegrated PDFs (uPDFs) as they are related to the collinear PDFs

by an integration over k2
T

xf(x,Q2) =

∫ µ2
F

0

dk2
TΦ(x, k2

T , Q
2) , (1.20)

such that the normalization in Eqs. (1.14) and (1.19) agree. Note that the collinear

factorization should be used for massive colliding objects unless the collision energy is

very high such that x is very low. The x- and kT -evolution of the unintegrated PDFs as

a function of kT are shown in Fig. 1.3 using the JH-2013 uPDFs [19].
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Figure 1.3. The momentum distribution, xΦ(x, k2
T , Q

2), of gluons as a function of x
(left) and k2

T (right) using the JH-2013 uPDF set 1 [19]. On the left plot, k2
T is set

at 10 GeV2 (solid), 30 GeV2 (dashed), and 50 GeV2 (dotted). On the right plot, x is
set at 0.1 (solid), 0.01 (dashed), and 0.001 (dotted). On both plots, the interaction
scale is set at Q2 = 10 GeV2.

1.4.2 Nuclear PDFs

The parton distributions of a bound nucleon inside a nucleus of mass number, A, is

known as nuclear PDFs (nPDFs). In general, there are two ways to describe the mechanics

of nPDFs. The first way is to write the nPDFs (fi/A(x,Q2)) as a product of the PDFs of

a free proton (fpi ) and the nuclear modification (Ri(x,Q
2, A)), presented in the form

fi/A(x,Q2, A) = Ri(x,Q
2, A)fi/p(x,Q

2) . (1.21)

Examples using this modification include the HKN [20], EPPS [21], and DSSZ [22] nuclear

modifications. Another approach is to parameterize the nPDF as a function of A while

using the free proton PDFs as a boundary condition:

fi/A(x,Q2) = fi/A(x,Q2, A) , (1.22)

as used in the nCTEQ approach [23]. In either approach, the reason of using nPDFs

for nuclear targets is that a bound proton inside a nucleus behaves different than a free

proton. Thus, the nuclear modification, Ri(x,Q
2, A), in either approach is not unity.

Experimentally, this is measured by the ratio of the nuclear structure function to the

deuteron structure function

Ri(x,Q
2, A) =

F2A(x,Q2)/A

F2d(x,Q2)/2
. (1.23)
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In the low x region (x < 0.01), the nuclear modification is less than 1. This is known as

shadowing, mostly being interpreted as a result of combinations of partons from different

nucleons when their momenta is small. At intermediate x values (0.01 < x < 0.2), there

is an enhancement in the nPDFs, called antishadowing. At largex values (x > 0.2), a

depletion is a again observed. This region is also called the EMC region, first observed by

the European Muon Collaboration [24]. As A increases, the nuclear modification becomes

larger. The A dependence of the nuclear modification is shown in Fig. 1.4 using the

central EPPS16 nuclear modification [21]. The nuclear modification for bound neutrons

can be obtained using isospin symmetry. For example, the total up quark distribution

per nucleon in a nucleus with mass and atomic number A and Z respectively is

fu/A(x,Q2) =
Z

A
(RuV (x,Q2, A)fuV /p(x,Q

2) +Rus(x,Q
2, A)fus/p(x,Q

2)) (1.24)

+
A− Z
A

(RdV (x,Q2, A)fdV /p(x,Q
2) +Rdsfds/p(x,Q

2)) (1.25)

Using the nuclear modification, in a p + A collision, the cross section of any given final

state can be written as

σ =
∑

i,j=q,q̄,g

∫
dx1dx2 fi/p(x1, µ

2
F )fj/A(x2, µ

2
F )σ̂ij . (1.26)
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Figure 1.4. The nuclear modification, R(x,Q2, A), for valence up quarks (left) and
gluons (right) for the central EPPS16 parameterization [21]. The modification is
shown for A = 40 (solid) and A = 208 (dashed). The interaction scale is set at
Q2 = 10 GeV2.
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1.5 Hadrons

Since partons are subject to color confinement, they are not observed as free quarks,

but rather as bound states, known as hadrons. Because the QCD scale, ΛQCD, is about

200 MeV, this means partons must form hadrons on the confinement length scale of about

1 fm (~c ≈ 197 MeV fm). There are two types of hadrons: mesons and baryons. A meson

is a bound state of a quark with an anti-quark. For example, a positively charged pion

(π+) is a bound state of an up quark (u) and an anti-down quark (d̄). A baryon is a

bound state of three quarks, and protons and neutrons are examples of baryons. The

top quark, the most massive particle in the Standard Model, decays into W+b. This is a

fast process with a lifetime at the order of 10−25 s, which is much shorter than the strong

interaction timescale. Thus, the top quark is the only quark that is too short-lived to form

bound states. Quarks and anti-quarks exist inside hadrons because of the nature of the

strong force. The strong force gets stronger when two colored objects are pulled apart.

On the other hand, the strong force gets weaker when the length scale decreases. As a

result, quarks and gluons are acting as free particles within the hadron. These behaviors

are known as confinement and asymptotic freedom as the quarks and gluons are confined

inside a hadron but are free within the hadron as the interaction gets asymptotically

weaker with decreasing length scale.

1.6 Quarkonia

A meson consisting of a heavy quark and a heavy anti-quark is also known as a quarko-

nium (Q). A quarkonium state consisting of a bound cc̄ pair is known as charmonium,

while one consisting of a bound bb̄ pair is known as bottomonium. The second generation

of quarks in the Standard Model was confirmed by the discovery of charmonium, bound

by the inter-quark potential given as a function of inter-quark separation, r [25, 26]

V (r) = σr − αc
r

+ Vspin , (1.27)

where the term linear in r refers to QCD confinement at long distance, the 1/r term refers

to the Coulomb-like short distance behavior, and the third term is the spin-dependent

potential including contributions from spin-orbit and spin-spin couplings. Bound state
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Figure 1.5. (Taken from Ref. [27]) The
charmonium family. States are orga-
nized according to their spin states.
From left to right: spin singlet with no
orbital angular momentum (η), spin
triplet with no orbital angular mo-
mentum (ψ), spin singlet with orbital
angular momentum 1~ (hc), and spin
triplets with orbital angular momen-
tum 1~ and a total angular momentum
J (χcJ).

Figure 1.6. (Taken from Ref. [27]) The
bottomonium family. States are orga-
nized according to their spin states.
From left to right: spin singlet with no
orbital angular momentum (η), spin
triplet with no orbital angular mo-
mentum (Υ), and spin triplets with
orbital angular momentum 1~ and a
total angular momentum J (χcJ). The
unconfirmed spin singlet with orbital
angular momentum 1~ (h) states are
not shown here.

solutions to the Schrödinger equation with the inter-quark potential in Eq. (1.27) are clas-

sified according to the quantum numbers such as spin (S) and orbital angular momentum

(L). S is the vector sum of the spins of the quark and the antiquark. Since quarks and

anti-quarks are spin 1
2

particles, S can take either 0 or 1. L is the quantum number

associated with the spatial symmetry of the angular distribution of the bound state wave

function. It is common to sum these angular momenta to give the total angular momen-

tum (J) so that each solution can be labeled in the spectroscopic notation, 2S+1LJ , which

corresponds to an observable quarkonium state. Figures 1.5 and 1.6 shows the families of

charmonium and bottomonium respectively.

A meson formed by a heavy quark (or anti-quark) and a light anti-quark (or quark), is

commonly referred to as an open heavy flavor meson. A charm quark bound with a light

anti-quark is referred to as a D meson while an anti-charm quark bound with a light quark

is referred to as a D meson. Similarly, a bottom quark bound with a light anti-quark is
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Figure 1.7. (Taken from Ref. [27]) Above: OZI suppressed hadronic decay of J/ψ
into three pions. Below: OZI favored hadronic decay of ψ(3770) into two D mesons.

referred to as a B meson and an anti-bottom quark bound with a light quark is called a

B meson. The mass of a pair of open heavy flavor mesons, 2mH (H=D, B), is known as

the hadronic threshold. The mass of a D0 meson with quark content cū, has a mass of

1.86 GeV while the mass of a B0 meson with quark content b̄d, has a mass of 5.28 GeV.

Thus, the hadronic threshold is 2mD = 3.72 GeV for charmonium and 2mB = 10.56 GeV

for bottomonium.

Since the potential in Eq. (1.27) is infinite as r → ∞, there are infinite number of

quarkonium states. However, quarkonia whose masses are below the hadronic thresh-

old decay electromagnetically and whose masses are above the hadronic threshold decay

hadronically. This is because when the quarkonium mass is below this threshold, it is

kinematically forbidden to decay hadronically into a pair of open heavy flavor mesons.

In addition, three hard (high-energy) gluons have to be emitted for the quarkonium to

decay hadronically to light mesons, and thus the decay is suppressed. On the other hand,

when the quarkonium mass is above this threshold, it is kinematically allowed to decay

hadronically into open charm mesons without annihilating the heavy flavor and thus the

decay is favored. These phenomena were described by Okubo, Zweig, and Iizuka. Their

observations are summarized by the OZI rule [28–30] , which states that in a decay if

the quark lines are not connected between the initial states and the final states, it is

suppressed. The inverse is also true; if the quark lines are connected between the initial

states and the final states, the process is favored. The suppressed hadronic decay of J/ψ
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Figure 1.8. (Taken from Ref. [31]) : The invariant mass spectrum of dimuons mea-
sured at the CMS detector in p + p collisions at

√
s = 7 TeV within the range η ≤ 1.

All neutral JPC = 1−− particles are shown as peaks in the spectrum. They include
(from low mass to high mass): η, ρ and ω, φ, J/ψ, ψ′, Υ(nS), and the Z boson. A
zoom of the 8 to 12 GeV region showing the three Υ(nS) peaks is presented on the
top right.

(with a mass of 3.10 GeV) into hadrons and the favored hadronic decay of ψ(3770) are

illustrated in Fig. 1.7.

Since the hadronic decay of quarkonia below the HH threshold is OZI suppressed, vec-

tor quarkonia (e.g. J/ψ) dominantly decay electromagnetically into `+`− pairs. This gives

a sharp peak in the dilepton mass spectrum when one reconstructs the pairs in any collider

detector. For example, by reconstructing the µ+µ− pairs, all neutral JPC = 1−− particles

including the S state quarkonia are shown as peaks in the invariant mass spectrum of

dimuons. The dimuon invariant mass spectrum obtained by the CMS Collaboration is

shown in Fig. 1.8.

1.7 Quarkonium polarization

Since quarkonia may, in general, have a non-zero total angular momentum. If we

consider a quarkonium having a total angular momeum of J , the angular momentum
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Figure 1.9. (Taken from Ref. [34]) The
orientation of the polarization z-axis in
the helicity (HX) frame, the Gottfried-
Jackson (GJ) frame, and the Collins-
Soper (CS) frame with respect to the
directions of motion of the colliding
beams (b1, b2). The quarkonium is
produced in the same direction as the
zHX-axis.

Figure 1.10. (Taken from Ref. [34])
The coordinate system used to mea-
sure the polarization experimentally.
ϑ is measured from the polarization
z-axis to the positively charged lepton
from the decay. ϕ is measured from
the polarization x-axis to the projec-
tion of the positively charged lepton
onto the xy-plane.

state, when projected onto any z-axis, generally takes the form

|ψ〉 =
J∑

Jz=−J

aJz |J, Jz〉 , (1.28)

where aJz ∈ C with
∑J

Jz=−J |aJz |2 = 0, and Jz is the z-component of the total an-

gular momentum. The tendency of a quarkonium to be in a certain angular momen-

tum projection state is known as the polarization. For example, an unpolarized J = 1

quarkonium production means an equal amount of Jz = −1, 0,+1 is produced and thus

|a0|2 = |a+1|2 = |a−1|2 = 1
3
. There are commonly three choices (also known as frames) for

the direction of the z-axis in the rest frame of the quarkonium. In the helicity (HX) frame,

the z-axis is defined as the flight direction of the quarkonium itself. In the Gottfried-

Jackson (GJ) frame [32], the z-axis is defined as the direction of the momentum of one

of the two colliding beams. In the Collins-Soper (CS) frame [33], the z-axis is defined

as the bisector of the angle between one beam and the opposite beam. The orientation

of the three axes is shown in Fig. 1.9. Experimentally, the polarization of any S-state
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vector meson is obtained from its decay to l+l− pair by measuring the distribution of the

angle between the z-axis and the direction the positively-charged lepton travels in the

quarkonium rest frame. The angle is illustrated in Fig. 1.10. Conventionally, the y-axis

is defined as the cross product of the colliding beam momenta, ~P1 and ~P2

ŷ =
~P1 × ~P2

|~P1 × ~P2|
. (1.29)

The x-axis is then determined by the right-handed convention x̂ = ŷ × ẑ.

Once a frame is chosen, the angular distribution of the production can be expanded

in terms of the polarization parameters (λϑ, λφ, and λϑφ) given by [34],

dσ

dΩ
∝ 1

3 + λϑ

[
1 + λϑ cos2 ϑ+ λϕ sin2 ϑ cos(2φ) + λϑϕ sin(2ϑ) cosφ

]
, (1.30)

where ϑ and ϕ denote the angle polar and azimuthual angles respectively, λϑ describes

the polar anisotropy, λϕ describes the azimuthual anisotropy, and λϑϕ describes the polar-

azimuthal correlation. The polarization parameters of the JPC = 1−− states (e.g J/ψ and

Υ(nS)) are related to the production polarized amplitudes aJz [34]

λϑ =
1− 3|a0|2

1 + a2
0

, (1.31)

λϕ =
2 Re[a+1a

∗
−1]

1 + a2
0

, (1.32)

λϑϕ =

√
2 Re[a∗0(a+ − a−)]

1 + a2
0

. (1.33)

Therefore, when quarkonium production is equally distributed among Jz = −1, 0,+1

projection states, λϑ = 0 and thus the production is polarly symmetric. When the

production only yields Jz = ±1, the production is said to be completely transverse, and

λϑ = +1. When the production only yields Jz = 0, the production is said to be completely

longitudinal, and λϑ = −1. In a single elementary process, there is no combination of

aJz ’s such that all polarization parameters are zero. Intrinsic isotropic production, where

λϑ = λφ = λϑφ = 0, either has to come from a mixture of subprocesses or randomization

effects through modeling.

However, since the mixing of aJz ’s changes upon any rotation, λϑ in one frame can only

describe such mixing in that particular frame. This means intrinsic transverse production,
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Figure 1.11. (Taken from Ref. [34]) Completely transverse angular distribution (left)
and completely longitudinal angular distribution (right). The polarization axis
is chosen to be the symmetry axis where there the distributions are azimuthally
isotropic (top). The distributions are rotated such that azimuthal anisotropies are
introduced (center). The distributions are rotated by 90◦ where more azimuthal
anisotropies are introduced (bottom). Since the angular distributions are rotation-
ally invariant, the invariant polarization parameter λ̃ reflects λϑ in the frame where
there is no azimuthal anisotropy.

when measured in a frame where the polarization axis is not perfectly aligned with the

symmetry axis with no azimuthal anisotropy, will give λϑ different than +1. Similarly,

intrinsic longitudinal production in one frame, when measured in another frame, will

give a non-zero λϑ. These scenarios are illustrated in Fig. 1.11. However, the angular

distribution itself is rotationally invariant. One of the combinations to form a rotationally

invariant polarization parameter (λ̃) is [34]

λ̃ =
λϑ + 3λϕ
1− λϕ

. (1.34)

Although there are more ways to construct rotationally invariant polarization parame-

ters, the choice of λ̃ here will be the same as the polar anisotropy parameter (λϑ) in

a frame where the distribution is azimuthally isotropic (λϑφ = 0). Thus, considering

also the frame-invariant polarization parameter, λ̃, can remove frame-induced kinematic

dependencies when comparing theoretical predictions to data.
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Measuring and predicting the polarization is important to understand the collider

detector acceptance. This is because the kinematic acceptance of the detector for mea-

suring quarkonium production depends on the quarkonium polarization [35]. As shown in

Fig 1.12, the experimental acceptance in ATLAS varies if the J/ψ polarization is changed.

Understanding the acceptance is important for correctly measuring the production cross

section. When the polarization is unknown, one either has to assume the production

is unpolarized or report the cross section for each polarization assumption. The former

option is mostly adopted but the uncertainty in the acceptance will contribute to the

systematic uncertainty of the measurement. Therefore, understanding the polarization

can reduce the uncertainty in yield measurements.

Figure 1.12. (Taken from Ref. [35]) The experimental acceptance assuming the J/ψ
polarization is unpolarized (left), totally transverse (middle), and totally longitudinal
(right).

1.8 Quarkonium production

The J/ψ was the first hadron containing charm quarks to be discovered. Before the

discovery of J/ψ in 1974, the early version of the quark model only had three quarks,

the down, up, and strange quarks. They were thought to be part of an SU(3) symmetry.

Having 3 quarks in the model seemed promising as it neatly explained the multiplets

of baryons and mesons formed by these quarks and their anti-quarks. Earlier in 1964,

Bjorken and Glashow [36] suggested a fourth quark in the quark model to make it an

SU(4) theory, which was later supported by Glashow, Iliopoulos, and Maiani [37]. This

is because at that time, four leptons (e, νe, µ, and νµ) were discovered and the weak
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interaction between leptons and quarks would clearly require a fourth quark in the quark

model to explain the absence of flavor-changing neutral currents. In November 1974, the

J/ψ was discovered simultaneously at Brookhaven National Laboratory by a group led

by Samuel Ting and at SLAC by Burton Richter’s group [38, 39]. Richter and Ting were

awarded the Nobel Prize in Physics in the same year.

In 1975, a new lepton, the tau lepton was discovered by Martin Perl [40]. The tau

lepton also has its neutrino (ντ ). These discoveries, again, made an imbalance between

the number of leptons (six) and the number of quarks (four at that time). Soon in 1977,

a meson with a mass of 9.5 GeV was discovered [41] and was quickly recognized as the

bound state of the fifth quark, the bottom quark, and its anti-quark. The meson was

named Υ.

1.8.1 Production channels

Quarkonia can be produced in many collision systems. Hadronic collisions, where

hadrons collide with other hadrons, can be achieved at hadronic colliders such as p + p,

p + A, d + A, and A + A at the Relativistic Heavy-Ion Collider (RHIC), p + p̄ at the

Tevatron collider, and p+p, p+A, and A+A at the Large Hadron Collider (LHC). Other

collision systems include two-photon scattering achievable at the Large Electron-Positron

Collider (LEP), hadron-electron (e−A) collisions at HERA, and electron-positron (e+e−)

collisions at KEKB.

Quarkonium production can be divided between prompt and non-prompt production.

Take J/ψ production as an example, prompt production includes the direct production of

the final quarkonium state (J/ψ) as well as feed-down from decays of higher quarkonium

states (ψ(2S), χc1(1P), and χc2(2P)). Non-prompt production refers to the production of

the final quarkonium state from decays of comparatively longer-lived B hadrons. Prompt

and non-prompt production can be separated by reconstructing the decay products to the

vertices of production. Non-prompt quarkonia are indicated by their displaced vertices

because of the lifetime of B-hadrons. Since there is no top hadron, bottomonia are

produced in prompt production only. The total cross section, obtained by summing the

prompt and non-prompt cross sections, is also known as the inclusive cross section.
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1.8.2 Production models

Although both J/ψ and Υ were discovered more than 40 years ago, the production

mechanism is still not well understood. Specifically, how a heavy quark-antiquark pair

hadronizes into a quarkonium state has not been figured out. Several models, includ-

ing the color singlet model (CSM) [42, 43], nonrelativistic QCD (NRQCD) [44] and the

color evaporation model (CEM) [45–48], have been proposed to predict the total yield,

the transverse momentum (pT ) and the rapidity (y) distributions, and the polarization of

quarkonium production in different particle collider machines. A brief timeline of quarko-

nia discoveries and the production models is shown in Fig. 1.13.

Discovery of J/ψ
BNL/SLAC

Discovery of Υ
Fermilab

1974 1977 1980 1995

Nonrelativistic QCD 
(NRQCD)

Color Evaporation Model
(CEM)

Color Singlet Model
(CSM)

2016

ICEM

Figure 1.13. The timeline of quarkonia discoveries and the production models.

As quarkonia are bound states of QQ, they can either be produced in the color singlet

state or one of the color octet states. Because of confinement, all observable hadrons

are color singlets, even though they may have initially been produced as colored objects.

Thus, the CSM considers the production of heavy quark-antiquark pairs in the color

singlet state in the limit the heavy quark relative velocity is zero (v → 0). It assumes the

quantum state of the pair remains the same between production and its hadronization. In

the CSM, the production cross section of an S state quarkonium, Q, in hadronic collisions

takes the form

dσ[Q+X] =
∑
i,j

∫
dxidxjfi(x1, µF )fj(x2, µF )dσ̂i+j→(QQ)+X(µR)

× |R(0)|2 , (1.35)

where fi(x,µF ) is the parton distribution function (PDF) of the proton as a function of

the fraction of momentum carried by the colliding hadron x at factorization scale µF and
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σ̂i+j→(QQ)+X(µR) is the partonic cross section evaluated at the renormalization scale µR.

The cross section is normalized by the squared wave function at the origin |R(0)|2 for S

states, and is normalized by the squared of the derivative |R′(0)|2 for P states. However,

the cross section in the CSM calculated at leading order (O(α3
s)) underestimated the

data at the Tevatron by more than an order of magnitude especially, at high pT . Even

calculations to next-to-leading order (O(α4
s)) still underestimate the data by a factor of

ten. The evaluation of the real correction at O(α5
s) (also known as NNLO?) [50] is shown

to be able to fill most of the gap between the NLO calculation and the experimental

results. These results are shown in Fig. 1.14.

Figure 1.14. (Taken from Ref. [49]) The pT -distributions of ψ(2S) in the CSM cal-
culated at leading order (blue), next-to-leading order (gray), and partial next-to-
next-leading order (red) compared to the data measured at CDF at

√
s = 1.96 TeV.

The calculation in the CSM converges to the data as the significant contribution at
NNLO? fills most of the gap between the data and the NLO results. See Ref. [50] for
details.

Most recent studies of quarkonium production employ NRQCD which, in addition

to the color singlet contribution of the CSM, includes the contribution from color octet

states. NRQCD is an effective field theory where production is described as an expansion

in powers of αs and the heavy quark velocity, v. It separates the quarkonium production
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cross section into different color and spin states and further factorizes the short distance

coefficients from the long distance matrix elements (LDMEs). In the NRQCD approach,

the J/ψ production cross section is given by

σJ/ψ =
∑
n

σcc̄[n]〈OJ/ψ[n]〉 , (1.36)

where σcc̄[n] are the cross sections in a particular color and spin state n calculated in per-

turbative QCD, 〈OJ/ψ[n]〉 are the non-perturbative LDMEs that describe the conversion

of cc̄[n] states into the final state J/ψ. The leading term in the sum in the limit v → 0

is n =3S
[1]
1 , which corresponds to the contribution from the color singlet. Truncating the

sum at this point reduces NRQCD to the CSM. The subleading terms are the corrections

from the color octet states (3P
[8]
J ,3S

[8]
1 and 1S

[8]
0 ), of relative order O(v4). The LDMEs

have to be obtained by fitting theoretical predictions to data, usually pT distributions

above some pT cut. At each order of αs, there will be four LDMEs in total, one for CS

and three for CO contributions.

The universality of the mixing of LDMEs is tested in the first and only global analysis

of NLO J/ψ production by photoproduction, two-photon scattering, and hadroproduc-

tion [51]. The analysis compares all available J/ψ data with a pT cut of 1 GeV for

photoproduction and two-photon scattering, and 3 GeV for hadroproduction. It shows

that NRQCD is capable of describing most of the production data with a goodness of

fit of χ2
d.o.f = 4.42. A comparison to data of the NLO NRQCD global fit is shown in

Fig. 1.15, where the gap between the data and the CSM results is filled by the contribu-

tion from CO states. However, using the same set of LDMEs from the global fit, NRQCD

predicts a strong transverse polarization of the J/ψ [52], which differs significantly from

the measured data shown in Fig. 1.16.

The production yields are not the only measurements that can test quarkonium pro-

duction models. Spin-related measurements like the polarization are strong tests of pro-

duction models; in this respect, the NRQCD LDMEs fail to describe both the yields and

polarization simultaneously for pT cuts less than twice the mass of the J/ψ. [53]. If one

chooses a low pT cut (3 GeV) to fit the LDMEs to the global yields, including those from

e+ + e− at HERA, e + p at HERA, p + p at ATLAS and p + p̄ at CDF, NRQCD will
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Figure 1.15. (Taken from Ref. [51])
The J/ψ cross section measured at√
s = 1.96 TeV at CDF compared to

the NLO NRQCD global fit results.
The contributions from LO CSM (dot-
ted), NLO CSM (cyan, dot-dashed),
LO NRQCD (dashed), and NLO
NRQCD (yellow, solid) are shown.

Figure 1.16. (Taken from Ref. [52])
The polarization parameter, λϑ, mea-
sured at

√
s = 1.96 TeV compared to

the NLO NRQCD global fit results.
Both Run I (empty boxes) and Run II
(solid circles) are shown. The calcu-
lated results from LO CSM (dotted),
NLO CSM (cyan, dot-dashed), LO
NRQCD (dashed), and NLO NRQCD
(yellow, solid) are shown.

completely disagree with the polarization data observed in the p + p̄ collisions at CDF.

If the LDMEs are only fitted to data from the hadronic production with a higher pT cut

(5 GeV), NRQCD can describe the polarization better at the expense of overshooting pro-

duction data from other experiments. If the LDMEs are also fitted with the polarization

data with an even higher pT cut (7 GeV), NRQCD will overshoot the production data

elsewhere even more. These NRQCD predictions to the J/ψ production and polarization

are shown in Fig. 1.17.

The CEM, which considers all heavy quark-antiquark pair production, regardless of

the quarks’ color, spin, and momentum, is also able to predict the total yields and the

distributions. The CEM restricts the invariant mass of the heavy quark-antiquark pair

to be less than twice the mass of the lowest mass meson that can be formed with the

heavy quark as a constituent. Since the color is averaged over, there are fewer parameters

to be fitted to the data than NRQCD. The CEM has so far only been used to predict

spin-averaged quarkonium production: the polarization was not considered before.
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Figure 1.17. (Modified from Ref. [53]) (From left to right) NRQCD predictions
of the total J/ψ cross section compared to data measured at BELLE at

√
s =

10.6 GeV, the transverse momentum distribution in photoproduction compared to
data measured at H1 at

√
s = 319 GeV, and in hadroproduction compared to data

measured at CDF and ATLAS at
√
s = 1.96 and 7 TeV respectively, and the polar-

ization parameter compared to data measured at CDF in Tevatron Run II. (From
top to bottom) The predictions of NRQCD in a global fit [51], a hadroproduction-
only fit [54], and a fit including polarization [55].

In a p + p collision, at leading order, the production cross section for a quarkonium

state Q in the CEM is given by

σ = FQ
∑
i,j

∫ 4m2
H

4m2
Q

dŝ

∫
dx1dx2fi/p(x1, µ

2)fj/p(x2, µ
2)σ̂ij(ŝ)δ(ŝ− x1x2s) , (1.37)

where i and j are q, q and g such that ij = qq or gg. The square of the heavy quark pair

invariant mass is ŝ while the square of the center-of-mass energy in the p + p collision

is s. Here, FQ is a universal factor for the quarkonium state and is independent of the

projectile, target, and energy. FQ is fixed by comparison of the next-leading-order (NLO)

calcultion of σCEM
Q to J/ψ and Υ.
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In the traditional CEM, the relative production of one state to the other is a constant.

For example, the relative production of ψ(2S) to J/ψ. In attempt to describe the rela-

tive production, an improved version of the CEM, the improved CEM (ICEM) [56] was

developed. In the ICEM, the lower limit is changed from the production threshold to the

mass of the quarkonia. A distinction is also made between the momentum of the cc̄ pair

and that of charmonium so that the pT spectra will be softer and thus may explain the

high pT data better. The production cross section in the ICEM is given by

σ = FQ
∑
i,j

∫ 2mH

Mψ

dM

∫
dxidxjfi(xi, µF )fj(xj, µF )dσ̂ij→cc̄+X(pcc̄, µR)|pcc̄= m

Mψ
pψ .(1.38)

With these changes, the ICEM is then able to describe the production cross section ratio

of ψ(2S) to J/ψ as a function of pT , whereas, in the traditional CEM, the fraction is a

constant.

Since quarkonium polarization is a relative measure, in the ICEM, the polarization

is inherently independent of FQ. We take full advantage of this fact since the CEM is

already shown to be able to describe the production yields and distributions. The goal of

this study is to describe the polarization using the ICEM.

1.9 Organization

The remainder of this dissertation is composed of published papers in Physical Review

D and a manuscript to be submitted. It is organized as follows:

Chapter 2 presents published results [57] from the first spin-dependent calculation in

the CEM using the leading order matrix elements in the collinear factorization approach.

It includes all the partonic subprocesses at O(α2
s) to calculate the relative production

σJz=0/σtot.. This is a proof of concept that the CEM can be used to calculate spin-

dependent observables.

Chapter 3 [58] is a continuation of the previous calculation by further extracting the

J = 1 (for S and χ1 P states) and the J = 2 (for χ2 P states) components from the

total production cross section. The ICEM is used to distinguish one state from another.

Feed-down production is also included so that the polarization of the directly produced

as well as the promptly produced states can be calculated.
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Chapter 4 presents published results [59] from the first pT -dependent J/ψ polarization

calculation in the ICEM using the kT -factorization approach. Bringing pT dependence to

the calculation allows us to compare to all of the polarization data in hadronic produc-

tion. We demonstrate that the ICEM can describe the pT -distributions and the rapidity

distributions of the production, and the relative production of χc1 and χc2 along with the

polarization.

Chapter 5 [60] is a direct application of the previous calculation to bottomonium. We

again show the polarization, the pT -distributions and the rapidity distributions, and the

relative production of χb1 and χb2. We find the polarization of Υ(nS) in the ICEM agrees

with the unpolarized measurements.

Chapter 6 is a manuscript to be submitted. This is the first pT -dependent J/ψ po-

larization calculation in the ICEM using the collinear factorization approach. It presents

the polarization of direct J/ψ calculated at O(α3
s) including all anisotropy parameters

of the production as well as the frame-invariant polarization parameter, λ̃. We find the

invariant polarization of direct J/ψ agrees with the experimental results.

Chapter 7 contains brief closing remarks regarding future prospects with the ICEM.
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Chapter 2

Polarized Heavy Quarkonium

Production in the Color Evaporation

Model
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ABSTRACT

We explore polarized heavy quarkonium production using the color evaporation model at

leading order. We present the polarized to total yield ratio as a function of center of mass

energy and rapidity in p+p collisions. At energies far above the QQ production threshold,

we find charmonium and bottomonium production to be longitudinally polarized (Jz = 0).

The quarkonium states are also longitudinally polarized at central rapidity, becoming

transversely polarized (Jz = ±1) at the most forward rapidities.
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2.1 Introduction

Even more than 40 years after the discovery of J/ψ, the production mechanism of

quarkonium is still not well understood. Most recent studies of quarkonium production

employ nonrelativistic QCD (NRQCD) [61], which is based on an expansion of the cross

section in the strong coupling constant and the QQ velocity [44]. The cross section

is factorized into hard and soft contributions and divided into different color and spin

states. Each color state carries a weight, the long distance matrix elements (LDMEs)

that are typically adjusted to the data above some minimum transverse momentum,

pT , value. The NRQCD cross section has been calculated up to next-to-leading order

(NLO). The LDMEs, conjectured to be universal, fail to describe both the yields and

polarization simultaneously for pT cuts less than twice the mass of the quarkonium state.

The polarization is sensitive to the pT cut: the cut pT > 10 GeV was chosen to describe

both the yield and polarization in Ref. [62] while pT > 3m was chosen for the excited

states ψ(2S) and Υ(3S) in Ref. [63] to fit the polarization. The universality of the

LDMEs can be tested by using those obtained at high pT to calculate the pT -integrated

cross section. In Ref. [64], the pT -integrated NRQCD cross section is calculated with

LDMEs obtained with pT cuts in the range 3 < pT < 10 GeV. The resulting midrapidity

cross sections, dσ/dy|y=0, systematically overshoot the J/ψ data. The lowest pT cut is

most compatible with dσ/dy|y=0 while calculations based on higher pT cuts can be up to

an order of magnitude away from the data [64]. More recent analysis has shown that the

ηc pT distributions calculated with LDMEs obtained from J/ψ yields using heavy quark

spin symmetry [65–67], overshoots the high pT LHCb ηc results [68].

The Color Evaporation Model (CEM) [56, 69–71], which considers all QQ (Q = c, b)

production regardless of the quarks’ color, spin, and momentum, is able to predict both the

total yields and the rapidity distributions with only a single normalization parameter [72].

The CEM has so far only been used to predict spin-averaged quarkonium production:

the polarization was not considered before. This paper presents a leading order (LO)

calculation of quarkonium polarization in the CEM, a pT -integrated result. Currently,

there are no exclusive NLO polarized QQ calculations on which to impose the HH (H
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= D, B) mass threshold. Our calculation is a first step toward a full CEM polarization

result that provides a general idea of whether there is any appreciable LO polarization

that might carry through to the next order even though the kinematics are different. We

will begin to address the pT dependence in a further publication.

In the CEM, all quarkonium states are treated the same asQQ below theHH threshold

where the invariant mass of the heavy quark pair is restricted to be less than twice the

mass of the lowest mass meson that can be formed with the heavy quark as a constituent.

The distributions for all quarkonium family members are assumed to be identical. (See

Ref. [56] for a new treatment of the CEM pT distributions based on mass-dependent

thresholds.) In a p + p collision, the production cross section for a quarkonium state is

given by

σ = FQ
∑
i,j

∫ 4m2
H

4m2
Q

dŝ

∫
dx1dx2fi/p(x1, µ

2)fj/p(x2, µ
2)σ̂ij(ŝ)δ(ŝ− x1x2s) , (2.1)

where i and j are q, q and g such that ij = qq or gg. The square of the heavy quark pair

invariant mass is ŝ while the square of the center-of-mass energy in the p+p collision is s.

Here fi/p(x, µ
2) is the parton distribution function (PDF) of the proton as a function of

the fraction of momentum carried by the colliding parton x at factorization scale µ and σ̂ij

is the parton-level cross section. Finally, FQ is a universal factor for the quarkonium state

and is independent of the projectile, target, and energy. At leading order, the rapidity

distribution, dσ/dy, is

dσ

dy
= FQ

∫ 4m2
H

4m2
Q

dŝ

s

{
fg/p(x1, µ

2)fg/p(x2, µ
2)σ̂gg(ŝ) +

∑
q=u,d,s

[fq/p(x1, µ
2)fq/p(x2, µ

2)

+ fq/p(x1, µ
2)fq/p(x2, µ

2)]σ̂qq(ŝ)
}
, (2.2)

where x1,2 = (
√
ŝ/s) exp(±y). We take the square of the factorization and renormalization

scales to be µ2 = ŝ.

2.2 Polarized QQ production at the parton level

At the parton level, the leading order calculation forces the final state QQ pair to be

produced back-to-back with zero total transverse momentum. We define the polarization
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pp

Q

Q

ẑ
Figure 2.1. Orientation of z-axis indicated by the dashed arrowed line. Two pro-
ton arrows indicate the incoming beam directions. If the final state heavy quark-
antiquark pair have the same helicity, then the total angular momentum along the
z-axis, Jz, is 0 while if they have opposite helicity, then Jz = ±1.

of the QQ pair to be either transversely polarized (Jz = ±1) or longitudinally polarized

(Jz = 0) in the helicity frame where the z axis is pointing from Q to Q along the beam

axis as shown in Fig. 2.1. Note that we are not distinguishing the S = 1 triplet state from

the S = 0 singlet state. This will be addressed in a future publication, together with the

separation into orbital angular momentum, L, states.

At leading order, there are four Feynman diagrams to consider, one for qq annihilation

and three for gg fusion. Each diagram includes a color factor C and a scattering amplitude

A. The generic matrix element for each process is [73]

Mqq = CqqAqq , (2.3)

Mgg = Cgg,ŝAgg,ŝ + Cgg,t̂Agg,t̂ + Cgg,ûAgg,û . (2.4)

As previously mentioned, there is one diagram only for qq → QQ, thus a single

amplitude, Aqq. However, there are three diagrams for gg → QQ at leading order, the ŝ,
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t̂ and û channels. In terms of the Dirac spinors u and v, the individual amplitudes are

Aqq =
g2
s

ŝ
[u(p′)γµv(p)][v(k)γµu(k′)] , (2.5)

Agg,ŝ = −g
2
s

ŝ

{
− 2k′ · ε(k)[u(p′)ε/(k′)v(p)]

+ 2k · ε(k′)[u(p′)ε/(k)v(p)] + ε(k) · ε(k′)[u(p′)(k/′ − k/)v(p)]
}
, (2.6)

Agg,t̂ = − g2
s

t̂−M2
u(p′)ε/(k′)(k/− p/+M)ε/(k)v(p) , (2.7)

Agg,û = − g2
s

û−M2
u(p′)ε/(k)(k/′ − p/+M)ε/(k′)v(p) . (2.8)

Here gs is the gauge coupling, M is the mass of heavy quark (mc for charm and mb

for bottom), ε represents the gluon polarization vectors, γµ are the gamma matrices, k′

(k) is the momentum of initial state light quark (antiquark) or gluon, and p′ (p) is the

momentum of final sate heavy quark (antiquark).

The amplitudes are separated according to the Jz of the final state, Jz = 0 or Jz =

±1. The total amplitudes are calculated for each final state Jz while averaging over the

polarization of the initial gluons or the spin of the light quarks, depending on the process,

in the spirit of the CEM.

The squared matrix elements, |M|2, are calculated for each Jz. The color factors, C,

are calculated from the SU(3) color algebra and are independent of the polarization [73].

They are

|Cqq|2 = 2 ,

|Cgg,ŝ|2 = 12 ,

|Cgg,t̂|2 =
16

3
,

|Cgg,û|2 =
16

3
,

C∗gg,ŝCgg,t̂ = +6 ,

C∗gg,ŝCgg,û = −6 ,

C∗gg,t̂Cgg,û = −2

3
. (2.9)
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The total squared amplitudes for a given Jz state,

|MJz
qq |2 = |Cqq|2|Aqq|2 , (2.10)

|MJz
gg |2 = |Cgg,ŝ|2|Agg,ŝ|2 + |Cgg,t̂|2|Agg,t̂|2 + |Cgg,û|2|Agg,û|2 + 2C∗gg,ŝCgg,t̂A∗gg,ŝAgg,t̂

+ 2C∗gg,ŝCgg,ûA∗gg,ŝAgg,û + 2C∗gg,t̂Cgg,ûA∗gg,t̂Agg,û , (2.11)

are then used to obtain the partonic cross sections by integrating over solid angle:

σ̂Jzij =

∫
dΩ
( 1

8π

)2 |MJz
ij |2
ŝ

√
1− 4M2

ŝ
. (2.12)

The individual partonic cross sections for the longintudinal and transverse polariza-

tions are

σ̂Jz=0
qq (ŝ) =

16πα2
s

27ŝ2
M2χ , (2.13)

σ̂Jz=±1
qq (ŝ) =

4πα2
s

27ŝ2
ŝχ , (2.14)

σ̂Jz=0
gg (ŝ) =

πα2
s

12ŝ

[(
4− 31M2

ŝ
+

33M2

ŝ− 4M2

)
χ

+
(4M4

ŝ2
+

31M2

2ŝ
− 33M2

2(ŝ− 4M2)

)
ln

1 + χ

1− χ
]
, (2.15)

σ̂Jz=±1
gg (ŝ) =

πα2
s

24ŝ

[
− 11

(
1 +

3M2

ŝ− 4M2

)
χ

+
(

4 +
M2

2ŝ
+ 33

M2

2(ŝ− 4M2)

)
ln

1 + χ

1− χ
]
, (2.16)

where χ =
√

1− 4M2/ŝ. The sum of these results, σ̂Jz=0
ij + σ̂Jz=+1

ij + σ̂Jz=−1
ij , is equal to

the total partonic cross section [74]:

σ̂tot.
qq (ŝ) =

8πα2
s

27ŝ2
(ŝ+ 2M2)χ , (2.17)

σ̂tot.
gg (ŝ) =

πα2
s

3ŝ

[
−
(

7 +
31M2

ŝ

)1

4
χ+

(
1 +

4M2

ŝ
+
M4

ŝ2

)
ln

1 + χ

1− χ
]
. (2.18)

Having computed the polarized QQ production cross section at the parton level, we then

convolute the partonic cross sections with the parton distribution functions (PDFs) to

obtain the hadron-level cross section σ as a function of
√
s using Eq. (2.1), and the

rapidity distribution, dσ/dy, using Eq. (2.2). We employ the CTEQ6L1 [75] PDFs in this

calculation and the running coupling constant αs = g2
s/(4π) is calculated at the one-loop
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level appropriate for the PDFs. We assume that the polarization is unchanged by the

transition from the parton level to the hadron level, consistent with the CEM that the

linear momentum is unchanged by hadronization. This is similar to the assumption made

in NRQCD that once a cc is produced in a given spin state, it retains that spin state when

it becomes a J/ψ.

2.3 Results

Since this is a LO calculation, we can only calculate the CEM polarization as a function

of
√
s and y but not pT which will require us to go to NLO. However, the charm rapidity

distribution at LO is similar to that at NLO [76]. The same is true for J/ψ production

in the CEM. The only difference would be a rescaling of the parameter FQ based on the

ratio NLO/LO using the NLO scale determined in Nelson et al. [72]. The CEM results

are in rather good agreement with the data from p+ p collisions [72].

We present the results as ratios of the cross section with Jz = 0 to the total cross

section. Taking the ratio has the benefit of being independent of FQ. In the remainder

of this section, we discuss the energy dependence of the total cross section ratios for both

charmonium and bottomonium (in the general sense as being in the mass range below the

HH threshold) as well as for cc and bb, integrated over all invariant mass. We show the

ratios for charmonium and bottomonium production as a function of rapidity for selected

energies. Finally, we discuss the sensitivity of our results to the choice of proton parton

densities.

2.3.1 Energy dependence of the longitudinal polarization frac-

tion

In this section, we compare the energy dependence of the fraction σJz=0/σtot. as a

function of center of mass energy in p + p collisions in Figs. 2.2 and 2.3. In the case of

quarkonium, the integration in Eq. (2.1) is from twice the quark mass to twice the mass

of the lowest lying open heavy flavor hadron. For open heavy flavor, the upper limit of

the integral is extended to
√
s.
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Figure 2.2. The energy dependence of the longitudinal fraction for production of
charmonium (solid) and cc (dashed).

2.3.1.1 Charmonium and cc

In Fig. 2.2 the charmonium production cross section is calculated by integrating the

invariant mass of the cc pair from 2mc (mc = 1.27 GeV) to 2mD0 (mD0 = 1.86 GeV) in

Eq. (2.1). We see that ψ production (solid curve in Fig. 2.2) is more than 50% longitudi-

nally polarized for
√
s > 10 GeV. At

√
s > 100 GeV, the production ratio saturates at a

longitudinal polarization fraction of 0.80.

The behavior of the total cc production fraction (dashed curve in Fig. 2.2) is quite

different. Instead of saturating, like the charmonium ratio, it reaches a peak of 0.68 at
√
s = 84 GeV and then begins decreasing. This is because of the approximate helicity

conservation at the parton level for M/
√
ŝ� 1. The narrow integration range of charmo-

nium production assures that charmonium production never enters this region, keeping

charmonium longitudinally polarized.

2.3.1.2 Bottomonium and bb

The results for bottomonium and bb production are shown in Fig. 2.3. Here, the

integral over the pair invariant mass is assumed to be from 2mb (mb = 4.75 GeV) to 2mB0

(mB0 = 5.28 GeV). For the more massive bottom quarks, the pairs start out transversely

polarized for
√
s < 40 GeV. Bottomonium production becomes dominated by longitudinal
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Figure 2.3. The energy dependence of the longitudinal fraction for production of
bottomonium (solid) and bb (dashed). The result is shown above 20 GeV to be
above the BB threshold.

polarization but the ratio saturates at 0.90 for
√
s of ∼1 TeV, higher than the charmonium

ratio at the same energy. The smaller longitudinal fraction at lower
√
s for bottomonium is

because of qq dominance of the total cross section at these energies. As the gg contribution

rises, the longitudinal fraction increases.

We note that the point at which the bottomonium fraction is ∼0.50,
√
s = 46.3 GeV,

is similar to the lowest energy at which Υ polarization has been measured,
√
sNN =

38.8 GeV. The E866/NuSea Collaboration measured the polarization of bottomonium

production in p+Cu and found no polarization at low pT in the Collins-Soper frame [77].

This result is compatible with our own because at leading order, the polarization axes in

the helicity frame, the Collins-Soper frame, and the Gottfried-Jackson frame frame are

coincident [34].

Likewise, the turnover in the cc polarization is also observed for bb but at a much

higher energy,
√
s = 550 GeV. Although the energy scale is higher, the peak in the bb

polarization ratio is almost the same as that for cc, 0.69.
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Figure 2.4. The rapidity dependence of the longitudinal fraction for production of
charmonium at

√
s = 20 GeV (solid), 38.8 GeV (dashed), 200 GeV (dot-dashed), and

7000 GeV (dotted). The distributions are symmetric around y = 0.

2.3.2 Rapidity dependence of the longitudinal polarization frac-

tion

We now turn to the rapidity dependence of our result, shown in Figs. 2.4 and 2.5.

Four representative energies are chosen to illustrate. The lowest values,
√
s = 20 and

38.8 GeV were the highest available fixed-target energies at the CERN SPS for ion beams

and the FNAL Tevatron for proton beams. The higher energies,
√
s = 0.2 and 7 TeV are

energies available at the BNL RHIC and CERN LHC facilities. The results are presented

for positive rapidity only because the rapidity distributions are symmetric around y = 0

in p+ p collisions.

2.3.2.1 Charmonium

The rapidity dependence for the charmonium longitudinal polarization fraction is

shown in Fig. 2.4. The results are given up to the kinematic limits of production. The

longitudinal fraction is greatest at y = 0 and decreases as |y| increases. For the highest

energies, where the longitudinal polarization has saturated in Fig. 2.2, the ratio is flat

over a wide range of rapidity. The ratio remains greater than 0.50 as long as the gg contri-

bution, with a significant Jz = 0 polarization, dominates production. As the phase space
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Figure 2.5. The rapidity dependence of the longitudinal fraction for production of
bottomonium at

√
s = 20 GeV (solid),

√
s = 38.8 GeV (dashed), 200 GeV (dot-

dashed), and 7000 GeV (dotted). The distributions are symmetric around y = 0.

for charmonium production is approached, the qq channel, predominantly transversely

polarized, begins to dominate, causing the ratio to drop to a minimum of ∼0.30.

2.3.2.2 Bottomonium

The behavior of the bottomonium ratio as a function of rapidity, shown in Fig. 2.5,

is similar to that of charmonium. The higher mass scale, however, reduces the kinematic

range of the calculation. It also results in near transverse (Jz = ±1) polarization of

bottomonium at fixed-target energies. The calculation at
√
s = 38.8 GeV shows that,

at y = 0, the bottomonium ratio is consistent with no polarization, as measured by

E866/NuSea [77]. At
√
s = 20 GeV, not far from production threshold, bottomonium is

transversely polarized in the narrow rapidity range of production.

2.3.3 Sensitivity to the proton PDFs

We have tested the sensitivity of our results to the choice of PDFs used in the cal-

culation. Since not many new LO proton PDFs are currently being made available, we

compare our CTEQ6L1 results with calculations using the older GRV98 LO [78] set. We

can expect the ratio to be the most sensitive to the choice of proton PDF because the

PDFs can change the balance of gg to qq production, especially at lower
√
s where the
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x values probed by the calculations are large, x ∼ 0.1. In particular, bottomonium pro-

duction at
√
s = 20 GeV is most likely to be sensitive to the choice of PDF since the

qq contribution is large at this energy. The results should, on the other hand, be rela-

tively insensitive to the chosen mass and scale values since these do not strongly affect

the relative contributions of gg and qq.

This is indeed the case, for bottomonium production at
√
s = 20 GeV, close to the

production threshold, the largest difference in the longitudinal ratio for the two PDF sets

is 36% at y = 0. The sensitivity arises because the gg contribution is predominantly

produced with Jz = 0 while the qq contribution is primarily produced with Jz = ±1. By
√
s = 38.8 GeV, the difference in the results is reduced to 20%. At collider energies, the

difference is negligible. Since the gg contribution is dominant for charmonium already at
√
s = 20 GeV, the charmonium production ratio is essentially independent of the choice

of proton PDF. Thus, away from production threshold, the results are robust with respect

to the choice of PDF.

2.4 Conclusion

We have presented the energy and rapidity dependence of the polarization of heavy

quarkonium production in p + p collisions in the Color Evaporation Model. We find the

quarkonium polarization to be longitudinal at most energies and around central rapidity

while the polarization becomes transverse as the kinematic limits of the calculation, where

qq production is dominant, are approached.

We note that the partonic cross sections, sorted by Jz in this calculation, are still

mixtures of total angular momentum J and orbital angular momentum L states. So there

is no immediate connection between these ratios and the lambda parameter of the data.

In future work, we will extract the S = 1, L = 0 contribution from the partonic cross

sections to narrow down into three distinct angular momentum states of J = 1 in order

to give predictions for the polarization parameter λθ [34].

Because we have performed a leading order calculation, we cannot yet speak to the

pT dependence of the quarkonium polarization. We will address the pT dependence in a
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separate publication.
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ABSTRACT

We calculate the polarization of prompt J/ψ and Υ(1S) production using the color evap-

oration model at leading order. We present the polarization parameter λϑ as a function of

center-of-mass energy and rapidity in p+p collisions. We also compare the xF dependence

to experimental results in p+Cu and π+W collisions, and predict the xF dependence in

p+Pb collisions at fixed-target energies. At energies far above the QQ production thresh-

old, we find the prompt J/ψ and Υ(1S) production to be longitudinally polarized with

λ
J/ψ
ϑ = −0.51+0.05

−0.16 and λ
Υ(1S)
ϑ = −0.69+0.03

−0.02. Both prompt J/ψ and prompt Υ(1S) are also

longitudinally polarized at central rapidity, becoming transversely polarized at the most

forward rapidities.
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3.1 Introduction

One of the best ways to understand hadronization in QCD is to study the production

of quarkonium. However, the production mechanism of quarkonium is still uncertain.

Nonrelativistic QCD (NRQCD) [61], the most widely used model for quarkonium pro-

duction encounters serious challenges in both the universality of the long distance matrix

elements (LDMEs) and prediction of quarkonium polarization. The production cross sec-

tions in NRQCD, based on an expansion in the strong coupling constant and the QQ

velocity [44], is factorized into hard and soft contributions and divided into different color

and spin states. The LDMEs, which weight the contributions from each color and spin

state, are fit to the data above some minimum transverse momentum, pT . These LDMEs,

which are conjectured to be universal, fail to describe the yields and polarization simul-

taneously for pT cuts less than twice the mass of the quarkonium state [62, 63]. They

also depend on the collision system [54, 79–81]. Moreover, the polarization predicted by

NRQCD is sensitive to the pT cut. Thus the LDMEs are not universal as conjectured. The

ηc pT distributions calculated with LDMEs obtained from J/ψ yields using heavy quark

spin symmetry [65–67], overshot the high pT LHCb ηc results [68] in a recent analysis.

The color evaporation model (CEM) and NRQCD can describe production yields rather

well but spin-related measurements like the polarization are strong tests of production

models. Quarkonium polarization is not the only test of the CEM. The CEM was also

used recently to calculate transverse single spin asymmetries in J/ψ production [82,83].

The CEM [56, 69–71], which considers all QQ (Q = c, b) production regardless of

the quark color, spin, and momentum, is able to predict both the total yields and the

rapidity distributions with only a single normalization parameter [72]. We have previously

presented the first polarization results in the CEM [57], which only considered charmonium

and bottomonium production in general. This paper serves as a continuation of the

previous work by presenting a leading order (LO) CEM calculation of the polarization in

prompt J/ψ and Υ(1S) production. It is still a pT -independent result because there are

no exclusive next-to-leading order (NLO) polarized QQ calculations on which to impose

the HH (H = D, B) mass threshold. Our calculation is another step toward a full CEM

45



polarization result that provides a general idea of whether there is any appreciable LO

polarization that might carry through to the next order even though the kinematics are

different. We will begin to address the pT dependence in a subsequent publication.

In the traditional CEM, all quarkonium states are treated the same as QQ below the

HH threshold where the invariant mass of the heavy quark-antiquark pair is restricted

to be less than twice the mass of the lowest mass meson that can be formed with the

heavy quark as a constituent. The distributions for all quarkonium family members are

assumed to be identical. In this paper, we use an improved CEM (ICEM) [56] where the

invariant mass of the intermediate heavy quark-antiquark pair is constrained to be larger

than the mass of produced quarkonium state, MQ, instead of using the same lower limit

of integration in the traditional CEM, 2mQ, as in our previous work and in Ref. [69].

The improved CEM describes the charmonium yields as well as the ratio of ψ′ over J/ψ

better than the traditional CEM. In a p + p collision, the production cross section for a

quarkonium state is then

σ = FQ
∑
i,j

∫ 4m2
H

M2
Q

dŝ

∫
dx1dx2fi/p(x1, µ

2)fj/p(x2, µ
2)σ̂ij(ŝ)δ(ŝ− x1x2s) , (3.1)

where i and j are q, q and g such that ij = qq or gg. The square of the heavy quark pair

invariant mass is ŝ while the square of the center-of-mass energy in the p+p collision is s.

Here fi/p(x, µ
2) is the parton distribution function (PDF) of the proton as a function of

the fraction of momentum carried by the colliding parton x at factorization scale µ and σ̂ij

is the parton-level cross section. Finally, FQ is a universal factor for the quarkonium state

and is independent of the projectile, target, and energy. At leading order, the rapidity

distribution, dσ/dy, in the ICEM is

dσ

dy
= FQ

∑
i,j

∫ 4m2
H

M2
Q

dŝ

s
fi/p(x1, µ

2)fq/p(x2, µ
2)σ̂ij(ŝ) , (3.2)

where x1,2 = (
√
ŝ/s) exp(±y). The longitudinal momentum fraction distribution, dσ/dxF ,

in the ICEM is

dσ

dxF
= FQ

∑
i,j

∫ 2mH

MQ

d
√
ŝ

s

2
√
ŝ√

x2
F + 4ŝ/s

fi/p(x1, µ
2)fj/p(x2, µ

2)σ̂ij(ŝ) , (3.3)
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Figure 3.1. The orientation of the z axis is indicated by the dashed arrowed line.
Two proton arrows indicate the incoming beam directions. If the quarks in the fi-
nal state heavy quark-antiquark pair have the same helicity, then the total angu-
lar momentum along the z axis, Jz, is zero while if they have opposite helicity, then
Jz = ±1.

where x1,2 = (±xF +
√
x2
F + 4ŝ/s)/2. We take the square of the factorization and renor-

malization scales to be µ2 = ŝ.

3.2 Polarization of directly produced QQ

At leading order in αs, the final state QQ pair is produced with zero total transverse

momentum. We define the polarization axis (z axis) in the helicity frame pointing from

Q to Q along the beam axis as shown in Fig. 3.1.

There are four O(α2
s) Feynman diagrams to consider, one for qq → QQ and three for

gg → QQ. Each diagram includes a color factor C and a scattering amplitude A. The

generic matrix element for each process can be written as [73]

Mqq = CqqAqq , (3.4)

Mgg = Cgg,ŝAgg,ŝ + Cgg,t̂Agg,t̂ + Cgg,ûAgg,û . (3.5)

As previously mentioned, there is one diagram only for qq → QQ, thus a single amplitude,

Aqq. However, there are three diagrams for gg → QQ at leading order, the ŝ, t̂ and û
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channels. In terms of the Dirac spinors u and v, the individual amplitudes are

Aqq =
g2
s

ŝ
[u(p′)γµv(p)][v(k)γµu(k′)] , (3.6)

Agg,ŝ = −g
2
s

ŝ

{
− 2k′ · ε(k)[u(p′)ε/(k′)v(p)] + 2k · ε(k′)[u(p′)ε/(k)v(p)]

+ ε(k) · ε(k′)[u(p′)(k/′ − k/)v(p)]
}
, (3.7)

Agg,t̂ = − g2
s

t̂−M2
u(p′)ε/(k′)(k/− p/+M)ε/(k)v(p) , (3.8)

Agg,û = − g2
s

û−M2
u(p′)ε/(k)(k/′ − p/+M)ε/(k′)v(p) . (3.9)

Here gs is the gauge coupling, M is the mass of heavy quark (mc for charm and mb for

bottom), ε represents the gluon polarization vectors, γµ are the gamma matrices, k′ (k)

is the momentum of the initial state light quark (antiquark) or gluon, and p′ (p) is the

momentum of final sate heavy quark (antiquark).

At leading order, the final state QQ is produced with no dependence on the azimuthal

angle and thus Lz = 0. To extract the projection on a state with orbital-angular-

momentum quantum number L, we find the corresponding Legendre component AL in

the amplitudes by

AL=0 =
1

2

∫ 1

−1

dxA(x = cos θ) , (3.10)

AL=1 =
3

2

∫ 1

−1

dx xA(x = cos θ) . (3.11)

The final state total spin is determined by the helicities of the heavy quarks. Two

helicity combinations that result in Sz = 0 are added and normalized to give contribution

to the spin triplet state (S = 1). Having the amplitudes for S = 1 with Sz = 0,±1, and

L = 0, 1 with Lz = 0, we calculate the amplitudes for J = 0, 1, 2. First, the amplitudes

for J = 1, obtained by adding S = 1 and L = 0, are simply

AJ=1,Jz=±1 = AL=0,Lz=0;S=1,Sz=±1 , (3.12)

AJ=1,Jz=0 = AL=0,Lz=0;S=1,Sz=0 . (3.13)

Then, using angular momentum algebra, the amplitudes for J = 0, 1, 2, found by adding
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S = 1 and L = 1, are:

AJ=0,Jz=0 = −
√

1

3
AL=1,Lz=0;S=1,Sz=0 , (3.14)

AJ=1,Jz=±1 = ∓ 1√
2
AL=1,Lz=0;S=1,Sz=±1 , (3.15)

AJ=1,Jz=0 = 0 , (3.16)

AJ=2,Jz=±2 = 0 , (3.17)

AJ=2,Jz=±1 =
1√
2
AL=1,Lz=0;S=1,Sz=±1 , (3.18)

AJ=2,Jz=0 =

√
2

3
AL=1,Lz=0;S=1,Sz=0 . (3.19)

Here, we have dropped terms that contain amplitudes of nonzero Lz. The amplitudes

sorted by final state J and Jz are then squared while averaging over the polarization of

the initial gluons or the spin of the light quarks, depending on the process, in the spirit

of the CEM.

The squared matrix elements, |M|2, are calculated for each J , Jz state. The color

factors, C, are calculated from the SU(3) color algebra and are independent of final state

angular momentum [73]. They are

|Cqq|2 = 2 ,

|Cgg,ŝ|2 = 12 ,

|Cgg,t̂|2 =
16

3
,

|Cgg,û|2 =
16

3
,

C∗gg,ŝCgg,t̂ = +6 ,

C∗gg,ŝCgg,û = −6 ,

C∗gg,t̂Cgg,û = −2

3
. (3.20)

Finally, the total squared amplitudes for a given J, Jz state,

|MJ,Jz
qq |2 = |Cqq|2|Aqq|2 , (3.21)

|MJ,Jz
gg |2 = |Cgg,ŝ|2|Agg,ŝ|2 + |Cgg,t̂|2|Agg,t̂|2 + |Cgg,û|2|Agg,û|2 + 2C∗gg,ŝCgg,t̂A∗gg,ŝAgg,t̂

+ 2C∗gg,ŝCgg,ûA∗gg,ŝAgg,û + 2C∗gg,t̂Cgg,ûA∗gg,t̂Agg,û , (3.22)
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are then used to obtain the partonic cross sections by integrating over a solid angle:

σ̂J,Jzij =

∫
dΩ
( 1

8π

)2 |MJ,Jz
ij |2
ŝ

√
1− 4M2

ŝ
. (3.23)

The partonic cross sections for JP = 1− with Jz = 0,±1 are found by adding the

L = 0 and S = 1 contributions:

σ̂Jz=0
qq (ŝ) = 0 , (3.24)

σ̂Jz=±1
qq (ŝ) =

πα2
s

9ŝ
χ , (3.25)

σ̂Jz=0
gg (ŝ) =

7πα2
s

48ŝ

M2

ŝχ

(
ln

1 + χ

1− χ
)2

, (3.26)

σ̂Jz=±1
gg (ŝ) =

π3α2
s

1536ŝ
χ

(
√
ŝ− 2M)(37

√
ŝ+ 38M)

(2M +
√
ŝ)2

. (3.27)

Here and in the following, χ =
√

1− 4M2/ŝ.

The partonic cross sections for JP = 0+, obtained by adding the L = 1 and S = 1

states, are

σ̂Jz=0
qq (ŝ) = 0 , (3.28)

σ̂Jz=0
gg (ŝ) =

9πα2
s

16ŝ

M2

ŝχ3

(
2χ− ln

1 + χ

1− χ
)2

. (3.29)

The individual partonic cross section for JP = 1+ with Jz = 0,±1, found by adding

the contributions from L = 1 and S = 1, are

σ̂Jz=0
qq (ŝ) = 0 , (3.30)

σ̂Jz=±1
qq (ŝ) =

πα2
s

18ŝ
χ , (3.31)

σ̂Jz=0
gg (ŝ) = 0 , (3.32)

σ̂Jz=±1
gg (ŝ) =

3π3α2
s

256ŝ
χ

(
√
ŝ− 2M)(4ŝ− 9M2)

(2M +
√
ŝ)3

. (3.33)

The partonic cross sections for JP = 2+ with Jz = 0,±1, obtained by adding the
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L = 1 and S = 1 states, are

σ̂Jz=0
qq (ŝ) = 0 , (3.34)

σ̂Jz=±1
qq (ŝ) =

πα2
s

18ŝ
χ , (3.35)

σ̂Jz=0
gg (ŝ) =

9πα2
s

8ŝ

M2

ŝχ3

(
2χ− ln

1 + χ

1− χ
)2

, (3.36)

σ̂Jz=±1
gg (ŝ) =

3π3α2
s

256ŝ
χ

(
√
ŝ− 2M)(4ŝ− 9M2)

(2M +
√
s)3

, (3.37)

The sum of these results for each final state total angular momentum,
∑Jz=+J

Jz=−J σ̂
Jz
ij , is

equal to the unpolarized partonic cross section σ̂unpol.
ij .

Having computed the polarized QQ production cross section at the parton level, we

then convolute the partonic cross sections with the parton distribution functions (PDFs)

to obtain the hadron-level cross section σ as a function of
√
s using Eq. (3.1), and the

rapidity distribution, dσ/dy, using Eq. (3.2). The quarkonium masses which appear as the

lower limit of the QQ invariant mass are listed in Table 3.1. We employ the CTEQ6L1 [75]

PDFs in this calculation and the running coupling constant αs = g2
s/(4π) is calculated at

the one-loop level appropriate for the PDFs.

3.3 Polarization of prompt J/ψ and Υ(1S)

We assume that the angular momentum of each directly produced quarkonium state

is unchanged by the transition from the parton level to the hadron level, consistent with

the CEM that the linear momentum is unchanged by hadronization. This is similar to the

assumption made in NRQCD that once a cc is produced in a given spin state, it retains

that spin state when it becomes a J/ψ.

We calculate the Jz = 0,±1 to unpolarized ratios for each directly produced quarko-

nium state Q that has a contribution to the prompt production of J/ψ and Υ(1S): J/ψ,

ψ(2S), χc1(1P), χc2(1P) and Υ(1S), Υ(2S), Υ(3S), χb1(1P), χb2(1P), χb1(2P), χb2(2P).

These ratios, RJz
Q , are then independent of FQ. We assume the feed-down production of

J/ψ and Υ(1S) from the higher mass bound state follows the angular momentum algebra.

Their contributions to the Jz = 0 to unpolarized ratios of prompt J/ψ and Υ(1S) are
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Table 3.1. The mass MQ, the feed-down contribution ratio cQ, and the squared feed-
down transition Clebsch-Gordan coefficients SJzQ for all quarkonium states contribut-
ing to the prompt production of J/ψ and Υ(1S). We assume the cQ for χb1(1P) and
χb2(1P) to be equal as well as that for χb1(2P) and χb2(2P).

Q MQ (GeV) cQ SJz=0
Q SJz=±1

Q

J/ψ 3.10 0.62 1 0

ψ(2S) 3.69 0.08 1 0

χc1(1P) 3.51 0.16 0 1/2

χc2(1P) 3.56 0.14 2/3 1/2

Υ(1S) 9.46 0.52 1 0

Υ(2S) 10.0 0.1 1 0

Υ(3S) 10.4 0.02 1 0

χb1(1P) 9.89 0.13 0 1/2

χb2(1P) 9.91 0.13 2/3 1/2

χb1(2P) 10.3 0.05 0 1/2

χb2(2P) 10.3 0.05 2/3 1/2

added and weighed by the feed-down contribution ratios cψ and cΥ [84],

RJz=0
J/ψ =

∑
ψ,Jz

cψS
Jz
ψ R

Jz
ψ , (3.38)

RJz=0
Υ(1S) =

∑
Υ,Jz

cΥS
Jz
Υ RJz

Υ , (3.39)

where SJzQ is the transition probability from a given state Q produced in a given Jz state

to J/ψ or Υ(1S) with Jz = 0 in a single decay. We assume two pions are emitted for an S

state feed down, and a photon is emitted for a P state feed down. SJzQ is then 1 (if Jz = 0)

or 0 (if Jz = 1) for Q = ψ(2S), Υ(2S), Υ(3S) since their transitions, Q → J/ψ+ππ or

Q→ Υ(1S)+ππ, do not change the angular momentum. For directly produced J/ψ and

Υ(1S), SJzQ is then 1 for Jz = 0 and 0 for Jz = 1. SJzQ for χ states are the squares of

the Clebsch-Gordan coefficients for the feed-down production from state χ to J/ψ + γ or

Υ(1S)+γ. The values of MQ, cQ, and SJzQ for all quarkonium states contributing to the

prompt production of J/ψ and Υ(1S) are collected in Table 3.1. We further assume that
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the contributions from χb1(1P) and χb2(1P) are the same and also that the contributions

from χb1(2P) and χb2(2P) are the same, similar to that in direct J/ψ production.

Finally, for each of the JP = 1− S states, the Jz = 0 to the unpolarized ratio is then

converted into the polarization parameter λϑ by [34]

λϑ =
1− 3RJz=0

1 +RJz=0
. (3.40)

Consistent with our feed-down production treatment in Eqs. (3.38) and (3.39), for the

JP = 1+ χ1 P states, the Jz = 0 to unpolarized ratio is converted into the polarization

parameter λϑ by [85]

λϑ =
−1 + 3RJz=0

3−RJz=0
. (3.41)

We note that this is the polarization parameter of the prompt J/ψ or Υ(1S) state assuming

the production comes purely from χc1 or χb1 feed down. For example, in the limit of

RJz=0
χ1
→ 0, our treatment in Eq. (3.38) gives RJz=0

J/ψ = 0.5 or λ
J/ψ
ϑ = −1/3 by Eq. (3.40).

Similarly, for each of the JP = 2+ χ2 P states, the Jz = 0 to the unpolarized ratio is

converted into the polarization parameter λϑ by [85]

λϑ =
−3− 3RJz=0

9 +RJz=0
. (3.42)

Here we drop the terms with Jz = ±2 matrix elements since they are shown to be zero in

Eq. (3.17). This is the polarization parameter of the prompt J/ψ or Υ(1S) state assuming

the production comes purely from χc2 or χb2 feed down under our treatment in Eqs. (3.38)

and (3.39).

3.4 Results

Since this calculation is LO in αs, we can only calculate the polarization parameter λϑ

as a function of
√
s and y (or xF ) but not pT , which will require us to go to NLO, O(α3

s).

However, the charm rapidity distribution at LO is similar to that at NLO [76]. The same

is true for J/ψ production in the CEM. The only difference would be a rescaling of the

parameter FQ based on the ratio NLO/LO using the NLO scale determined in Ref. [72].
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Figure 3.2. The energy dependence of the polarization parameter λϑ for production
of prompt J/ψ (solid), direct J/ψ (dashed), direct χc2(1P) (dot-dashed), and direct
ψ(2S) (dot-dot-dashed).

The unpolarized CEM results are in rather good agreement with the data from p + p

collisions [72].

In the remainder of this section, we discuss the energy dependence of the polarization

parameter λϑ for the prompt production of J/ψ and Υ(1S), and direct production of

quarkonium states that contribute to the feed-down production. We then show the po-

larization parameter for prompt J/ψ and Υ(1S) production as a function of rapidity for

selected energies. We also compare our results as a function of the longitudinal momen-

tum fraction to the polarization measured in fixed-target experiments as well as giving

predictions for future fixed-target experiments. Finally, we discuss the sensitivity of our

results to the choice of proton-parton density functions, the factorization scale, and the

feed-down ratios considered.

3.4.1 Energy dependence of λϑ

In this section, we compare the energy dependence of the polarization parameter λϑ as

a function of center-of-mass energy in p+p collisions in Figs. 3.2 and 3.3. The integration

in Eq. (3.1) for the direct production of each quarkonium state Q is from the mass of the

quarkonium state MQ to twice the mass of the lowest lying open heavy flavor hadron.
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Figure 3.3. The energy dependence of the polarization parameter λϑ for production
of prompt Υ(1S) (solid), direct Υ(1S) (dashed), direct χb2(2P) (dot-dashed), direct
Υ(2S) (dot-dot-dashed), direct χb2(2P) (dot-dot-dot-dashed), and direct Υ(3S) (dot-
ted). The result is shown for

√
s > 20 GeV to be above the BB threshold.

The longitudinal to unpolarized ratios for the direct productions are then weighed to give

the longitudinal to unpolarized ratio for the prompt production by Eqs. (3.38) and (3.39)

using parameters listed in Table 3.1. The polarization parameters for prompt production

and JP = 1− (S states) are then calculated using Eq. (3.40). The polarization parameter

for direct production of JP = 1+(χ1P states) and 2+(χ2P states) are calculated employing

Eqs. (3.41) and (3.42) respectively. The mass of the charm quark mc is varied around

the base value 1.27 GeV from 1.2 to 1.5 GeV, while the mass of the bottom quark, mb, is

varied around the base value 4.75 GeV from 4.5 to 5.0 GeV to construct the uncertainty

bands shown in the figures.

3.4.1.1 Direct production of J/ψ, ψ(2S), χc2(1P), and prompt production of

J/ψ

In Fig. 3.2, the polarization paramters as a function of energy for direct production

of the charmonium states below the hadron threshold and the prompt production of J/ψ

are presented. The integral over the pair invariant mass is assumed to be from MQ to

2mD0 (mD0 = 1.86 GeV). We see that all direct production of J/ψ, χc2(1P), and ψ(2S)

is longitudinal for
√
s > 20 GeV. The prompt production of J/ψ (bounded by blue filled
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solid curves in Fig. 3.2) is longitudinally polarized for
√
s > 10 GeV. Both direct and

prompt productions become more longitudinal as
√
s increases. The polarization of direct

ψ(2S) is less longitudinal than that of direct J/ψ. This is because the improved CEM

integrates from the mass of the quarkonium to the hadron threshold. Otherwise, the direct

J/ψ and ψ(2S) results would be equal since the traditional CEM uses 2mc for the lower

limit of integration for all states. The parton-level longitudinal to unpolarized fraction

decreases as a function of
√
ŝ for JP = 1− production, so the hadron-level longitudinal to

unpolarized fraction is smaller for direct ψ(2S) due to its larger mass. Thus its polarization

is less longitudinal. Prompt J/ψ production is dominated by the S states and thus is

longitudinally polarized. At
√
s > 100 GeV, the polarization parameter for prompt J/ψ

production saturates at λϑ = −0.51+0.05
−0.16, while the polarization parameter for direct J/ψ

saturates at λϑ = −0.61+0.07
−0.21.

In the traditional color evaporation model, the polarization of direct J/ψ is slightly

more longitudinal (an increase of ∼0.1 in RJz=0
J/ψ in the energy interval presented).

The polarization parameter for direct χc1 production is not shown in Fig. 3.2 because

the direct production yields only Jz = ±1 by Eqs. (3.30) and (3.32), and thus Eq. (3.41)

gives λϑ = −1/3.

3.4.1.2 Direct production of Υ(1S), Υ(2S), Υ(3S), χc2(1P), χc2(2P), and prompt

production of Υ(1S)

The results for direct production of the bottomonium states and prompt production

of Υ(1S) are shown in Fig. 3.3. Here, the integral over the pair invariant mass is assumed

to be from MQ to 2mB0 (mB0 = 5.28 GeV). For the more massive bottom quarks, direct

production of Υ(1S), Υ(2S), and Υ(3S) starts out transversely polarized for
√
s < 34 GeV.

This is because qq → QQ dominates the total cross section at these energies. As the gg →
QQ contribution rises, the longitudinal fraction RΥ, increases and the direct production

becomes longitudinal. As a result, the direct production of Υ(1S), Υ(2S), Υ(3S), χc2(1P),

χc2(2P), and prompt production production of Υ(1S) becomes dominated by longitudinal

polarization. Similar to charmonium production, the direct production of Υ(1S) is mostly

longitudinally polarized at collider energies, followed by Υ(2S) and Υ(3S) due to the
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increase in the lower limit of integration. In the traditional color evaporation model, all

directly produced S states have the same polarization. Note that the Υ(1S) polarization

is the same in the improved and traditional color evaporation model since the mass of

the Υ(1S) is less than 2mb. Compared to charmonium production, the longitudinal to

unpolarized ratio at the parton level for bottomonium production decreases more slowly

as a function of
√
ŝ in the integration range. This makes the bottomomium polarization

relatively less sensitive to the mass of the quark compared to charmonium polarization.

The polarization parameter for prompt Υ(1S) saturates at λϑ = −0.69+0.03
−0.02 while the

polarization parameter for direct Υ(1S) saturates at λϑ = −0.91+0.04
−0.03 for

√
s ∼ 1 TeV.

Note that the limit is lower for prompt Υ(1S) than for prompt J/ψ at the same energy.

Prompt production of Υ(1S) is unpolarized (λϑ = 0) for
√
s = 34 GeV. The polar-

ization parameters for direct χb1(1P) and χb1(2P) production are not shown in Fig. 3.3

because direct production is only via Jz = ±1 according to Eqs. (3.30) and (3.32) and

thus Eq. (3.41) gives λϑ = −1/3.

3.4.2 Rapidity dependence of λϑ

We now turn to the rapidity dependence of our result, shown in Figs. 3.4 and 3.5.

The direct production of each quarkonium state Q is obtained by integrating Eq. (3.2)

from the mass of the quarkonium state MQ to twice the mass of the lowest lying open

heavy flavor hadron. The longitudinal to unpolarized ratios for the direct productions are

then weighed to give the longitudinal to unpolarized ratio for the prompt production by

Eqs. (3.38) and (3.39) using the cQ values listed in Table 3.1. The polarization parame-

ters for prompt production are then found by Eq. (3.40). Four representative energies are

chosen for illustration. The lowest values,
√
s = 20 and 38.8 GeV, were the highest avail-

able fixed-target energies at the CERN Super Proton Synchrotron (SPS) for ion beams

and the Fermi National Accelerator Laboratory (FNAL) Tevatron for proton beams. The

higher energies,
√
s = 0.2 and 7 TeV are energies available at the Brookhaven National

Laboratory (BNL) Relativistic Heavy Ion Collider and CERN LHC facilities. The results

are presented for positive rapidity only because the rapidity distributions are symmet-

ric around y = 0 in p + p collisions. Again, the charm quark mass mc is varied around
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Figure 3.4. The rapidity dependence of the polarization parameter λϑ for the pro-
duction of prompt J/ψ at

√
s = 20 GeV (solid), 38.8 GeV (dashed), 200 GeV (dot-

dashed), and 7000 GeV (dotted). The distributions are symmetric around y = 0.

1.27 GeV from 1.2 to 1.5 GeV, while the bottom quark mass mb is varied around 4.75 GeV

from 4.5 to 5.0 GeV to construct the uncertainty bands.

3.4.2.1 Direct production of J/ψ, ψ(2S), χc2(1P), and prompt production of

J/ψ

The rapidity dependence of the polarization parameter for prompt J/ψ is shown in

Fig. 3.4. The results are given up to the kinematic limits of production. The polar-

ization parameter is negative with a minimum at y = 0 and increases as |y| increases,

becoming positive at the kinematic limit. For the highest energies, where the longitudi-

nal polarization has saturated in Fig. 3.2, the polarization parameter is flat over a wide

range of rapidity. The parameter remains negative as long as the gg → QQ contribution,

with a significant longitudinal polarization, dominates production. As the phase space

for charmonium production is approached, the qq → QQ channel, predominantly trans-

versely polarized, begins to dominate, causing the parameter to increase to a maximum

of λϑ ∼ 0.4.
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Figure 3.5. The rapidity dependence of the polarization parameter λϑ for the pro-
duction of prompt Υ(1S) at

√
s = 20 GeV (solid),

√
s = 38.8 GeV (dashed),

200 GeV (dot-dashed), and 7000 GeV (dotted). The distributions are symmetric
around y = 0.

3.4.2.2 Direct production of Υ(1S), Υ(2S), Υ(3S), χc2(1P), χc2(2P), and prompt

production of Υ(1S)

The behavior of the prompt Υ(1S) polarization parameter as a function of rapidity,

shown in Fig. 3.5, is similar to that of prompt J/ψ. The higher mass scale, however,

reduces the kinematic range of the calculation. It also results in an unpolarized to slightly

transverse polarization of prompt Υ(1S) at fixed-target energies. At
√
s = 20 GeV, not

far from the production threshold, prompt Υ(1S) is transversely polarized in the narrow

rapidity range of production.

3.4.3 Comparison to fixed-target data

In this section, we compare our results as a function of longitudinal momentum fraction

xF using Eq. (3.3) with the polarization parameters measured in fixed-target experiments.

We compare our results to the results from the E866/NuSea Collaboration for the po-

larization of J/ψ [86, 87] and Υ(1S) [77] in p+Cu collisions at
√
sNN = 38.8 GeV as

well as J/ψ in π+W at
√
s = 22 GeV by the CIP Collaboration [88]. We multiply the

CTEQ6L1 PDFs by the central EPS09 [89] nuclear modification to obtain the PDFs for
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Figure 3.6. The xF dependence of the polarization parameter λϑ for prompt produc-
tion of J/ψ in p+Cu collisions at

√
sNN = 38.8 GeV is compared to the E866/NuSea

data [86,87]. The horizontal uncertainties are the experimental bin widths.

Cu and W. We employ the GRS99 [90] pion PDFs. The polarizations measured by the

E866/Nusea Collaboration are made in the Collins-Soper frame and the polarization mea-

sured by the CIP Collaboration is measured in the Gottfried-Jackson frame. However, at

leading order, the polarization axes in the helicity frame, the Collins-Soper frame, and

the Gottfried-Jackson frame frame are coincident [34].

3.4.3.1 Prompt production of J/ψ in p+Cu collisions at
√
sNN = 38.8 GeV

We compare our polarization predictions for prompt production of J/ψ in p+Cu col-

lisions at
√
s = 38.8 GeV as a function of xF on the results measured by the E866/NuSea

Collaboration [86, 87] and is shown in Fig. 3.6. Since the xF dependence is nearly sym-

metric around xF = 0, the result is presented for positive xF only. Both J/ψ and ψ(2S)

are included in the experimental results, but only about 1% of the contribution comes

from the ψ(2S). Our result is longitudinal at small values of xF and becomes transverse

at large xF . The experimental results disagree with ours since the polarization parameter

measured decreases as a function of xF . Our xF integrated prediction is λϑ = −0.41+0.05
−0.13

while the experimental result reports λϑ = 0.069± 0.004.
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Figure 3.7. The xF dependence of the polarization parameter λϑ for prompt produc-
tion of J/ψ in π+W collisions at

√
s = 22 GeV are compared to the CIP data [88].

3.4.3.2 Prompt production of J/ψ in π+W collisions at
√
s = 20 GeV

We compare our polarization predictions for prompt production of J/ψ in π+W col-

lisions at
√
s = 20 GeV as a function of xF to the measurement by the CIP Collabora-

tion [88] in Fig. 3.7. The xF dependence is not symmetric around xF = 0 in this case

due to the difference in the high x behavior of the pion PDFs relative to that of the

proton PDFs. Therefore the result is shown over all xF . We note that the polarization

predictions differ slightly in π+W collisions at
√
s = 20 GeV compared to p+Cu col-

lisions at
√
sNN = 38.8 GeV. The polarization at xF = 0 is less longitudinal in π+W

collisions although the trend is similar: longitudinal polarization at small values of xF

and transverse at large xF . The experimental results disagree with ours since the polar-

ization parameter measured is near unpolarized as a function of xF except for the last xF

bin. However, our prediction reaches a better agreement with data in π+W compared to

p+Cu in terms of the behavior as a function of xF . Our result predicts in the region of

low to mid positive xF , J/ψ is produced with a relatively constant moderate longitudi-

nal polarization. Our xF integrated prediction is λϑ = −0.42+0.05
−0.13 while the experiment

reports λϑ = −0.02± 0.06.
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Figure 3.8. The xF dependence of the polarization parameter λϑ for prompt pro-
duction of Υ(1S) in p+Cu collisions at

√
s = 38.8 GeVusing CTEQ6L1 and vary-

ing mb (blue solid), GRV98 LO and varying mb (red dashed), CTEQ6L1 and vary-
ing Q (magenta solid), and the data (box). The horizontal uncertainties on the
E866/NuSea data [77] are the bin widths.

3.4.3.3 Prompt production of Υ(1S) in p+Cu collisions at
√
sNN = 38.8 GeV

We now turn to the xF dependence of the polarization parameter in prompt Υ(1S)

production. We compare our polarization predictions for prompt production of Υ(1S)

in p+Cu collisions at
√
s = 38.8 GeV to the results measured by the E866/NuSea Col-

laboration [77] in Fig. 3.8. This is the lowest energy at which Υ(1S) polarization has

been measured. Our results is slightly longitudinal at small values of xF and becomes

slightly transverse at large xF . Our results are comparable to the data since both the

predicted and measured polarization parameters increase as a function of xF . Our re-

sult is consistent with the ∼0 polarization measured by the E866/NuSea Collaboration.

The measured polarization for Υ(1S) independent of xF is λϑ = 0.07 ± 0.04 while our

prediction is λϑ = −0.06± 0.01.
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Figure 3.9. The xF dependence of the polarization parameter λϑ for production of
J/ψ in p+Pb at

√
sNN = 72 GeV (blue dashed) and 115 GeV (red solid).

3.4.4 Polarization predictions for prompt production of J/ψ and

Υ(1S) in p+Pb collisions at fixed-target energies at the

LHC

In this section, we present our polarization predictions for prompt production of J/ψ

and Υ(1S) as a function of xF using Eq. (3.3) for p+Pb fixed-target interactions at the

LHC. The polarization predictions are presented for
√
sNN = 72 and 115 GeV, the center-

of-mass energies for a lead beam on a proton target and a proton beam on a lead target

respectively. Since the xF dependence is nearly symmetric around xF = 0, the results are

only presented for positive xF . We again multiply the CTEQ6L1 PDFs by the central

EPS09 nuclear modification to obtain the lead PDFs. Also, since our predictions are

calculated at leading order, they are frame independent.

3.4.4.1 Prompt J/ψ production at the LHC

We present our polarization prediction for prompt J/ψ production in p+Pb interac-

tions at
√
sNN = 72 and 115 GeV as a function of xF in Fig. 3.9. The longitudinal

polarization already starts to saturate at these energies for prompt J/ψ production as

presented in Fig. 3.2. Therefore, the polarization for prompt J/ψ production at these

energies is very similar. The polarization is longitudinal at small xF and becomes trans-
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Figure 3.10. The xF dependence of the polarization parameter λϑ for production of
Υ(1S) in p+Pb at

√
sNN = 72 GeV (blue dashed) and 115 GeV (red solid).

verse at large xF . Our xF -integrated prediction is λϑ = −0.46+0.04
−0.15 at

√
sNN = 72 GeV

and λϑ = −0.46+0.03
−0.17 at

√
sNN = 115 GeV.

3.4.4.2 Prompt Υ(1S) production at the LHC

The prediction for the polarization of prompt Υ(1S) production in p+Pb collisions

at
√
sNN = 72 and 115 GeV is given as a function of xF in Fig. 3.10. Because of the

higher mass scale, the longitudinal polarization is not saturated at these energies for

prompt Υ(1S) production. Therefore, the polarization for prompt Υ(1S) production at

these energies is different. The behavior of the polarization at both energies is similar.

Prompt Υ(1S) is longitudinal at small xF and becomes transverse at large xF . However,

the polarization at
√
sNN = 115 GeV is more longitudinal. Our xF integrated prediction

is λϑ = −0.367+0.002
−0.001 at

√
sNN = 72 GeV and λϑ = −0.51+0.01

−0.01 at
√
sNN = 115 GeV.

3.4.5 Sensitivity to the proton PDFs

We have tested the sensitivity of our results to the choice of PDFs used in the calcula-

tion. Since few new LO proton PDFs are currently available, we compare our CTEQ6L1

results with calculations using the older GRV98 LO [78] set. We can expect the ratio to be

the most sensitive to the choice of proton PDF because the PDFs can change the balance
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of gg to qq production, especially at lower
√
s where the x values probed by the calcula-

tions are large, x ∼ 0.1. In particular, the prompt production of Υ(1S) at
√
s = 20 GeV

is most likely to be sensitive to the choice of PDF since the qq contribution is large at

this energy. The results should, on the other hand, be relatively insensitive to the chosen

mass and scale values since these do not strongly affect the relative contributions of gg

and qq.

This is indeed the case, for prompt Υ(1S) production at
√
s = 20 GeV, close to the

production threshold, the largest difference in the longitudinal ratio for the two PDF

sets is 15% at y = 0, making a difference in the polarization parameter, λϑ of 0.35

around the unpolarized region. The sensitivity arises because the gg contributions in the

prompt productions of the S states are predominantly produced with Jz = 0 while the

qq contribution is primarily produced with Jz = ±1. By
√
s = 38.8 GeV, the difference

in the results is reduced to 9%, making a difference in λϑ of 0.18 around the slightly

longitudinal region. The xF dependence of prompt Υ(1S) polarization using GRV98 LO

is also shown along with the prediction using CTEQ6L1 in Fig. 3.8. The prediction using

GRV98 LO is more longitudinal compared to the prediction using CTEQ6L1. At collider

energies, the difference is negligible. Since the gg contribution is dominant for J/ψ already

at
√
s = 20 GeV, the prompt J/ψ production polarization is essentially independent of

the choice of proton PDF. Thus, away from production threshold, the results are robust

with respect to the choice of PDF.

3.4.6 Sensitivity to factorization scale

We have tested the sensitivity of our results to the factorization scale, µ. We varied

the factorization scale for prompt J/ψ and Υ(1S) in the range: Q/2 ≤ µ ≤ 2Q while

keeping the renormalization scale the same. We have found the longitudinal to unpo-

larized fractions RJz=0
J/ψ and RJz=0

Υ(1S) are hardly changed in the range of µ varied at high

energies where the polarization is saturated. The ratio for each directly produced char-

monium RJz=0
ψ is changed by ∼0.01 while RJz=0

Υ is changed by ∼0.001 for each directly

produced bottomonium. We note that each individual polarized production cross section

is affected by the variation in factorization scale. But at high energies, the production is
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dominated by the gluon fusion processes. Therefore, the polarization, which depends on

the longitudinal to unpolarized ratio, is not sensitive to the factorization scale.

However, at fixed-target energies, where gluon fusion does not yet dominate pro-

duction, the polarization is affected by the variation in the factorization scale. Indeed,

the uncertainty bands for prompt Υ(1S) polarization due to varying the factorization

scale is wider than that for varying the bottom quark mass at fixed-target energies.

We also present the polarization of prompt Υ(1S) by varying the factorization scale at
√
sNN = 38.8 GeV in Fig. 3.8. At

√
sNN = 38.8 GeV, the uncertainty on the polarization

of prompt Υ(1S) due to changing the factorization scale is −0.05+0.05
−0.08, slightly closer to

the measured polarization by the E866 Collaboration than that from varying the bot-

tom quark mass. However, the uncertainty band due to factorization scale variation for

prompt J/ψ is smaller than that due to changing mc for all energies. This is because the

polarization of prompt J/ψ saturates at a lower energy compared to prompt Υ(1S).

3.4.7 Sensitivity to feed-down ratios

We have tested the sensitivity of our results to the feed-down ratios we use in our

calculations [84]. Since the prompt production of J/ψ and Υ(1S) is dominated by direct

J/ψ and direct Υ(1S) respectively, we vary the feed-down ratio by changing the relative

contribution by direct J/ψ and direct Υ(1S) to other states. That is, when cJ/ψ increase,

all other cψ decrease and vice versa, and similarly for cΥ(1S) and other cΥ. Using the base

values of cψ and cΥ in Table 3.1 and the reported uncertainty, we vary the feed-down

ratios as given in Table 3.2. Considering only the variation of the feed-down ratios, the

uncertainty on the polarization parameter for prompt J/ψ production at
√
s = 7 TeV is

λϑ = −0.51 ± 0.01. These uncertainties are much smaller than those due to the charm

quark mass variation. The uncertainty on the polarization parameter for prompt Υ(1S) at
√
s = 7 TeV is λϑ = −0.69+0.03

−0.04 due to changing cΥ. These uncertainties are very similar

to those due to varying mb.
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Table 3.2. Values of cQ used to test the sensitivity of our results to the feed-down
ratios. Based on the uncertainty in cQ (third column), c′Q (second column) is used
assuming the promptly produced 1S states comprise less directly produced 1S states,
and c′′Q (fourth column) is used assuming the promptly produced 1S states comprise
more directly produced 1S states,

Q c′Q cQ c′′Q

J/ψ 0.59 0.62±0.04 0.65

ψ(2S) 0.09 0.08±0.02 0.07

χc1(1P) 0.17 0.16±0.04 0.15

χc2(1P) 0.15 0.14±0.04 0.13

Υ(1S) 0.43 0.52±0.09 0.61

Υ(2S) 0.12 0.1±0.03 0.08

Υ(3S) 0.03 0.02±0.005 0.01

χb1(1P) 0.145 0.13±0.035 0.115

χb2(1P) 0.145 0.13±0.035 0.115

χb1(2P) 0.065 0.05±0.025 0.035

χb2(2P) 0.065 0.05±0.025 0.035

3.5 Conclusions

We have presented the energy and rapidity dependence of the polarization of prompt

J/ψ and Υ(1S) production in p+p collisions in the color evaporation model. We compare

the xF dependence to experimental results in p+Cu and π+W collisions at fixed-target

energies. We also present our polarization predictions as a function of xF for fixed-target

experiments at the LHC. We find prompt J/ψ and Υ(1S) production to be longitudinally

polarized, saturating at energies far above the QQ production threshold, with λ
J/ψ
ϑ =

−0.51+0.05
−0.16 and λ

Υ(1S)
ϑ = −0.69+0.03

−0.02. We find the prompt J/ψ and Υ(1S) polarization to

be longitudinal around central rapidity while the polarization becomes transverse as the

kinematic limits of the calculation, where qq production is dominant, are approached.

Since our calculation is leading order, we cannot yet calculate the pT dependence of

quarkonium polarization. This will be addressed in a future publication. We will study

the xF dependence by integrating over a finite pT range and whether it will improve the
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agreement with the data in Fig. 3.6.
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ABSTRACT

We calculate the polarization of prompt J/ψ production in the improved color evaporation

model at leading order employing the kT -factorization approach. In this paper, we present

the polarization parameter λϑ of prompt J/ψ as a function of transverse momentum in

p+p and p+A collisions to compare with data in the helicity, Collins-Soper and Gottfried-

Jackson frames. We also present calculations of the charmonium production cross sections

as a function of rapidity and transverse momentum. This is the first pT -dependent cal-

culation of charmonium polarization in the improved color evaporation model. We find

agreement with both charmonium cross sections and polarization measurements.
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4.1 Introduction

The production mechanism of quarkonium remains uncertain even more than 40 years

after the discovery of the J/ψ. Nonrelativistic QCD (NRQCD) [61], the most widely

employed model of quarkonium production encounters serious challenges in both the uni-

versality of the long distance matrix elements (LDMEs) and the prediction of quarkonium

polarization [53]. The production cross sections in NRQCD, based on an expansion in

the strong coupling constant and the QQ velocity [44], is factorized into hard and soft

contributions and divided into different color and spin states, including color octet contri-

butions. The LDMEs, which weight the contributions from each color and spin state, are

fit to the data above some minimum transverse momentum, pT . These LDMEs, which

are conjectured to be universal, fail to describe the yields and polarization simultaneously

for pT cuts less than twice the mass of the quarkonium state [62, 63]. They also depend

on the collision system [54, 79–81]. Moreover, collinear factorization requires a pT cut to

fit the LDMEs to data above this cut. As a result, the polarization predicted by NRQCD

is sensitive to the pT cut [51, 54, 55] in the collinear factorization approach while in the

kT -factorization approach, J/ψ polarization can be calculated in NRQCD without pT

cut [91]. The ηc pT distributions calculated with LDMEs obtained from J/ψ yields using

heavy quark spin symmetry [65–67], can describe the LHCb ηc results [92, 93] but fails if

a different pT cut or feed-down treatment is used [68].

On the other hand, the color evaporation model (CEM) [56,69–71], which considers all

QQ (Q = c, b) production regardless of the quark color, spin, and momentum, is able to

predict both the total yields and the rapidity distributions at hadron colliders with only

a single normalization parameter per state [72]. However, the consistency between CEM

and J/ψ electroproduction data at low
√
s seen in Ref. [94] has not yet been addressed

in our approach. Reference [95] derived a relationship between the traditional CEM and

NRQCD assuming that NRQCD factorization holds to all orders and that the NRQCD

sums over color and spin converge. It also assumed that no distinction is made between the

spin states in the CEM. Both the CEM and NRQCD can describe production yields rather

well but spin-related measurements such as the polarization are strong tests of production
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models. However, polarization is not the only test of models. The CEM was also used

recently to calculate transverse single spin asymmetries in J/ψ production [82,83].

We have previously presented the first polarization results in the CEM [57], which only

considered charmonium and bottomonium production in general, followed by polarization

results of the prompt J/ψ and Υ(1S) [58]. The later also took the feed-down production

into account using the recently developed improved CEM (ICEM) [56]. However, those

results were at leading order (LO) assuming collinear factorization and were thus pT -

independent. This paper serves as a continuation of the previous work by presenting a

pT -dependent LO ICEM calculation of the polarization in prompt J/ψ production us-

ing the kT -factorization approach. This is a pT -dependent result because the transverse

momenta of the incoming gluons and their off-shell properties are not neglected in the

kT -factorization approach. Our calculation provides the first pT -dependent ICEM po-

larization result and represents a step toward a full next-to-leading order (NLO) ICEM

polarization result. We will begin to address the pT dependence at NLO in a later publi-

cation.

In this paper, we present both the yields and the polarizations of charmonium as a

function of pT by formulating the ICEM in the kT -factorization approach. In the high-

energy limit, the contributions from t-channel gluon exchange can become dominant. The

QCD evolution of the gluon distribution functions of the colliding partons is described

by the Balitsky-Fadin-Kuraev-Lipatov (BKFL) evolution equation [96]. In this regime,

the transverse momentum (kT ) of the incoming gluon can no longer be neglected. This

phenomenological framework dealing with Reggeized t-channel gluons, is known as the kT -

factorization approach. We take the same effective Feynman rules for scattering processes

involving incoming off-shell gluons [97] as in NRQCD [98]. Effectively, the momentum of

the incoming Reggeon, kµ, with transverse momentum kT can be written in terms of the

proton momentum pµ and the fraction of longitudinal momentum x carried by the gluon

as

kµ = xpµ + kµT . (4.1)
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The polarization 4-vector is

εµ(kT ) =
kµT
kT

, (4.2)

where kµT = (0, ~kT , 0).

In the traditional CEM, all quarkonium states are treated the same as QQ below the

HH threshold. The invariant mass of the heavy quark-antiquark pair is restricted to be

less than twice the mass of the lowest mass meson (H) that can be formed with the heavy

quark as a constituent. The distributions for all quarkonium family members are assumed

to be identical.

In the ICEM the invariant mass of the intermediate heavy quark-antiquark pair is

constrained to be larger than the mass of produced quarkonium state, MQ, instead of

twice the quark mass, 2mq, the lower limit in the traditional CEM [57, 69]. Because

the charmonium momentum and integration range depend on the mass of the state, the

kinematic distributions of the charmonium states are no longer identical in the ICEM and,

for example the ψ′ to J/ψ ratio depends on pT . Using the kT -factorization approach, in

a p+ p collision, the ICEM production cross section for a directly produced quarkonium

state Q is

σ = FQ

∫ 4m2
H

M2
Q

dŝ

∫
dx1

x1

∫
dφ1

2π

∫
dk1T

2Φ1(x1, k1T , µ
2
F1)

×
∫
dx2

x2

∫
dφ2

2π

∫
dk2T

2Φ2(x2, k2T , µ
2
F2)σ̂(R +R→ QQ)

× δ(ŝ− x1x2s+ |~k1T + ~k2T |2) , (4.3)

where the square of the heavy quark pair invariant mass is ŝ while the square of the center-

of-mass energy in the p + p collision is s. Here Φ(x, kT , µ
2
F ) is the unintegrated parton

distribution function (uPDF) for a parton with momentum fraction x and transverse

momentum kT interacting with factorization scale µF . The angles φ1,2 in Eq. (4.3) are

between the kT1,2 of the partons and the pT of the final state quarkonium Q. The parton-

level cross section is σ(R + R → QQ). Finally, FQ is a universal factor for the directly

produced quarkonium state Q, and is independent of the projectile, target, and energy.
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In this approach, the cross section is

d4σ

dpTdydŝdφ
= σδ(ŝ− x1x2s+ p2

T )δ
(
y − 1

2
log

x1

x2

)
δ
(
p2
T − |~k2

1T + ~k2
2T |
)
δ(φ− (φ1 − φ2))

= FQ

∫
2

π
k2Tdk2T

∑
k1T

[
Φ1(k1T , x10, µ

2
F1)

x10

Φ2(k2T , x20, µ
2
F2)

x20

× k1TpT
σ̂(R +R→ QQ)

s
√
k2

2T (cos2 φ− 1) + p2
T

]
, (4.4)

where the sum k1T is over the roots of k2
1T + k2

2T + 2k1Tk2T cosφ = p2
T , and k1T,1 and k1T,2

are

k1T,1 = −k2T cosφ+
√
k2

2T (cos2 φ− 1) + p2
T (4.5)

k1T,2 = −k2T cosφ−
√
k2

2T (cos2 φ− 1) + p2
T . (4.6)

The momentum fractions x10 and x20 are

x10 =

√
ŝ+ p2

T

s
e+y , (4.7)

x20 =

√
ŝ+ p2

T

s
e−y . (4.8)

Here, φ is the relative azimuthal angle between two incident Reggeons (φ = φ1 − φ2) and

pT is the transverse momentum of the produced QQ.

The cross section may also be defined in terms of the total longitudinal momentum

carried by the QQ pair, xF , instead of rapidity as

d4σ

dpTdxFdŝdφ
= σδ(ŝ− x1x2s+ p2

T )δ(xF − (x1 − x2))δ
(
p2
T − |~k2

1T + ~k2
2T |
)

× δ(φ− (φ1 − φ2))

= FQ

∫
2

π
k2Tdk2T

∑
k1T

[
Φ1(k1T , x10, µ

2
F1)

x10

Φ2(k2T , x20, µ
2
F2)

x20

× k1TpT
σ̂(R +R→ QQ)√

x2
F s

2 + 4(ŝ+ p2
T )
√
k2

2T (cos2 φ− 1) + p2
T

]
,

(4.9)

74



where x10 and x20 are now

x10 =
1

2

(
xF +

√
x2
F + 4

ŝ+ p2
T

s

)
(4.10)

x20 =
1

2

(
− xF +

√
x2
F + 4

ŝ+ p2
T

s

)
. (4.11)

Thus the transverse momentum distribution dσ/dpT in the ICEM is

dσ

dpT
=

∫
dydŝdφ

d4σ

dpTdydŝdφ
(4.12)

=

∫
dxFdŝdφ

d4σ

dpTdxFdŝdφ
. (4.13)

The two expressions are equivalent when calculating the transverse momentum without

any longitudinal kinematic cuts. Equation (4.12) is used to compare to collider data with

defined rapidity cuts while Eq. (4.13) is used to compare to fixed-target data with xF

cuts. Similarly, the rapidity distribution dσ/dy in the ICEM is

dσ

dy
=

∫
dpTdŝdφ

d4σ

dpTdydŝdφ
. (4.14)

We take the renormalization and factorization scales to be µF = µR = mT , where

mT =
√
ŝ+ p2

T is the transverse mass of the QQ pair. We will study the effect of varying

these scales on the pT distributions and the polarization.

4.2 Polarization of directly produced QQ

We define the polarization axis (z axis) in the helicity frame where zHX is the flight

direction of the quarkonium in the center of mass frame of the colliding beams, as shown

in Fig. 4.1. In this section we outline the kinematics required to compute the polarized

scattering cross sections in the helicity frame as well as the procedure to relate them

to the polarized scattering cross sections in the Gottfried-Jackson frame [32] and the

Collins-Soper frame [33].

In the lab frame, using Eqs. (4.1) and (4.2) the momenta of the initial state Reggeons

can be written as

kµ1 = (x1s, k1T cosφ1, k1T sinφ1, x1s) (4.15)

kµ2 = (x2s, k2T cosφ2, k2T sinφ2,−x2s) , (4.16)
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pp

Q
ẑHX

Figure 4.1. The orientation of polarization axis (z axis) in the helicity frame is in-
dicated by the dashed arrow. The proton arrows indicate the incoming beam direc-
tions. The polarization axis is defined to be the direction of the produced (Q) travels
in the center-of-mass frame of the colliding beams. If the quarks in the QQ pair with
total angular momentum J = 1, they can either have the same angular momentum
along the z axis, Jz, or opposite resulting in Jz = 0 (longitudinal) or Jz = 1 (trans-
verse), respectively.

with polarization vectors

εµ1 =
(

0,
~k1T

k1T

, 0
)

= (0, cosφ1, sinφ1, 0) (4.17)

εµ2 =
(

0,
~k2T

k2T

, 0
)

= (0, cosφ2, sinφ2, 0) . (4.18)

We then boost the momenta along the beam direction to the frame where the total

momentum of the Reggeons along the beam direction, k1z + k2z, is zero

kµ1 =

(√
ŝ+ p2

T

2
, ~k1T ,

√
ŝ+ p2

T

2

)
, (4.19)

kµ2 =

(√
ŝ+ p2

T

2
, ~k2T ,−

√
ŝ+ p2

T

2

)
, (4.20)

where ŝ = x1x2s − |~k1T + ~k2T |2 and p2
T = |~k1T + ~k2T |2. The polarization vectors are

unchanged. We then apply a rotation such that the three momentum of the sum kµ1 + kµ2

is aligned with a new z axis

kµ1 + kµ2 =
(√

p2
T + ŝ,~0, pT

)
. (4.21)
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We then boost to the quarkonium rest frame where

kµ1 + kµ2 =
(√

ŝ,~0, 0
)
. (4.22)

In this frame (helicity frame), the momenta of the initial state Reggeons are

kµ1 =
(−ψ + ŝ

2
√
ŝ
,

√
ŝλ

2
,
k1Tk2T sinφ

pT
,
ψλ

2pT

)
, (4.23)

kµ2 =
(ψ + ŝ

2
√
ŝ
,−
√
ŝλ

2
,−k1Tk2T | sinφ

pT
,− ψλ

2pT

)
, (4.24)

where ψ = |~k1T |2− |~k2T |2, φ = φ1− φ2, and λ =
√

1 + p2
T/ŝ. The polarization vectors are

now

εµ1 =
(
− k1T + k2T cosφ√

ŝ
, 0,

k2T sinφ

pT
,
λ

pT
(k1T + k2T cosφ)

)
, (4.25)

εµ2 =
(
− k2T + k1T cosφ√

ŝ
, 0,−k1T sinφ

pT
,
λ

pT
(k2T + k1T cosφ)

)
. (4.26)

The scattering amplitude of the process R+R→ QQ is related to that of g+g → QQ

by [97,98]

A(R +R→ Q+Q) = εµ(k1)εν(k2)Aµν(g + g → Q+Q) , (4.27)

where εµ(k) is defined in Eq. (4.2). Evaluating Aµν(g+g → Q+Q) using the conventional

Feynman rules of QCD, there are three gg → QQ Feynman diagrams to consider atO(α2
s).

The diagrams are labeled according to the squared mass of the propagator as ŝ, t̂ and û,

ŝ = (k1 + k2)2 , (4.28)

t̂ = (k1 − p2)2 , (4.29)

û = (k2 − p2)2 , (4.30)

where k1 and k2 are the momenta of the initial state Reggeons, and p1 (p2) is the momen-

tum of the final state heavy quark (antiquark). Each diagram includes a color factor C

and a scattering amplitude A. The generic matrix element for the gluon fusion process

can be written as [73]

Mgg = Cgg,ŝAgg,ŝ + Cgg,t̂Agg,t̂ + Cgg,ûAgg,û . (4.31)
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In terms of the Dirac spinors u and v, the individual amplitudes are

Agg,ŝ = −g
2
s

ŝ

{
− (2k2 + k1) · ε(k1)[ū(p1)ε/(k2)v(p2)]

+ (2k1 + k2) · ε(k2)[ū(p1)ε/(k1)v(p2)]

+ ε(k1) · ε(k2)[ū(p1)(k/2 − k/1)v(p2)]
}
, (4.32)

Agg,t̂ = − g2
s

t̂−m2
c

ū(p1)ε/(k2)(k/1 − p/2 +mc)ε/(k1)v(p2) , (4.33)

Agg,û = − g2
s

û−m2
c

ū(p1)ε/(k1)(k/2 − p/2 +mc)ε/(k2)v(p2) . (4.34)

Here gs is the gauge coupling, mc is the charm quark mass, and ε represents the gluon

polarization vectors.

In the process of evaluating the scattering amplitudes, we take advantage of the fact

that at O(α2
s), the final state QQ is produced with no dependence on the azimuthal angle

φ′ (and thus Lz′ = 0) in a rotated frame (primed frame) where the z′ axis is defined as

the direction of one of the incoming Reggeons. Since the Reggeons are head to head in

this frame, the scattering amplitudes are independent of the azimuthal angle φ′. We first

rotate the initial state momenta ~p from the helicity frame to the primed frame by an Euler

rotation:

~p′ = R(0, β, γ)~p. (4.35)

The scattering amplitudes in the primed frame for S = 1, sorted Sz′ , are

Agg,ŝ,S=1,Sz′=0 =
1√
2

[(As1) + (As4)] , (4.36)

Agg,ŝ,S=1,Sz′=±1 = As2,3 , (4.37)

Agg,t̂,S=1,Sz′=0 =
1√
2

[(At1) + (At4)] , (4.38)

Agg,t̂,S=1,S′=±1 = At2,3 , (4.39)

Agg,û,S=1,Sz′=0 =
1√
2

[(Au1) + (Au4)] , (4.40)

Agg,û,S=1,S′=±1 = Au2,3 , (4.41)

where A1, A2, A3, and A4 refer to the amplitudes for the quark (antiquark) being pro-

jected to the positive (positive), positive (negative), negative (positive), and negative

(negative) helicity states, respectively.
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The ŝ-channel amplitudes are

As1
ŝ

g2
s

=
mc√
ŝ

[
[(−ψ + 3ŝ)ε31ε

0
2 + (−ψ − 3ŝ)ε01ε

3
2

+ (−2ε01ε
0
2 + 2ε11ε

1
2 + 2ε21ε

2
2)
√

(k1T − k2T )2 + ŝ)(k1T + k2T )2 + ŝ)] cos θ′

− [(ψ − 3ŝ)ε11ε
0
2 + (ψ + 3ŝ)ε01ε

1
2

+ (ε31ε
1
2 + ε11ε

3
2)
√

(k1T − k2T )2 + ŝ)(k1T + k2T )2 + ŝ)] sin θ′
]
, (4.42)

As2
ŝ

g2
s

=
i

2
[(ψ − 3ŝ)ε21ε

0
2 + (ψ + 3ŝ)ε01ε

2
2

+ (ε31ε
2
2 + ε21ε

3
2)
√

(k1T − k2T )2 + ŝ)(k1T + k2T )2 + ŝ)]

− 1

2
[(ψ − 3ŝ)ε11ε

0
2 + (ψ + 3ŝ)ε01ε

1
2

+ (ε31ε
1
2 + ε11ε

3
2)
√

(k1T − k2T )2 + ŝ)(k1T + k2T )2 + ŝ)] cos θ′

+
1

2
[(ψ − 3ŝ)ε31ε

0
2 + (ψ + 3ŝ)ε01ε

3
2

+ (2ε01ε
0
2 − 2ε11ε

1
2 − 2ε21ε

2
2)
√

(k1T − k2T )2 + ŝ)(k1T + k2T )2 + ŝ)] sin θ′ ,

(4.43)

As3
ŝ

g2
s

= − i
2

[(ψ − 3ŝ)ε21ε
0
2 + (ψ + 3ŝ)ε01ε

2
2

+ (ε31ε
2
2 + ε21ε

3
2)
√

(k1T − k2T )2 + ŝ)(k1T + k2T )2 + ŝ)]

− 1

2
[(ψ − 3ŝ)ε11ε

0
2 + (ψ + 3ŝ)ε01ε

1
2

+ (ε31ε
1
2 + ε11ε

3
2)
√

(k1T − k2T )2 + ŝ)(k1T + k2T )2 + ŝ)] cos θ′

+
1

2
[(ψ − 3ŝ)ε31ε

0
2 + (ψ + 3ŝ)ε01ε

3
2

+ (2ε01ε
0
2 − 2ε11ε

1
2 − 2ε21ε

2
2)
√

(k1T − k2T )2 + ŝ)(k1T + k2T )2 + ŝ)] sin θ′ ,

(4.44)

As4
ŝ

g2
s

=
mc√
ŝ

[
[(ψ − 3ŝ)ε31ε

0
2 + (ψ + 3ŝ)ε01ε

3
2

+ (2ε01ε
0
2 − 2ε11ε

1
2 − 2ε21ε

2
2)
√

(k1T − k2T )2 + ŝ)(k1T + k2T )2 + ŝ)] cos θ′

+ [(ψ − 3ŝ)ε11ε
0
2 + (ψ + 3ŝ)ε01ε

1
2

+ (ε31ε
1
2 + ε11ε

3
2)
√

(k1T − k2T )2 + ŝ)(k1T + k2T )2 + ŝ)] sin θ′
]
. (4.45)
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The t̂-channel amplitudes are

At1
t̂−m2

c

g2
s

= −2ε11ε
1
2mc
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ŝχ+ i
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1
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3
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0
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3
2)
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√
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1
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3
2) sin θ′ cos θ′ , (4.46)
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1
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ŝχ+ i

(ε21ε
1
2 − ε11ε22)mc

√
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]

cos θ′

− 2mc

√
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Finally, the û-channel amplitudes are
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3
2

+ (ε01ε
0
2 − ε11ε12 − ε21ε22 + ε31ε

3
2)
√
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where χ =
√

1− 4m2
c/ŝ. The calculation of As1ŝ/g2

s is shown in the Appendix. The final

state total spin is determined from the heavy quarks helicities. Two helicity combinations

that result in Sz′ = 0 are added and normalized to give the contribution to the spin triplet

state (S = 1) in Eqs. (4.36), (4.38), and (4.40).
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In this primed frame, to extract the projection on a state with orbital-angular-momentum

quantum number L, we obtain the corresponding Legendre component AL in the ampli-

tudes by

AL=0 =
1

2

∫ 1

−1

dxA(x = cos θ′) , (4.54)

AL=1 =
3

2

∫ 1

−1

dx xA(x = cos θ′) . (4.55)

Having obtained the amplitudes for S = 1 with Sz′ = 0,±1, and L = 0, 1 with Lz′ = 0,

we calculate the amplitudes for J = 0, 1, 2. The amplitudes for J = 1, found by adding

S = 1 and L = 0, are

AJ=1,Jz′=±1 = AL=0,Lz′=0;S=1,Sz′=±1 , (4.56)

AJ=1,Jz′=0 = AL=0,Lz′=0;S=1,Sz′=0 . (4.57)

Employing angular momentum algebra, the amplitudes for J = 0, 1, 2, obtained by adding

S = 1 and L = 1, are

AJ=0,Jz′=0 = −
√

1

3
AL=1,Lz′=0;S=1,Sz′=0 , (4.58)

AJ=1,Jz′=±1 = ∓ 1√
2
AL=1,Lz′=0;S=1,Sz′=±1 , (4.59)

AJ=1,Jz′=0 = 0 , (4.60)

AJ=2,Jz′=±2 = 0 , (4.61)

AJ=2,Jz′=±1 =
1√
2
AL=1,L′

z=0;S=1,Sz′=±1 , (4.62)

AJ=2,Jz′=0 =

√
2

3
AL=1,Lz′=0;S=1,Sz′=0 . (4.63)

Using a Wigner representation of the inverse rotation defined in Eq. (4.35),

DJJz ,Jz′ = 〈J, Jz|R(0,−β,−γ) |J, Jz′〉 , (4.64)

the amplitudes sorted by final state J and Jz′ are then rotated back into the helicity

frame:

AJ,Jz =
J∑

J ′
z=−J

DJJz ,Jz′AJ,J ′
z
. (4.65)
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Next, the amplitudes sorted by final state J and Jz are squared for calculations in the

helicity frame. For calculations in the other frames, the unsquared amplitudes can be

further rotated to the Collins-Soper (CS) or the Gottfried-Jackson (GJ) frame. In the CS

frame, the z axis is defined as the angle bisector of the angle between one proton beam

and the opposite of the other proton beam. In the GJ frame, the z axis is defined as the

direction of the momentum of one of the two colliding proton beams.

The squared matrix elements, |M|2, are calculated for each J , Jz combination. The

color factors, C, are calculated from the SU(3) color algebra and are independent of final

state angular momentum [73]. They are

|Cgg,ŝ|2 = 12 ,

|Cgg,t̂|2 =
16

3
,

|Cgg,û|2 =
16

3
,

C∗gg,ŝCgg,t̂ = +6 ,

C∗gg,ŝCgg,û = −6 ,

C∗gg,t̂Cgg,û = −2

3
. (4.66)

Finally, the total squared amplitudes for a given J, Jz state,

|MJ,Jz
gg |2 = |Cgg,ŝ|2|Agg,ŝ|2 + |Cgg,t̂|2|Agg,t̂|2 + |Cgg,û|2|Agg,û|2 + 2C∗gg,ŝCgg,t̂A∗gg,ŝAgg,t̂

+ 2C∗gg,ŝCgg,ûA∗gg,ŝAgg,û + 2C∗gg,t̂Cgg,ûA∗gg,t̂Agg,û , (4.67)

are then employed to calculate the partonic cross sections by integrating over solid angle

σ̂J,Jz =

∫
dΩ
( 1

8π

)2

|MJ,Jz |2 2χ√
((k1T − k2T )2 + ŝ)((k1T + k2T )2 + ŝ)

. (4.68)

The sum of the polarized partonic cross section results for each final state total angular

momentum J , is equal to the unpolarized partonic cross section,

σ̂unpol =
Jz=+J∑
Jz=−J

σ̂J,Jz . (4.69)

Having computed the polarized QQ production cross section at the parton level, we

then convolute the partonic cross sections with the uPDFs to obtain the hadron-level
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cross section σ as a function of pT using Eq. (4.12) or (4.13) and as a function of y

using Eq. (4.14). The quarkonium masses which appear as the lower limit of the QQ

invariant mass are listed in Table 4.1. We employ the ccfm-JH-2013-set1 [19] uPDFs in

this calculation.

4.3 Polarization of prompt J/ψ

We assume that the angular momentum of each directly produced quarkonium state is

unchanged by the transition from the parton level to the hadron level, consistent with the

CEM expectation that the linear momentum is unchanged by hadronization [56]. This

is similar to the assumption made in NRQCD that once a cc̄ is produced in a given spin

state, it retains that spin state when it becomes a J/ψ.

We calculate the Jz = 0,±1 to unpolarized ratios for each directly produced quarko-

nium state Q that has a contribution to prompt J/ψ production: J/ψ, ψ(2S), χc1(1P)

and χc2(1P). These ratios, RJz
Q , are then independent of FQ. We assume the feed-down

production of J/ψ from the higher mass bound states follows the angular momentum

algebra. Their contributions to the Jz = 0 to unpolarized ratios of prompt J/ψ are added

and weighed by the feed-down contribution ratios cQ [84],

RJz=0
J/ψ =

∑
Q,Jz

cQS
Jz
Q R

Jz
Q , (4.70)

where SJzQ is the transition probability from a given state Q produced in a Jz state to

a J/ψ with Jz = 0 in a single decay. We assume two pions are emitted for S state feed

down, ψ(2S)→ J/ψππ, and a photon is emitted for a P state feed down, χc → Jψγ. SJzQ

is then 1 (if Jz = 0) or 0 (if Jz = 1) for Q = ψ(2S) since the transition, ψ(2S)→ J/ψππ,

does not change the angular momentum of the quarkonium state. For directly produced

J/ψ, SJzQ is 1 for Jz = 0 and 0 for Jz = 1. The SJzQ for the χ states are the squares of the

Clebsch-Gordan coefficients for the feed-down production via χ → J/ψ + γ. The values

of MQ, cQ, and SJzQ for all quarkonium states contributing to prompt J/ψ production are

collected in Table 4.1.
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Table 4.1. The mass MQ, the feed-down contribution ratio cQ, and the squared feed-
down transition Clebsch-Gordan coefficients SJzQ for all quarkonium states contribut-
ing to prompt J/ψ production.

Q MQ (GeV) cQ SJz=0
Q SJz=±1

Q

J/ψ 3.10 0.62 1 0

ψ(2S) 3.69 0.08 1 0

χc1(1P) 3.51 0.16 0 1/2

χc2(1P) 3.56 0.14 2/3 1/2

Finally, the Jz = 0 to the unpolarized ratio for prompt J/ψ is converted into the

polarization parameter λϑ [34],

λϑ =
1− 3RJz=0

1 +RJz=0
, (4.71)

where −1 < λϑ < 1. If λϑ = −1, J/ψ production is totally longitudinal, λϑ = 0 refers to

unpolarized production, and for λϑ = +1, production is totally transverse.

4.4 Results

Although the matrix element in this calculation is LO in αs, by convoluting the polar-

ized partonic cross sections with the transverse momentum dependent uPDFs using the

kT -factorization approach, we can calculate the yield as well as the polarization parameter

λϑ as a function of pT . The full NLO polarization including qq̄ and (q+ q̄)g contributions,

requiring us to go to O(α3
s), will be discussed in a future publication.

The traditional CEM can describe the unpolarized yield of charm and J/ψ production

at both LO and NLO assuming collinear factorization [72,76]. The ICEM can also describe

the ψ(2S) to J/ψ ratio at NLO while, in the traditional CEM, this ratio is independent of

pT [56]. Since this is the first calculation in the ICEM using the kT -factorization approach,

it is important to check if the unpolarized yield is also in agreement with the data.

In the remainder of this section, we first present how our approach describes the

transverse momentum and rapidity distribution of the charmonium states in collider ex-

periments. We then discuss the transverse momentum and rapidity dependence of the

polarization parameter λϑ for prompt J/ψ production and direct production of quarko-
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nium states that contribute to the feed-down production. We compare our results to the

polarization measured in fixed-target experiments as well as collider experiments in the

helicity, Collins-Soper, and Gottfried-Jackson frames to discuss the frame dependence of

the polarization parameter. Finally, we discuss the sensitivity of our results to the factor-

ization and renormalization scales, the weight of each diagram, and the feed-down ratios

considered. In our calculations, we construct the uncertainty bands by varying the charm

quark mass, around its base value of 1.27 GeV in the interval 1.2 < mc < 1.5 GeV, and

the renormalization scale around its base value of mT in the interval 0.5 < µR/mT < 2

while keeping the factorization scale fixed at µF = mT . The total uncertainty band is

constructed by adding the two uncertainties in quadrature.

4.4.1 Unpolarized charmonium production

In this section, we present the pT and rapidity distributions of charmonium states in

our approach. In the spirit of the traditional CEM, FQ in Eq. (4.3) has to be independent

of the projectile, target, and energy for each quarkonium state Q. Even though the focus

of this paper is on polarization, which is FQ independent, the unpolarized yield in the

ICEM using the kT -factorization approach was not considered before. Therefore, it is

important to first confirm that this approach can indeed describe the charmonium yields

as a function of pT and rapidity before discussing polarization predictions. We first obtain

FJ/ψ and Fψ(2S) by comparing our results with the experimental data measured by the

LHCb Collaboration and the CDF Collaboration respectively. Using the same FJ/ψ and

Fψ(2S), we compare our results with the experimental data measured at CDF and ALICE.

We can only obtain Fχc1 and Fχc2 for the χc states by comparing the unpolarized yield with

the data measured by the ATLAS Collaboration at
√
s = 7 TeV because these are the only

measurements. We instead give predictions of χc1 and χc1 production at
√
s = 13 TeV.

We also compare and predict the ratio of χc2 to χc1 at
√
s = 7 TeV and

√
s = 13 TeV.

Note that we cannot expect our LO values of FQ to be equal to those found for Jψ

and ψ(2S) in Ref. [56]. Those calculations are NLO in the total cross section assuming

collinear factorization, and include the qq̄ and (q + q̄)g channels where the contribution

of the latter is non-negligible.
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Figure 4.2. The pT dependence of inclusive J/ψ production at
√
s = 7 TeV in the

ICEM obtained by varying the renormalization scale (blue region), the factorization
scale in the range 0.5 < µF /mT < 2 (magenta region), and the renormalization scale
in the range 0.5 < µR/mT < 2 (green region). The LHCb data [99] assuming the
J/ψ polarization is totally transverse, λϑ = +1 (red square), and totally longitudi-
nal, λϑ = −1 (blue square), are shown. The LHCb data assuming λϑ = 0 lie between
the red and blue points and are not shown.

4.4.1.1 J/ψ pT distribution

We first discuss why we fix the factorization scale at µF = mT instead of including a

factor of 2 variation, as usual in most other approaches. In Fig. 4.2, we show the pT distri-

butions of inclusive J/ψ production at
√
s = 7 TeV found by fixing mc = 1.27 GeV, and

varying the factorization scale over the range 0.5 < µF/mT < 2 and the renormalization

scale over the range 0.5 < µR/mT < 2 separately. We also fix µF/mT = µR/mT = 1 and

vary the charm quark mass over the range 1.2 < mc < 1.5 GeV. The direct production

cross section is calculated using Eq. (4.12) by integrating the pair invariant mass from

MJ/ψ to 2mD0 (mD0 = 1.86 GeV) over the rapidity range 2.0 < y < 4.5. We assume the

direct production is a constant fraction, 0.62 of the inclusive production [84]. We then

are able to compare the inclusive pT distribution in the ICEM with the LHCb data [99].

The result has a significant dependence on the factorization scale for pT > 5 GeV. This is

because the uPDFs have a sharp cutoff for kT > µF and are thus very sensitive to the cho-

sen factorization scale. The yield varies more as pT approaches mT at high pT . At low pT ,
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Figure 4.3. The pT dependence of inclusive J/ψ production at
√
s = 7 TeV in the

ICEM with combined mass and renormalization scale uncertainties. The LHCb data
[99] are shown as in Fig. 4.2. The LHCb data assuming λϑ = 0 are not shown.

mT ∼ MQ and the cross section is independent of the factorization scale since kT � µF .

At moderate pT , the variation with µF is similar to or smaller than that due to the charm

quark mass. At pT ∼ 10 GeV, mT ∼ pT . Thus the lower limit on the factorization scale,

mT/2, is on the order of kT and the yield drops off at this cutoff limit, while the upper

limit on the factorization scale, 2mT , is still greater than kT , enhancing the yield. Since at

LO, only the QQ pair carries the transverse momentum, the predictive power of the yield

is limited by the uPDFs. Therefore, to construct a meaningful uncertainty band, we fix

the factorization scale at µF = mT . As we push toward the limit of the kT -factorization

approach with uPDFs at high pT at LO, we can only improve the high pT limit by a full

NLO calculation.

After fixing the factorization scale, the variation in renormalization scale then gives

the largest uncertainty, followed by the variation in charm mass. When µR is reduced,

the strong coupling constant is larger, increasing the yield. On the other hand, when mc

is reduced, the yield increases. In the remainder of this section, we present our results by

adding the uncertainties due to variations of the charm mass and renormalization scale

in quadrature.
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Figure 4.4. The pT dependence of inclusive J/ψ production at
√
s = 1.96 TeV in the

ICEM. The combined mass and renormalization scale uncertainties are shown in the
band and compared to the CDF data [100].

The inclusive J/ψ pT distribution at
√
s = 7 TeV with combined uncertainty is shown

in Fig. 4.3. The ICEM result has a peak at pT ∼ 2 GeV, in agreement with the experi-

mental results, but slightly overestimates the data at high pT . The ICEM pT distribution

is within reasonable agreement with the data for all pT . The experimental prompt pro-

duction cross section depends on the polarization areof J/ψ since the polarization affects

the acceptance and reconstruction efficiencies. LHCb checked the yields for the three

polarization assumptions: λϑ = −1, 0,+1. The experimental pT distribution for all polar-

ization assumptions is within the uncertainty band constructed in the ICEM. By matching

to the experimental unpolarized yield λϑ = 0, we find that the ICEM can describe the

J/ψ pT distribution with FJ/ψ = 0.0216. This is the fraction of cc̄ pairs produced in the

invariant mass range from MJ/ψ to 2mD0 that result in direct J/ψ, defined in Eq. (4.3).

We test the universality of FJ/ψ by comparing the inclusive J/ψ pT distribution in

the ICEM at
√
s = 1.96 TeV and |y| < 0.6 with the CDF data [100] in Fig. 4.4. We

again assume the direct production takes a constant fraction of 0.62 of the inclusive

production [84] to obtain the inclusive J/ψ cross section. The ICEM results slightly

overshoot the data at high pT because both the direct and nonprompt contributions to
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Figure 4.5. The pT dependence of direct ψ(2S) production at
√
s = 1.96 TeV in the

ICEM. The combined mass and renormalization scale uncertainties are shown in the
band and compared to the CDF data for prompt ψ(2S) [102].

J/ψ production are pT dependent [99, 101]. The direct-to-prompt J/ψ ratio decreases as

pT grows and the contribution from b decay to inclusive production is measured to be

larger at high pT than at low pT . Combining the effects of both, using a constant direct-

to-inclusive ratio of 0.62 gives an overestimate of the yields at high pT . The calculated

cross section differs from the measurements more as pT increases. We note that if we fix

FJ/ψ from the CDF data alone, it agrees within 1.5% of that extracted from comparison

to the LHCb data.

4.4.1.2 ψ(2S) pT distribution

The inclusive ψ(2S) pT distribution at
√
s = 1.96 TeV is shown in Fig. 4.5. Here,

the direct production cross section is calculated using Eq. (4.12) by integrating the pair

invariant mass from Mψ(2S) to 2mD0 over the rapidity range |y| < 0.6. We assume the

direct production is the same as the prompt production as there are no quarkonium states

that feed down to ψ(2S) since its mass is just below 2mD0 . Therefore, we compare the pT -

integrated yield of direct ψ(2S) with the CDF measurement [102]. We find Fψ(2S) = 0.117.

We note that Fψ(2S) > FJ/ψ, primarily because the mass range is much smaller for ψ(2S)

than J/ψ. In the traditional CEM, Fψ(2S) is smaller than FJ/ψ because the integration
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Figure 4.6. The direct χc1 (left) and χc2 (middle) pT dependence multiplied by the
branching ratios for χc → J/ψγ and for J/ψ → µ+µ−, and the ratio of χc2 to χc1
(right) at

√
s = 7 TeV (top panels) and at

√
s = 13 TeV (bottom panels) in the

ICEM with combined mass and renormalization scale uncertainties. The ATLAS
data for prompt χc production are also shown [103].

over the pair invariant mass is the same for both J/ψ and ψ(2S). We add the contribution

from nonprompt production reported by the CDF Collaboration to our prompt production

yield to give the inclusive ψ(2S) yield shown in Fig. 4.5. We find agreement with the data

within the combined uncertainty band constructed by varying the charm mass and the

renormalization scale in the ICEM.

4.4.1.3 χc1 and χc2 pT distribution

We now turn to the pT dependence of χc production. The pT distributions of direct χc1,

direct χc2, and the ratio of χc2 to χc1 at
√
s = 7 TeV and 13 TeV are presented in Fig. 4.6.

The direct production is calculated using Eq. (4.12) by integrating the pair invariant mass

from Mχc to 2mD0 (mD0 = 1.86 GeV) over the rapidity range |y| < 0.75. We assume the

prompt production of χc is approximately the same as the direct production. Thus,

by comparing the direct χc1 and χc2 yields in the ICEM with the experimental yield of

prompt χc1 and χc2 at
√
s = 7 TeV measured by the ATLAS Collaboration [103], we

obtain Fχc1 = 0.180 and Fχc2 = 0.20. As is the case for Fψ(2S) and FJ/ψ, Fχc2 > Fχc1

because the integration range over the pair invariant mass is smaller for χc2 than for χc1.
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Figure 4.7. The pT dependence of prompt J/ψ production at
√
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factorization approach [56] (green region). The LHCb data [99] assuming the J/ψ
polarization is totally transverse, λϑ = +1 (red square), and totally longitudinal,
λϑ = −1 (blue square), are shown. The LHCb data assuming λϑ = 0 lie between the
red and blue points and are not shown.

In the traditional CEM, Fχc2 is smaller than Fχc1 . The direct production in the ICEM

describes prompt production of both χc1 and χc2 at
√
s = 7 TeV within the uncertainty

bands constructed by varying the charm quark mass and renormalization scale. The

ratio of the cross sections is also described by the ICEM. We calculate the χc2 to χc1

ratio to be ∼ 0.5, almost independent of pT . The ratios disagree with a recent NRQCD

calculation [104], where the ratio decreases as pT increases and is above the data. We

assume that pTχc ≈ pTJ/ψ, not unreasonable since the mass difference is ∼500 MeV and

the decay photon is soft. We anticipate the direct χc1 and χc2 yields will be increased by

51% (at pT = 10 GeV) to 120% (at pT = 30 GeV) when
√
s is increased from 7 TeV to

13 TeV. However, the ratio of χc2 to χc1 should remain approximately the same.

4.4.1.4 Prompt J/ψ pT distribution

After fixing FJ/ψ, Fψ(2S), Fχc1 and Fχc2, we calculate the prompt J/ψ pT distribution

at
√
s = 7 TeV in the rapidity range 2.0 < y < 4.5 using the direct J/ψ, ψ(2S), χc1 and

χc2 yields and their branching ratios to J/ψ. The prompt J/ψ pT distribution is shown
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Figure 4.8. The rapidity dependence of inclusive J/ψ production at
√
s = 7 TeV in

the ICEM. The combined mass and renormalization scale uncertainties are shown in
the band and compared to the ALICE data [105].

in Fig. 4.7. The ICEM pT distribution describes the data for most pT but overshoots

the data slightly at the highest pT bin. The ICEM pT distribution is within reasonable

agreement with the data for all pT . We extract the pT dependent feed-down ratios cψ’s

by taking the direct to prompt ratio in this distribution. We find the feed-down ratios

are very similar to those listed in Table 4.1. Additionally, we find cJ/ψ decreases as pT

increases, in agreement with Ref. [101].

In the same figure, we compare the prompt J/ψ pT distribution at
√
s = 7 TeV

with that from the CEM [72] and ICEM [56] in the collinear factorization approach.

Both uncertainty bands are constructed by varying the factorization scale in the interval

1.25 < µF/mT < 4.65 and the renormalization scale in the interval 1.48 < µF/mT < 1.71.

Considering that those results are calculated in the ALICE muon arm acceptance 2.5 <

y < 4 other than that in the LHCb 2 < y < 4.5, all distributions agree reasonably well

with each other and the data.

4.4.1.5 J/ψ rapidity distribution

We now turn to the rapidity dependence of J/ψ production. The rapidity distribution

of inclusive J/ψ at
√
s = 7 TeV is shown in Fig. 4.8. The direct production is calculated
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Figure 4.9. The rapidity dependence of direct ψ(2S) production at
√
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the ICEM. The combined mass and renormalization scale uncertainty are shown in
the band and compared to the ALICE data for inclusive ψ(2S) [106].

using Eq. (4.14) by integrating over the pT range 0 < pT < 7 GeV (|y| < 0.9) and

0 < pT < 8 GeV (2.5 < y < 4). We again assume the direct production is a constant

62% [84] of the inclusive production. We use the same FJ/ψ again to compare the rapidity

distribution in the ICEM with the measurement made by the ALICE Collaboration [105].

The difference in the integrated pT range has a negligible effect on the rapidity distribution

because the pT dependence has already dropped by an order of magnitude by pT ∼7-

8 GeV. We find the ICEM can describe the ALICE rapidity distribution at
√
s = 7 TeV

using the FJ/ψ obtained at the same energy by LHCb in the forward rapidity region.

4.4.1.6 ψ(2S) rapidity distribution

The rapidity distribution of direct ψ(2S) at
√
s = 7 TeV is shown in Fig. 4.9. Here,

the rapidity distribution is calculated in the interval pT < 12 GeV at forward rapidity

(2.5 < y < 4). We use the same Fψ(2S) to compare with inclusive ψ(2S) data from ALICE

[106]. While the lower bound of our uncertainty band should still be lower than the data

when the contribution from B decays are added, our baseline should slightly overshoot the

inclusive ψ(2S) data. Our results also agree with the direct ψ(2S) rapidity distribution

from a recent NRQCD calculation at LO using the kT -factorization approach [104].
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Figure 4.10. The pT dependence of the polarization parameter λϑ for prompt J/ψ
production in the Collins-Soper frame at

√
sNN = 41.6 GeV in the ICEM with mass

uncertainties is compared to the HERA-B data for inclusive J/ψ [107].

4.4.2 pT dependence of λϑ

Here, we present the pT dependence of the polarization parameter λϑ in p + p and

p+A collisions. Because the polarization parameter is defined as the ratio of polarized to

unpolarized cross sections in Eq. (4.70) and these cross sections depend on µR and µF in

the same way, the polarization parameter is independent of the scale choice. However, the

amplitudes themselves are mass dependent so that the polarized to unpolarized ratio in λϑ

depends on the charm quark mass. Thus the only uncertainty on λϑ in our calculation is

due to the variation of mc in the range 1.2 < mc < 1.5 GeV. We note that the polarization

varies rather slowly because mT ∼ pT � mJ/ψ over most of the pT range considered. In

this section, the uncertainty band is only due to the mass variation and therefore the

uncertainty is reduced relative to the yield calculations.

We also note that we find the feed-down contributions from each directly produced

quarkonium state to prompt J/ψ polarization to be very similar. Therefore, the prompt

j/ψ polarization has a weak dependence on the feed-down fractions. This behavior was

also found in Ref. [58].
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Figure 4.11. The pT dependence of the polarization parameter λϑ for prompt J/ψ
production in the Gottfried-Jackson frame at

√
sNN = 41.6 GeV in the ICEM with

mass uncertainties is compared to the HERA-B data for inclusive J/ψ [107].

4.4.2.1 Charmonium polarization in p+A collisions at fixed-target energies

The polarization results for prompt production of J/ψ at
√
sNN = 41.6 GeV are shown

in Figs. 4.10 and 4.11. Although the HERA-B data are taken on nuclear targets, C and

W, and there are known nuclear modifications of the parton densities in the nucleus,

λϑ is independent of any modification. This is because the ratios of the polarized to

unpolarized cross sections are in the same kinematic acceptance and any nuclear effects

cancel in the ratio. Thus there is no difference in polarization between the two target

nuclei. We compare our results with the C and W combined data measured by the

HERA-B Collaboration in the region −0.34 < xF < 0.14 [107].

Prompt J/ψ polarization in the ICEM is close to unpolarized in both the CS and GJ

frames for pT < 5 GeV. At pT = 0, the two z axes, zCS and zGJ, are in the same direction.

Thus the polarization is the same in that limit. As pT increases, the two axes depart from

each other. Thus the polarization is slightly less longitudinal in the GJ frame than in the

CS frame. This behavior is also consistent with the experimental data showing that the

J/ψ polarization at very low pT is not affected by switching from the CS frame to the GJ

frame. At higher pT the polarization is slightly less longitudinal in the GJ frame than in
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Figure 4.12. The pT dependence of the polarization parameter λϑ for prompt J/ψ
production at

√
s = 200 GeV in the ICEM with mass uncertainty. The STAR data

for inclusive J/ψ are also shown.

the CS frame. The ICEM results are in fair agreement with the experimental data except

at the lowest pT .

4.4.2.2 Charmonium polarization in p+p(p̄) collisions

We present the polarization parameters for prompt J/ψ in p+p collisions at
√
s =

200 GeV in Fig. 4.12. We compare our results with the data from the STAR Collaboration

in the region |y| < 0.5 [108] in the helicity frame. The ICEM polarization of prompt J/ψ

in the helicity frame is slightly transverse at low pT (pT < MJ/ψ). The result becomes

unpolarized at moderate pT (MJ/ψ < pT < 2MJ/ψ) before changing to slightly transverse

at high pT . The ICEM polarization agrees fairly well with the data at small and moderate

pT for inclusive J/ψ polarization at STAR.

We also compared the polarization parameters for prompt J/ψ in p+p̄ collisions at
√
s = 1.96 TeV with the data measured by the CDF Collaboration in the region |y| < 0.6

[109] in the helicity frame, shown in Fig 4.13. The ICEM prompt J/ψ polarization does

not depend strongly on
√
s or whether the collision is p+p or p+p̄. We find the trend

in the pT dependence of the polarization is the same. At high pT , the prompt J/ψ

polarization measured by the CDF Collaboration is slightly longitudinal to unpolarized
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Figure 4.13. The pT dependence of the polarization parameter λϑ for prompt J/ψ
production at

√
s = 1.96 TeV in the ICEM with mass uncertainty. The CDF data

are also shown [109].

while the ICEM polarization is slightly transverse. The polarization predicted by NRQCD

also shows a similar behavior at this energy [110]. However, NRQCD predicts a stronger

transverse polarization (λϑ ∼ 0.6) than ICEM in the high pT limit.

4.4.3 Rapidity dependence of λϑ

Next we turn to the rapidity dependence of λϑ. We calculate the prompt J/ψ polar-

ization in the helicity frame for p + p collisions at
√
s = 7 TeV in two rapidity ranges,

|y| < 0.6 and 0.6 < |y| < 1.2, shown in Figs. 4.14 and 4.15 respectively. We compare our

results to the experimental data from the CMS Collaboration [111]. There is no differ-

ence in the polarization of prompt J/ψ in these two rapidity regions in the ICEM. In the

ICEM, the polarization parameter λϑ of prompt J/ψ production increases very slowly in

the high pT limit and reaches λϑ ∼ 0.12 at pT = 70 GeV. The ICEM polarization agrees

with the experimental results at central rapidity within uncertainty except the data in

the 30 < pT < 35 bin. The experiment reports the polarization is less transverse in the

forward rapidity region. Our results in the ICEM still agree with the data even though

the calculated polarization does not depend on rapidity in this range at 7 TeV.

We also do not observe variations in the polarization parameter λϑ at
√
s = 7 TeV
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Figure 4.14. The pT dependence of the polarization parameter λϑ for prompt J/ψ
production at

√
s = 7 TeV in the region |y| < 0.6 in the ICEM with mass uncer-

tainty. The CMS data are also shown [111].
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Figure 4.15. The pT dependence of the polarization parameter λϑ for prompt J/ψ
production at

√
s = 7 TeV in the region 0.6 < |y| < 1.2 in the ICEM with mass

uncertainty. The CMS data are also shown [111].
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Figure 4.16. The pT integrated rapidity dependence of λϑ for prompt J/ψ produc-
tion at

√
s = 7 TeV in the helicity frame in the ALICE acceptance. Note that we use

the same kinematic cuts as on the yields in Fig. 4.8.

in the region of y < 4 using the same kinematics cut compared to the ALICE yield

measurement in Fig. 4.8. We present the polarization as a function of rapidity in Fig. 4.16.

The polarization parameter of prompt J/ψ for the pT -integrated results is λϑ = 0.26±0.02.

4.4.4 Frame dependence of λϑ

We now turn to the frame dependence of our 7 TeV results. We calculate the polar-

ization parameter in p + p collisions at
√
s = 7 TeV in both the helicity frame and the

Collins-Soper frame, shown in Figs. 4.17 and 4.18 respectively. The polarization in the

Collins-Soper frame is opposite to that in the helicity frame in the ICEM. We expect this

because, in these kinematics, at order α2
s, the polarization axis in the Collins-Soper frame

is always perpendicular to that in the helicity frame. Therefore, at low pT , where the J/ψ

is predicted to be slightly transverse in the helicity frame, it is predicted to be slightly

longitudinal in the Collins-Soper frame. Whereas, at moderate pT , where the J/ψ is pre-

dicted to be unpolarized, it is also predicted to be unpolarized in the Collins-Soper frame.

This behavior, however, is not measured experimentally. As we compare our results with

the ALICE data [112], the ICEM polarization agrees with the data in the Collins-Soper

frame but does not agree with the data in the helicity frame, especially at low pT where
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Figure 4.17. The pT dependence of λϑ for prompt J/ψ production at
√
s = 7 TeV in

the helicity frame is compared with the ALICE inclusive J/ψ data [112].
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Figure 4.18. The pT dependence of λϑ for prompt J/ψ production at
√
s = 7 TeV in

the Collins-Soper frame is compared with the ALICE inclusive J/ψ data [112].

the frame dependence is most significant.

We find similar results by comparing to the LHCb data in the Collins-Soper frame

[113], shown in Figs. 4.19 and 4.20: the polarization in the ICEM agrees with the data

in the Collins-Soper frame but not in the helicity frame. We expect that the difference

in agreement of the calculations in different frames with the data may be resolved with a
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Figure 4.19. The pT dependence of λϑ for prompt J/ψ production at
√
s = 7 TeV in

the helicity frame is compared with the LHCb data [113].
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Figure 4.20. The pT dependence of λϑ for prompt J/ψ production at
√
s = 7 TeV in

the Collins-Soper frame is compared with the LHCb data [113].
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full α3
s calculation of the ICEM cross section.

Finally, we note that at low pT the polarization in the Gottfried-Jackson frame is

similar to that in the Collins-Soper frame, as shown in Figs. 4.10 and 4.11 for fixed-target

energies. However at high pT , the polarization in the Gottfried-Jackson frame is similar

to that in the helicity frame. The differences are due to the definition of the polarization

axes in the quarkonium rest frame. When pT � mT , the angle between the polarization

axis in the Gottfried-Jackson frame and that in the Collins-Soper frame is small. As

pT increases, the polarization axis in the Gottfried-Jackson frame becomes collinear with

that in the helicity frame. Therefore, the polarization calculated in the Gottfried-Jackson

frame is opposite to that in the helicity frame at low pT , and thus is similar to that in

the Collins-Soper frame. But as pT increases, the polarization in the Gottfried-Jackson

frame should asymptotically approach the polarization in the helicity frame.

4.4.5 Sensitivity to scales and quark mass

We have already discussed the sensitivity of the charmonium yields to the factoriza-

tion and the renormalization scales in Sec. 4.4.1.1. Here we note that the longitudinal

to unpolarized fraction RJz=0
J/ψ used in the calculation of λϑ, is insensitive to scale vari-

ations because the longitudinal and transverse change similarly as the scales are varied.

Therefore, the polarization parameter λϑ for prompt J/ψ is independent of the scales for

all energies considered. Similarly, while the unpolarized χc1 and χc2 cross sections vary

appreciably with the scale choice, the χc2 to χc1 ratio is also independent of scales.

While the scale variations affect the polarized and unpolarized cross sections the same

way, making λϑ scale independently, the Jz components of the polarized cross section

depend differently on quark mass. When pT ≤MQ, the longitudinally polarized partonic

cross section decreases faster with increasing mc than the transversely polarized partonic

cross section in the helicity frame. Thus increasing the charm mass results in more trans-

verse polarization. When pT > MQ, the longitudinally polarized partonic cross section

decreases more slowly with increasing mc than the transversely polarized partonic cross

section, thus, here increasing the charm mass results in more longitudinal polarization.

As pT � ŝ, λϑ becomes insensitive to mc. Thus the uncertainty in λθ is narrower.
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Table 4.2. Values of cQ used to test the sensitivity of our results to the feed-down
ratios. Based on the uncertainty in cQ (third column), c′Q (second column) is used
assuming the promptly produced 1S states comprise less directly produced 1S states,
and c′′Q (fourth column) is used assuming the promptly produced 1S states comprise
more directly produced 1S states,

Q c′Q cQ c′′Q

J/ψ 0.59 0.62±0.04 0.65

ψ(2S) 0.09 0.08±0.02 0.07

χc1(1P) 0.17 0.16±0.04 0.15

χc2(1P) 0.15 0.14±0.04 0.13

4.4.6 Sensitivity to feed-down ratios

We have tested the sensitivity of our results to the feed-down ratios used in our cal-

culations [84]. Since prompt J/ψ production is dominated by direct J/ψ, we vary the

feed-down ratio by changing the relative contribution of direct J/ψ and decays from ex-

cited states. Thus when the direct fraction, cJ/ψ, increases, all other cψ decrease and vice

versa. Using the base values of cψ in Table 4.1 and the reported uncertainty, we vary the

feed-down ratios as given in Table 4.2. Since the polarization of prompt J/ψ production

does not vary at central rapidity, we study changes in the polarization by varying the

feed-down ratios at y = 0. The pT -integrated polarization parameter for prompt J/ψ

production at
√
s = 7 TeV at y = 0 varies by 0.04 from 0.26 in the helicity frame. This

variation is similar to that due to the charm quark mass variation.

4.4.7 Sensitivity to diagram weights

We have tested the sensitivity of our results to diagram weights. As shown in Ref. [98],

the ŝ-channel diagram dominates color-octet production at high pT . Turning off the con-

tribution from this diagram by settingAgg,ŝ = 0 in Eq. (4.31) makes a significant difference

in polarization as well as the uncertainty band in the high pT limit. At 5 GeV, turning

off the contribution from the ŝ-channel diagram reduces the cross section by 70%. The

difference is larger at higher pT . Thus the polarization is more sensitive to charm mass

and gives a wider uncertainty band. The polarization parameter at
√
s = 1.96 TeV in the

rapidity region |y| < 0.6 in the helicity frame in this case is shown in Fig. 4.21. The polar-
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Figure 4.21. The pT dependence of the polarization parameter λϑ for prompt J/ψ
production at

√
s = 1.96 TeV in the ICEM with mass uncertainty when the ŝ-

channel contribution is excluded. The CDF data are also shown [109].

ization at low pT is more transverse compared to Fig. 4.13. Instead of becoming slightly

transverse at high pT , prompt J/ψ production will remain approximately unpolarized

with λϑ = +0.14+0.04
−0.14 in the helicity frame when the ŝ-channel amplitude is completely

turned off.

4.5 Conclusions

We have presented the transverse momentum and rapidity dependence of the charmo-

nium cross section as well as the polarization of prompt J/ψ production in p+p and p+A

collisions in the improved color evaporation model in the kT -factorization approach. We

compare the pT dependence to data at both fixed-target energies and collider energies.

We also present χc predictions as a function of pT at
√
s = 13 TeV. We find prompt J/ψ

production to be unpolarized at moderate pT and slightly transverse in the high pT limit

in the helicity frame. We do not observe any rapidity dependence in the polarization in

the ranges considered. We report the pT -integrated polarization parameter for prompt

J/ψ production at
√
s = 7 TeV to be λϑ = 0.26 ± 0.02 at y = 0 in the helicity frame.

We will study the pT dependence of bottomonium states in this approach in a future
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publication.

Since our calculation of the matrix elements is leading order in αs, the high pT cross

section varies strongly with the choice of factorization scale due to the limitations on the

uPDFs as x increases. We expect improvements at high pT when we calculate the cross

section to O(α3
s) in a future publication.

4.6 Appendix: Calculation of As1ŝ/g2
s

The matrix elements used in this paper are obtained in the frame where the final

state QQ lies on the rotated z′ axis. This requires the four momenta of the initial state

Reggeons in the helicity frame represented in Eqs. (4.23) and (4.24) to be rotated such

that they lie along the z′ axis where the four momenta are

kµ1 =
(−ψ + ŝ

2
√
ŝ
, 0, 0,

√
k2

1T +
(−ψ2 + ŝ)2

4ŝ

)
, (4.72)

kµ2 =
(ψ + ŝ

2
√
ŝ
, 0, 0,−

√
k2

1T +
(−ψ2 + ŝ)2

4ŝ

)
. (4.73)

The final state momenta of the charm and anticharm quarks, pµ1 and pµ2 respectively, can

be written as

pµ1 =

√
ŝ

2

(
1, χ sin θ′, 0, χ cos θ′

)
, (4.74)

pµ2 =

√
ŝ

2

(
1,−χ sin θ′, 0,−χ cos θ′

)
, (4.75)

with helicity spinors

u(p1, ↑) =
√
E1 +mc

×
(
c, s,

p1

E1 +mc

c,
p1

E1 +mc

s
)
, (4.76)

u(p1, ↓) =
√
E1 +mc

×
(
− s, c, p1

E1 +mc

s,− p1

E1 +mc

c
)
, (4.77)

v(p2, ↑) =
√
E2 +mc

×
( p2

E2 +mc

c,
p2

E2 +mc

s,−c,−s
)
, (4.78)

v(p1, ↓) =
√
E2 +mc

×
( p2

E2 +mc

s,− p2

E2 +mc

c, s,−c
)
, (4.79)
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where E1,2 = p0
1,2 and p1,2 = |~p1,2|, s = sin(θ′/2) and c = cos(θ′/2).

Then this amplitude can be found by

As1
ŝ

g2
s

= ū(p1, ↑)[−(2k2 + k1) · ε(k1)/ε(k2) (4.80)

+ (2k1 + k2) · ε(k2)/ε(k1) (4.81)

+ (ε(k1) · ε(k2)(/k2 − /k1)]v(p2, ↑) . (4.82)

The result is simplified and expanded trigonometrically in Eq. (4.42). The rest of the

amplitudes can be found by considering other combinations of charm and anticharm

helicity states as well as going from the ŝ-channel diagram to t̂- and û-channel diagrams.
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ABSTRACT

We calculate the polarization of prompt Υ(nS) production in the improved color evap-

oration model at leading order employing the kT -factorization approach. We present

the polarization parameter λϑ of prompt Υ(nS) as a function of transverse momentum

in p + p and p + p̄ collisions to compare with data in the helicity, Collins-Soper and

Gottfried-Jackson frames. We also present calculations of the bottomonium production

cross sections as a function of transverse momentum and rapidity. This is the first pT -

dependent calculation of bottomonium production and polarization in the improved color

evaporation model. We find agreement with both bottomonium cross sections and polar-

ization measurements.

1This work was performed under the auspices of the U.S. Department of Energy by Lawrence Liver-

more National Laboratory under Contract DE-AC52-07NA27344 and supported by the U.S. Department
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5.1 Introduction

This paper is a continuation of our previous work [59] on quarkonium production and

polarization in the improved color evaporation model using the kT -factorization approach.

We first developed our LO calculation of quarkonium polarization in the ICEM [56]

in Refs. [57, 58] employing collinear factorization. However, in this framework, we were

unable to address the polarization as a function of pT to compare with collider data.

Therefore, we performed the first pT -dependent polarization calculation in the ICEM [59]

for prompt J/ψ production and polarization by employing the kT -factorization approach.

This paper is a continuation of that work where we now extend our pT -dependent lead-

ing order (LO) ICEM calculation of quarkonium production and polarization in the kT -

factorization approach to prompt Υ(nS). We use the same scattering amplitudes as in

Ref. [59]. This work also provides the first pT -dependent ICEM Υ(nS) polarization re-

sult. We will begin to address the pT dependence at NLO in a later publication.

We note that within the framework of nonrelativistic QCD (NRQCD) [61], the quarko-

nium polarization problem is less prominent in bottomonium than in charmonium. Fit-

ting the long distance matrix elements to measurements of Υ yields and polarization for

pT > 8 GeV, NRQCD is able to provide a better description of bottomonium yields and

polarization than for charmonium [54,114]. The heavier bottom quark mass allows better

convergence of the double expansion in αs and v. Reference [95] derived a relationship

between the traditional CEM and NRQCD assuming that NRQCD factorization holds to

all orders and that the NRQCD sums over color and spin converge. It also assumed that

no distinction is made between the spin states in the CEM.

5.2 Production of polarized bottomonium in the kT -

factorization approach

In this paper, we present both the yields and polarizations of bottomonium as a func-

tion of pT by formulating the ICEM in the kT -factorization approach. We take the same

effective Feynman rules for scattering processes involving incoming off-shell gluons [97]

as in the NRQCD calculation of Ref. [98]. Effectively, the momentum of the incom-
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ing Reggeon, kµ, with transverse momentum kT can be written in terms of the proton

momentum pµ and the fraction of longitudinal momentum x carried by the gluon as

kµ = xpµ + kµT . (5.1)

The polarization 4-vector is

εµ(kT ) =
kµT
kT

, (5.2)

where kµT = (0, ~kT , 0).

In the traditional CEM, all bottomonium states are treated the same as bb̄ below

the BB threshold. The invariant mass of the heavy bb̄ pair is restricted to be less than

twice the mass of the lowest mass B meson. The distributions for all bottomonium

family members are assumed to be identical. In the ICEM, the invariant mass of the

intermediate bb̄ pair is constrained to be larger than the mass of produced bottomonium

state, MQ, instead of twice the bottom quark mass, 2mb, the lower limit in the traditional

CEM [57, 69]. Because the bottomonium momentum and integration range now depend

on the mass of the state, the kinematic distributions of the bottomonium states are no

longer identical in the ICEM. Using the kT -factorization approach, in a p+ p collision the

ICEM production cross section for a directly-produced bottomonium state Q is

σ = FQ

∫ 4m2
B

M2
Q

dŝ

∫
dx1

x1

∫
dφ1

2π

∫
dk1T

2Φ1(x1, k1T , µ
2
F1)

×
∫
dx2

x2

∫
dφ2

2π

∫
dk2T

2Φ2(x2, k2T , µ
2
F2)σ̂(R +R→ QQ)

× δ(ŝ− x1x2s+ |~k1T + ~k2T |2) , (5.3)

where the square of the heavy quark pair invariant mass is ŝ while the square of the

center-of-mass energy in the p + p collision is s. Here Φ(x, kT , µ
2
F ) is the unintegrated

parton distribution function (uPDF) for a Reggeized gluon with a momentum fraction x

and a transverse momentum kT interacting with a factorization scale µF . The angles φ1,2

in Eq. (5.3) are between the kT1,2 of the partons and the pT of the final state bottomonium

Q. The parton-level cross section is σ(R + R → bb̄). Finally, FQ is a universal factor for
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the directly-produced bottomonium state Q, and is independent of the projectile, target,

and energy. In this approach, the cross section is

d4σ

dpTdydŝdφ
= σδ(ŝ− x1x2s+ p2

T )δ
(
y − 1

2
log

x1

x2

)
δ
(
p2
T − |~k2

1T + ~k2
2T |
)
δ(φ− (φ1 − φ2))

= FQ

∫
2

π
k2Tdk2T

∑
k1T

[
Φ1(k1T , x10, µ

2
F1)

x10

Φ2(k2T , x20, µ
2
F2)

x20

× k1TpT
σ̂(R +R→ QQ)

s
√
k2

2T (cos2 φ− 1) + p2
T

]
(5.4)

where the sum k1T is over the roots of k2
1T + k2

2T + 2k1Tk2T cosφ = p2
T , and k1T,1, k1T,2

are

k1T,1 = −k2T cosφ+
√
k2

2T (cos2 φ− 1) + p2
T (5.5)

k1T,2 = −k2T cosφ−
√
k2

2T (cos2 φ− 1) + p2
T . (5.6)

The momentum fractions x10 and x20 are

x10 =

√
ŝ+ p2

T

s
e+y , (5.7)

x20 =

√
ŝ+ p2

T

s
e−y . (5.8)

Here, φ is the relative azimuthal angle between two incident Reggeons (φ = φ1 − φ2) and

pT is the transverse momentum of the produced bb̄.

Thus the transverse momentum distribution dσ/dpT in the ICEM is

dσ

dpT
=

∫
dydŝdφ

d4σ

dpTdydŝdφ
. (5.9)

We integrate over rapidity to compare to collider data with defined rapidity cuts. Simi-

larly, the rapidity distribution dσ/dy in the ICEM is

dσ

dy
=

∫
dpTdŝdφ

d4σ

dpTdydŝdφ
. (5.10)

As our central result, we take the renormalization and factorization scales to be µF =

µR = mT , where mT is the transverse mass of the bb̄. We will study the effect of varying

these scales on the pT distributions and the polarization.
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Table 5.1. The mass, MQ, and the squared feed-down transition Clebsch-Gordan co-
efficients, SJzQ , for all bottomonium states contributing to prompt Υ(nS) production.

Q MQ (GeV) SJz=0
Q SJz=±1

Q

Υ(1S) 9.46 1 0

Υ(2S) 10.02 1 0

Υ(3S) 10.36 1 0

χb1(1P) 9.89 0 1/2

χb2(1P) 9.91 2/3 1/2

χb1(2P) 10.26 0 1/2

χb2(2P) 10.27 2/3 1/2

χb1(3P) 10.51 0 1/2

χb2(3P) 10.51 2/3 1/2

5.3 Polarization of prompt Υ(nS)

We employ the scattering amplitudes calculated in Ref. [59] to compute the bb̄ partonic

production cross section σ̂J,Jz according to the JP of each directly produced bottomonium

state below the BB threshold. We then convolute the polarized partonic cross sections

with the uPDFs to obtain the hadron-level cross section, σ, as a function of pT using

Eq. (5.9). The bottomonium masses which appear as the lower limit of the bb̄ invariant

mass in the calculations of σ̂J,Jz are listed in Table 5.1. We employ the ccfm-JH-2013-

set1 [19] uPDFs in this calculation.

We assume that the angular momentum of each directly-produced bottomonium state

is unchanged by the transition from the parton level to the hadron level, consistent with

the CEM expectation that the linear momentum is unchanged by hadronization.

We calculate the ratio of the individual Jz = 0,±1 to the unpolarized partonic cross

sections ratios for each directly-produced bottomonium state Q that has a contribution

to prompt Υ(nS) production: Υ(1S), Υ(2S), Υ(3S), χb1(1P), χb2(1P), χb1(2P), χb2(3P),

χb1(3P) and χb2(3P). These ratios, RJz
Q , are then independent of FQ. We assume the

feed-down production of Υ(nS) from the higher mass bound states follows the angular
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momentum algebra. Their contributions of these higher states to RJz=0
Υ(nS) for prompt Υ(nS)

are added after weighting by the feed-down contribution ratios cQ [101]:

RJz=0
Υ =

∑
Q,Jz

cQS
Jz
Q R

Jz
Q . (5.11)

Here SJzQ is the transition probability from a given state Q produced in a Jz state to a

Υ(nS) with Jz = 0 in a single decay. We assume two pions are emitted for S state feed

down, Υ(2S) → Υ(1S)ππ, and a photon is emitted for a P state feed down, χb(1P) →
Υ(1S)γ. SJzQ is then 1 (if Jz = 0) or 0 (if Jz = 1) for Q = Υ(2S) since the transition,

Υ(2S) → Υ(1S)ππ, does not change the angular momentum of the quarkonium state.

For directly produced Υ(nS), SJzQ is 1 for Jz = 0 and 0 for Jz = 1. The SJzQ for the χ

states are the squares of the Clebsch-Gordan coefficients for the feed-down production via

χb → Υ(nS)γ. The bottomonium feed-down ratios are pT -dependent [101]: the fraction of

direct production is larger at low pT than at high pT . We consider two sets of feed-down

ratios from Ref. [101]. These ratios are derived from LHC measurements [106, 115–122]

assuming they vary with pT but not rapidity [101]. The “low pT” ratios are used to

compare with LHCb data (0 < pT < 20 GeV) where the “high pT” ratios are employed

to compare with CMS data (10 < pT < 50 GeV). Here, we are assuming the feed-down

contribution from χb1(nP) and χb2(nP) are the same as in our previous approach for the

χc states [58]. A similar assumption is made for the other P states. The values of MQ and

SJzQ for all bottomonium states contributing to prompt Υ(nS) production are collected in

Table 5.1 and the values of cQ in the two pT regions are presented in Table 5.2.

Finally, the Jz = 0 to the unpolarized ratio for prompt Υ(nS) states are converted

into the polarization parameter λϑ [34],

λϑ =
1− 3RJz=0

1 +RJz=0
, (5.12)

where −1 < λϑ < 1. If λϑ = −1, Υ(nS) production is totally longitudinal, λϑ = 0 refers

to unpolarized production, while production is totally transverse for λϑ = +1.
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5.4 Results

Although the matrix elements in this calculation are LO in αs, by convoluting the

polarized partonic cross sections with the transverse momentum dependent uPDFs us-

ing the kT -factorization approach, we can calculate the yield as well as the polarization

parameter λϑ as a function of pT . The full NLO polarization, including qq̄ and (q + q̄)g

contributions, will be discussed in a future publication.

The traditional CEM can describe the unpolarized yields of Υ(nS) production at NLO

assuming collinear factorization [123]. In this calculation, we take advantage of the ICEM

to calculate the direct production of the individual bottomonium states separately. Since

this is the first bottomonium calculation in the ICEM using the kT -factorization approach,

it is important to check if our calculated unpolarized yields are also in agreement with

the data.

We first check how our approach describes the transverse momentum and rapidity

distribution of the bottomonium states at collider energies. We then discuss the transverse

momentum dependence of the polarization parameter λϑ for prompt Υ(nS) production.

We compare our results to the polarization measured in collider experiments in the helicity

(HX), Collins-Soper (CS) [33], and Gottfried-Jackson (GJ) [32] frames to discuss the frame

dependence of λϑ. W also discuss the sensitivity of our results to the bottom quark mass,

the renormalization scale and the feed-down ratios. In our calculations, we construct the

uncertainty bands by varying the bottom quark mass around its base value of 4.75 GeV, in

the interval 4.5 < mb < 5 GeV, and the renormalization scale around its base value of mT ,

in the interval 0.5 < µR/mT < 2, while keeping the factorization scale fixed at µF = mT .

The total uncertainty band is constructed by adding the mass and renormalization scale

uncertainties in quadrature. We do not extend our calculation below p+p̄ at Tevatron

energies because at fixed-target energies and even at the RHIC collider the kT -factorization

approach with off-shell gluons is inappropriate for bottomonium.

5.4.1 Unpolarized bottomonium production

Here, we present the pT and rapidity distributions of the Υ(nS) states as well as the

ratio of χb1(1P) to χb2(1P) in our approach. In the spirit of the traditional CEM, FQ in
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Figure 5.1. The pT dependence of prompt Υ(1S) production at
√
s = 7 TeV in the

ICEM obtained by varying the bottom quark mass (blue), the factorization scale in
the range 0.5 < µF /mT < 2 (magenta), and the renormalization scale in the range
0.5 < µR/mT < 2 (green) is compared with the CMS midrapidity data [122].

Eq. (5.3) has to be independent of the projectile, target, and energy for each bottomo-

nium state Q. Even though the focus of this paper is on polarization, independent of FQ,

the unpolarized bottomonium yields in the ICEM using the kT -factorization approach

were not calculated before. Therefore, it is important to first confirm that this approach

can indeed describe the bottomonium yields as a function of pT and rapidity before dis-

cussing polarization. The direct production cross section is calculated using Eq. (5.9) by

integrating the pair invariant mass from MQ to 2mB0 (mB0 = 5.28 GeV).

We first obtain FΥ(nS) by comparing our results with the Υ(nS) yields measured by

the CMS Collaboration at 7 TeV. Using the same FΥ(nS), we compare our results with the

Υ(nS) data measured at CDF and LHCb.

5.4.1.1 Υ(1S) pT distribution

We found in our previous paper [59] that the charmonium pT distribution has a signif-

icant dependence on the factorization scale for pT > 5 GeV. In this paper, we also fix the

factorization scale at µF = mT instead of including a factor of two variation. In Fig. 5.1,

we show the pT distributions of prompt Υ(1S) production at
√
s = 7 TeV found by fixing
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mb = 4.75 GeV and varying the factorization scale over the range 0.5 < µF/mT < 2

and the renormalization scale over the range 0.5 < µR/mT < 2 separately. We also fix

µF/mT = µR/mT = 1 and vary the bottom quark mass over the range 4.5 < mb < 5 GeV.

The direct production cross section is calculated using Eq. (5.9) by integrating the pair

invariant mass from MΥ(1S) to 2mB0 (mD0 = 5.28 GeV) over the rapidity range |y| < 2.4.

We assume that direct production is a constant fraction, 0.71 of the prompt production,

according to the low pT feed-down coefficients in Table 5.2, since the yield is dominated by

production at low pT . We then compare the prompt pT distribution in the ICEM with the

CMS data [122]. Similar to the charmonium pT distribution, the result has a significant

dependence on the factorization scale for pT > 5 GeV. This is because the uPDFs have

a sharp cutoff for kT > µF and are thus very sensitive to the chosen factorization scale.

The yield varies more as pT approaches mT at high pT . At low pT , mT ∼ MQ and the

cross section is independent of the factorization scale since kT � µF . At moderate pT ,

the variation with µF is similar to or smaller than that due to the bottom quark mass. At

pT ∼ 10 GeV, mT ∼ pT . Thus the lower limit on the factorization scale, mT/2, is on the

order of kT and the yield drops off at this cutoff limit of ∼ 5 GeV, while the upper limit

on the factorization scale, 2mT , is still greater than kT , enhancing the yield. Since, at

LO, only the bb̄ pair carries the transverse momentum, the predictive power for the yields

is limited by the uPDFs. Therefore, to construct a meaningful uncertainty band, we fix

the factorization scale at µF = mT . As we push toward the limit of the kT -factorization

approach with uPDFs at high pT at LO, we can only improve the high pT limit by a full

NLO calculation in the collinear factorization approach where there is no hard limit on

µF as in kT -factorization approach.

After fixing the factorization scale, the variation in bottom quark mass then gives

the largest uncertainty, followed by the variation in renormalization scale. When µR

is reduced, the strong coupling constant is larger, increasing the yield. On the other

hand, when mb is reduced, the yield increases. In the remainder of this section, we

present our results by adding the uncertainties due to variations of the bottom mass and

renormalization scale in quadrature.
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Figure 5.2. The pT dependence of prompt Υ(1S) production at
√
s = 7 TeV in the

ICEM with combined mass and renormalization scale uncertainties (blue) and that
in the CEM using collinear factorization approach (magenta). The CMS midrapidity
data [122] from Fig. 5.1 are also shown.

The prompt Υ(1S) pT distribution at
√
s = 7 TeV with combined uncertainty is shown

in Fig. 5.2. The ICEM result has a peak at pT ∼ 2.5 GeV, in agreement with the data. By

matching to the total experimental unpolarized yield in |y| < 2.4, we find that the ICEM

can describe the Υ(1S) pT distribution with FΥ(1S) = 0.0141. This is the fraction of bb̄

pairs produced in the invariant mass range from MΥ(1S) to 2mB0 , a difference of ∼1 GeV,

that result in direct Υ(1S) production, defined in Eq. (5.3). In general, the ICEM pT

distribution agrees with the data for all pT .

In the same figure, we compare the inclusive Υ(1S) pT distributions with that from the

CEM in the collinear factorization approach. The uncertainty band is constructed by com-

bining the uncertainty by varying the bottom mass in the range 4.56 < mb < 4.74 GeV,

the factorization scale in the range 0.91 < µF/mT < 2.17, and the renormalization scale

in the range 0.9 < µR/mT < 1.32. We find two distributions agree reasonably well with

each other and the data.

We test the universality of FΥ(1S) by comparing the prompt Υ(1S) pT distribution in

the ICEM measured by LHCb [124] at
√
s = 7 TeV and 2 < y < 4.5 in Fig. 5.3 and to

the prompt Υ(1S) pT distribution measured by D0 [125] at
√
s = 1.8 TeV and |y| < 0.5
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in Fig. 5.4. We again assume the direct production is a constant fraction, 0.71, of the

prompt production to obtain the prompt Υ(1S) cross section. We find the ICEM result

agrees with the data for all pT .
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5.4.1.2 Υ(2S) pT distribution

The prompt Υ(2S) pT distribution at
√
s = 7 TeV is compared to the CMS mea-

surement [122] over |y| < 2.4 in Fig. 5.5 and the LHCb data [124] in 2 < y < 4.5 in

Fig. 5.6. Here, the direct production cross section is calculated using Eq. (5.9) by inte-

grating the pair invariant mass from MΥ(2S) to 2mB0 over the rapidity range |y| < 2.4.

Similar to direct Υ(1S), we assume the direct production of Υ(2S) is a constant fraction,

0.73, of the prompt production. We then compare the pT -integrated yield of prompt

Υ(2S) with the CMS measurement [122]. By matching the pT -integrated yield, we find

FΥ(2S) = 0.0144. We note that FΥ(2S) & FΥ(1S), primarily because the integrated mass

region is much narrower for Υ(2S) than Υ(1S), a difference of ∼0.5 GeV in this case. In

the traditional CEM, FΥ(2S) is smaller than FΥ(1S) because the range of integration over

the pair invariant mass is the same for all Υ(nS). We find agreement with the data within

the combined uncertainty band constructed by varying the bottom quark mass and the

renormalization scale in the ICEM. In both cases, the calculations, with their associated

uncertainty bands, are in agreement with the data.
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Figure 5.5. The pT dependence of prompt Υ(2S) production at
√
s = 7 TeV and 2 <

y < 4.5 in the ICEM with combined mass and renormalization scale uncertainties is
compared with the CMS midrapidity data [122].
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Figure 5.6. The pT dependence of prompt Υ(2S) production at
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5.4.1.3 Υ(3S) pT distribution

The prompt Υ(3S) pT distribution at
√
s = 7 TeV is compared to the CMS mea-

surements [122] over |y| < 2.4 in Fig. 5.7 and the LHCb data [124] in 2 < y < 4.5 in

Fig. 5.8. Here, the direct production cross section is calculated using Eq. (5.9) by inte-

grating the pair invariant mass from MΥ(3S) to 2mB0 over the rapidity range |y| < 2.4.

Similar to direct Υ(1S), we assume the direct production of Υ(3S) is a constant fraction,

0.70, of the prompt production. Therefore, we compare the pT -integrated yield of direct

Υ(3S) with the CMS measurement [122]. We find FΥ(3S) = 0.00229. We note that also

FΥ(3S) & FΥ(1S), because the mass range is still smaller for Υ(3S), a difference of only

∼ 0.15 GeV. Again, in the traditional CEM, FΥ(3S) is smaller than FΥ(1S) and FΥ(2S)

because the range of integration over the pair invariant mass is also the same for both

Υ(1S) and Υ(3S). There is fair agreement with the data within the combined uncertainty

band constructed by varying the bottom quark mass and the renormalization scale in the

ICEM. In both cases, the calculations, with their associated uncertainty bands, are in

agreement with the data.
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Figure 5.7. The pT dependence of prompt Υ(3S) production at
√
s = 7 TeV in the

ICEM with combined mass and renormalization scale uncertainties is compared with
the CMS midrapidity data [122].
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Figure 5.8. The pT dependence of prompt Υ(2S) production at
√
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y < 4.5 in the ICEM with combined mass and renormalization scale uncertainties is
compared with the LHCb data [124].

5.4.1.4 Ratio of χb2(1P) to χb1(1P) production

We now turn to the pT dependence of the ratio χb2(1P)/χb1(1P) as a function of pT .

The ratios of direct χb2(1P) to direct χb1(1P) at
√
s = 8 TeV at central and forward
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Figure 5.9. The ratio of χb2(1P) to χb1(1P) in the ICEM with combined mass and
renormalization scale uncertainties at

√
s = 8 TeV at central rapidity |y| < 1.5 (a)

and at forward rapidity 2 < y < 4.5 (b) assuming Fχb1(1P)
= Fχb2(1P)

. The CMS
data [126] and the LHCb data [127] are also shown in (a) and (b) respectively.

rapidities are presented in Fig. 5.9. Direct production is calculated using Eq. (5.9) by

integrating the pair invariant mass from Mχb1,2(1P) to 2mB0 over two rapidity ranges, |y| <
1.5 and 2 < y < 4.5 respectively, in order to compare with existing measurements [126,

127]. As there is not enough information on the feed-down production to χb, we assume the

prompt production of χb1,2(1P) is approximately the same as the direct production. Since

there are no measurements of the absolute χb1,2(1P) production cross sections, we cannot

fix Fχb1,2(1P). Furthermore, the data reports the ratio as a function of the pT of Υ(1S). To

compare our results with the data, we then assume that pχbT ≈ p
Υ(1S)
T , not unreasonable

since the mass difference between the states is ∼ 500 MeV and the decay photon is soft.

Thus the ICEM can only predict the trend of the relative production subject to an overall

vertical shift. Similar to the χc2 to χc1 ratio in the ICEM [59], χb2(1P)/χb1(1P) becomes

constant for pT > 2Mχb . However, the relative production decreases with increasing pT for

pT < 2Mχb , independent of the rapidity range considered. Our ICEM results only agree

with the data in the higher pT range. This is because the difference between the amplitudes

of χb1 and χb2 is most apparent at low pT since the curvature of the distributions changes

fastest near the peaks of the distributions. However, the measured relative production

is approximately pT independent at lower pT . We note that the χc2/χc1 ratios presented

in Ref. [59] agreed with the data over the measured pT range because, in that case,

pT >> Mχc over the range of the measurement. However, with the lower pT range here
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this condition is not satisfied for χb.

5.4.1.5 Υ(nS) rapidity distribution

We now turn to the rapidity dependence of Υ(nS) production. The rapidity distribu-

tion of prompt of Υ(nS) at
√
s = 7 TeV is shown in Fig. 5.10. The direct production is

calculated using Eq. (5.10) by integrating over the pT range 0 < pT < 30 GeV. We again

assume the direct production of Υ(1S, 2S, 3S) is a constant 71%, 73%, and 70% of prompt

Υ(1S, 2S, 3S) production respectively. We use the same values of FΥ(nS) determined for

the pT distributions to compare the rapidity distribution in the ICEM with the measure-

ment made by the LHCb Collaboration [124]. We find the ICEM can describe the LHCb

rapidity distribution at
√
s = 7 TeV using the FΥ(nS) obtained at the same energy by

CMS in the central rapidity region.

5.4.2 pT dependence of λϑ

Here, we present the pT dependence of the polarization parameter λϑ in p + p and

p + p̄ collisions. Because the polarization parameter is defined as the ratio of polarized

to unpolarized cross sections in Eq. (5.11) and these cross sections depend on µR in the
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same way, the polarization parameter is independent of the scale choice. Note that λϑ is

thus also independent of µF . However, the amplitudes themselves are mass dependent so

that the polarized to unpolarized ratio in λϑ depends on the bottom quark mass. Thus

the only uncertainty on λϑ in our calculation is due to the variation of mb in the range

4.5 < mb < 5 GeV. Therefore, in this section, the uncertainty bands only include the

mass variation and the uncertainty in the calculated polarization is reduced relative to

those of the yield calculations.

We note that the Jz components of the polarized cross section depend differently on

the bottom quark mass. When pT ≤ MQ, the longitudinally polarized partonic cross

section decreases faster with increasing mb than the transversely polarized partonic cross

section in the helicity frame. Thus increasing the bottom quark mass results in more

transverse polarization. When pT > MQ, the longitudinally-polarized partonic cross sec-

tion decreases more slowly with increasing mb than the transversely-polarized partonic

cross section. Thus, increasing the bottom quark mass results in more longitudinal polar-

ization. As pT � ŝ, λϑ becomes insensitive to mb. Thus the uncertainty in λθ is narrower

at high pT .

Our calculation also depends on the feed-down ratios presented in Table 5.2, taken from

Ref. [101]. Here, “low pT” refers to pT . 20 GeV and “high pT” refers to pT & 20 GeV.

We use the “low pT” ratios to compare our results with LHCb data (0 < pT < 20 GeV)

and the “high pT” ratios to compare with the CMS data (10 < pT < 50 GeV).

5.4.2.1 prompt Υ(nS) polarization in p+ p(p̄) collisions at low pT

We present the polarization parameters for prompt Υ(1S) in p+ p collisions at
√
s =

7 TeV at forward rapidity (2.2 < y < 3) in the helicity frame (HX) in Fig. 5.11. We

compare our results with data from the LHCb Collaboration in the forward rapidity

region [128]. The ICEM polarization of prompt Υ(nS) in the helicity frame is slightly

transverse at low pT (pT < MΥ). The result becomes unpolarized for pT > MΥ. We

do not find that the polarization has any significant rapidity dependence. The ICEM

polarization agrees with the LHCb data for pT > MΥ.

We also compare the polarization parameter for prompt Υ(1S) in p+p̄ at
√
s = 1.8 TeV
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Figure 5.11. The pT dependence of the polarization parameter λϑ for prompt Υ(1S)
(a), Υ(2S) (b), and Υ(3S) (c) production in the helicity frame at

√
s = 7 TeV in the

ICEM using the “low pT ” cQ’s with mass uncertainties are compared to the LHCb
data in the range 2.2 < y < 3 [128].

with the data measured by the D0 Collaboration in the region |y| < 0.4 [129] in the helicity

frame, shown in Fig. 5.12. We also do not find a strong dependence on
√
s for the prompt

Υ(1S) polarization in the ICEM. The trend in the pT dependence of the polarization

is the same. At the highest pT bin, the prompt Υ(1S) polarization measured by the

D0 Collaboration is slightly longitudinal while still agreeing with the ICEM calculation,

which gives an unpolarized result.

We do not find significant differences in the polarizations among the Υ(nS) states.

This is because the calculations of the Υ(nS) states differ from one another only by the

integration limits of the ICEM. Furthermore, the polarization depends only on the ra-

tio of polarized to unpolarized cross sections. Thus there is only a slight difference in

polarization whether only direct production is included or if feed down also contributes.
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Figure 5.12. The pT dependence of the polarization parameter λϑ for prompt Υ(1S)
production in the helicity frame at

√
s = 1.8 TeV with |y| < 0.4 in the ICEM using

the “low pT ” cQ’s [101] with mass uncertainties are compared to the CDF data [129].

Therefore the polarization of Υ(nS) from χb feed down is similar to that for direct pro-

duction Υ(nS) alone. Thus, varying the feed-down ratio, either by adopting the “high

pT” ratios from Ref. [101] used here or the pT -independent ratios calculated in Ref. [84]

and used in Ref. [58], changes the polarization by less than 0.05 over all pT . Our results

differ from an NLO NRQCD calculation finding that all Υ(nS) states are unpolarized:

(−0.2 < λϑ < 0.2) at low pT [114]. In their approach, at low pT , the direct Υ(nS) states

are slightly longitudinally polarized while the contribution from χb feed down is slightly

transverse, resulting in unpolarized prompt production.

5.4.2.2 prompt Υ(nS) polarization in p+ p(p̄) collisions at high pT

We present the polarization parameters for prompt Υ(1S) in p+ p collisions at
√
s =

7 TeV at central rapidity (|y| < 0.6) in the helicity frame respectively in Fig. 5.13. We

compare our results with the data from the CMS Collaboration in the central rapidity

region [130]. The ICEM polarization of prompt Υ in the helicity frame is near unpolarized

at intermediate pT (pT ∼ MΥ). We see that λϑ becomes unpolarized for pT > MΥ. The

ICEM polarization agrees with the CMS data for Υ(1S) and only agrees with Υ(2S) and

Υ(3S) data within 2σ. We do not find that the polarization has any significant rapidity

130



Figure 5.13. The pT dependence of the polarization parameter λϑ for prompt Υ(1S)
(a), Υ(2S) (b), and Υ(3S) (c) production in the helicity frame at

√
s = 7 TeV in the

ICEM using the “high pT ” cQ’s [101] with mass uncertainties are compared to the
CMS data at midrapidity in the range |y| < 0.6 [130].

dependence.

We note that here we have used the “high pT” set of feed-down ratios to consider

the prompt Υ(nS) polarization. Although the contribution from direct Υ(1S) to prompt

Υ(1S) drops from 71% to 45%, the polarization of the prompt production does not change

significantly. This is because the polarization of all the bottomonium states below the BB

threshold are very similar after feed down to prompt Υ(nS). We note that the polarization

at intermediate pT , pT ∼ 15 GeV, has no significant dependence on the choice of feed-

down ratios, as shown in Figs. 5.11 and 5.13. The variation of the feed down fractions is

negligible compared to the bottom quark mass variation.

Similar to our results at low pT , we do not find significant differences in polarizations

among the Υ(nS) states. Our results differ from an NLO NRQCD calculation finding
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that the polarization at pT & 20 GeV is more transverse for higher mass bound states,

saturating at λϑ ∼ 0.2, ∼ 0.4, and ∼ 0.9 for Υ(1S), Υ(2S), and Υ(3S) respectively [114].

The significant transverse polarization of Υ(3S) in their approach is due to the fact that

the polarization is calculated without the contribution from χb feed-down production. In

a subsequent update of Ref. [114], where χb(nP) feed-down production is considered, the

polarization parameters saturate at λϑ ∼ 0.4, ∼ 0.6, and ∼ 0.6 for Υ(1S), Υ(2S), and

Υ(3S) respectively [131]. (See also Ref. [132].)

5.4.3 Frame dependence of λϑ
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Figure 5.14. The pT dependence of the polarization parameter λϑ for prompt Υ(1S)
production in the Collins-Soper frame at

√
s = 7 TeV and 2.2 < y < 3 in the ICEM

using the “low pT ” cQ’s [101] with mass uncertainties are compared to the LHCb
data [128].

We now turn to the frame dependence of our 7 TeV results. We calculate the po-

larization parameter in p + p collisions at
√
s = 7 TeV in the same kinematic region as

presented in Fig. 5.11 in both the Collins-Soper and the Gottfried-Jackson frames, shown

in Figs. 5.14 and 5.15 respectively. Since the polarization axes in the helicity frame and

the Collins-Soper frame are always perpendicular to each other in O(α2
s) kinematics, the

polarization in the Collins-Soper frame is opposite to that in the helicity frame in the

ICEM. Therefore, at low pT , where the Υ(1S) is predicted to be slightly transverse in the
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Figure 5.15. The pT dependence of the polarization parameter λϑ for prompt Υ(1S)
production in the Gottfried-Jackson frame at

√
s = 7 TeV and 2.2 < y < 3 in the

ICEM using the “low pT ” cQ’s [101] with mass uncertainties are compared to the
LHCb data [128].

helicity frame, it is predicted to be slightly longitudinal in the Collins-Soper frame. For

pT > MΥ, λϑ is predicted to be unpolarized in both frames. We only find agreement with

the data in the Collins-Soper frame for the highest pT bin. When pT � mT , the angle be-

tween the polarization axes in the Gottfried-Jackson frame and that in the Collins-Soper

frame is small. As pT increases, the polarization axis in the Gottfried-Jackson frame be-

comes collinear with that in the helicity frame. Therefore, the polarization calculated in

the Gottfried-Jackson frame is opposite to that in the helicity frame at low pT and thus

similar to that in the Collins-Soper frame. However, as pT increases, the polarization in

the Gottfried-Jackson frame should asymptotically approach the polarization in the he-

licity frame. Since λϑ is unpolarized in the helicity frame in the high pT limit, the ICEM

polarization becomes frame independent in this limit. We find the ICEM polarization

agrees with the data in all frames at high pT but does not agree with the low pT data

where the frame dependence is most significant.
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5.5 Conclusions

We have presented the transverse momentum distributions of the prompt Υ(nS) cross

section as well as the the polarization of prompt Υ(nS) production in p + p and p + p̄

collisions in the improved color evaporation model in the kT -factorization approach. We

compared the pT dependence to data at collider energies. We also presented the ratio

χb2(1P)/χb1(1P) as a function of pT at
√
s = 8 TeV. We find prompt Υ(nS) production

to be unpolarized at pT &MΥ, independent of frame. We do not observe any rapidity or

energy dependence in the polarization in the ranges considered.

Since our calculation of the matrix elements is leading order in αs, we expect improve-

ments when we calculate the cross section to O(α3
s) in a future publication.
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ABSTRACT

We calculate the production and polarization of direct J/ψ production in the improved

color evaporation model at O(α3
s) in the collinear factorization approach. We present the

production and the polarization parameters of direct J/ψ production in p + p collisions

as a function of transverse momentum. We include the pT dependence of the polarization

parameters λϑ, λφ, λϑφ in the helicty and the Collins-Soper frames, as well as the frame-

invariant polarization parameter λ̃. This is the first pT -dependent calculation of J/ψ

production and polarization in the improved color evaporation model using the collinear

factorization approach. We find agreement with both J/ψ cross sections and polarization

measurements.
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6.1 Introduction

Understanding quarkonium production is important to understand both the long and

short distance aspects of QCD. Both the perturbative and non-perturbative natures of

QCD are needed to model the production of quarkonium from heavy quark production in

hard processes to the hadronization of the final state. Nonrelativistic QCD (NRQCD) [61],

the most commonly employed model of quarkonium production cannot describe the J/ψ

production and polarization while respecting the universality of the long distance matrix

elements (LDMEs) for pT cuts less than twice the mass of the quarkonium state [62, 63].

It also has difficulty describing the J/ψ polarization and the LHCb ηc production [92,93]

while using heavy quark spin symmetry [65–67]. On the other hand, the color evaporation

model (CEM) [69–71] and the improved CEM [56] have only been employed extensively

to hadroproduction on S-state quarkonia only. While polarization data is a strong test of

models, precise data measured from the future electron-ion collider demand an expansion

of the ICEM beyond hadroproduction.

Our previous charmonium and bottomonium polarization calculations performed in

the kT -factorization approach [58, 59] describes both the polarization and production at

most pT . However, the pT -dependence of the production calculation has a strong depen-

dence on the factorization scale chosen. Also, the frame-dependent discrepancies between

the ICEM polarization calculation and the measured data are not visualized quantita-

tively. We address these issues in this paper by performing a polarized production cal-

culation in the collinear factorization approach, and also computing a frame-invariant

polarization parameter to compare with the data. In this calculation, only the produc-

tion and polarization of direct J/ψ is presented. We will address the effects of feed-down

production on J/ψ in a later publication.

In this paper, we present both the yield and the polarization parameters of direct

J/ψ production as a function of pT in the ICEM [56] using the collinear factorization

approach. The ICEM assumes the J/ψ production cross section takes a constant fraction

of the open cc̄ cross section with invariant mass above the mass of the J/ψ but below

the hadron threshold, which is the DD limit. A distinction is also made between the cc̄
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momentum and the J/ψ momentum in the ICEM compared to the traditional CEM. The

direct J/ψ production cross section in p+ p collision in the ICEM is given by

σ = FJ/ψ
∑
i,j

∫ 2mD

MJ/ψ

dMdxidxjfi(xi, µF )fj(xj, µF )σ̂ij→cc̄+k(pcc̄, µR)|pcc̄= M
MJ/ψ

pψ
,(6.1)

where i and j are q, q̄ and g such that ij = qq̄ or gg, FJ/ψ is a universal factor at fixed

order for direct J/ψ production in the ICEM that is independent of projectile and energy,

x is the momentum fraction of the parton, and f(x, µF ) is the parton distribution function

(PDF) for a parton of the proton as a function of x and the factorization scale µF . Finally,

σ̂ij→cc̄+k are the parton-level cross sections for ij → cc̄ with a light parton k. The invariant

mass of the cc̄ pair, M , is integrated from the physical mass of J/ψ (MJ/ψ = 3.10 GeV)

to two times the mass of the D0 hadron (2mD0 = 3.72 GeV). In order to describe the

pT -distribution at low pT , the initial state partons are each introduced to a small gaussian

transverse momentum, kT , kick of 〈k2
T 〉 = 1 + (1/12) ln(

√
s/20 GeV) = 1.49 GeV2 for

√
s = 7 TeV. The parton distribution functions are then multiplied by the gaussian

function g(kT )

g(kT ) =
1

π〈k2
T 〉

exp(k2
T/〈k2

T 〉) , (6.2)

assuming the x and kT dependences completely factorize. The same gaussian smearing is

applied in Refs. [56, 72,133]. Note that in the traditional CEM, the lower invariant mass

threshold for all charmonium states are all set to the production threshold, which makes

the kinematic distributions of the charmonium states are almost identical except for a

different FQ. The distinction between the J/ψ momentum and cc̄ momentum also helps

describe the pT distributions at high pT .

We consider diagrams with the projection operators applied to the cc̄ [91, 134] to

calculate the partonic cross sections. We denote the momenta of i, j, c, c̄, and r in the

partonic process i+j → c+ c̄+r are denoted as k1, k2, pc, pc̄, and k3 respectively, where r

is the emitted parton, with ε(k1), ε(k2), and ε(k3) denoting the polarization of the parton

when applied. When calculating the 2→ 3 cross section, we transformed the momenta of

the charm quark (pc) and the anti-charm quark (pc̄) into the momentum of the proto-J/ψ
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(pψ) and the relative momentum of the heavy quarks (kr)

pc =
1

2
pψ + kr , (6.3)

pc̄ =
1

2
pψ − kr , (6.4)

and denote the polarization vector of the proto-J/ψ as ε(Sz) where Sz is the spin projection

onto the polarization axis. Instead of taking the limit kr → 0, we note that since the mass

of the proto-J/ψ is integrated from the physical mass of J/ψ to the hadronic threshold,

the relative momentum kr depends on the mass of the proto-J/ψ. We include 16 diagrams

from gg → cc̄g, where the Feynman part of the amplitudes, A, inM = CA, arranged by

the number of three-gluon vertices, are

Agg0 = ig3
s tr

[
/ε2(/pc − /k2 +mc)/ε

∗
3(−/pc̄ + /k1 +mc)/ε1/ε(Sz)

/pψ +mψ

2mψ

]
1

2pc · k2

1

2pc̄ · k1

+ permutations , (6.5)

Agg1 = ig3
s tr

[
/ε∗3(/pc + /k3 +mc)γ

µ/ε(Sz)
/pψ +mψ

2mψ

]
[(−k1 − 2k2) · ε1ε2µ

+ (ε1 · ε2)(−k1 + k2)µ + (2k1 + k2) · ε2ε1µ)]
1

2pc · k3

1

(k1 + k2)2

+ permutations , (6.6)

Agg2 = ig3
s tr

[
γν/ε(Sz)

/pψ +mψ

2mψ

]
[(−k1 − 2k2) · ε1εµ2 + (ε1 · ε2)(−k1 + k2)µ

+ (2k1 + k2) · ε2εµ1)]

× [(−k1 − k2 − pψ) · ε∗3gµν + ε∗3µ(k3 + k1 + k2)ν + (pψ − k3)µε
∗
3ν ]

1

(k1 + k2)2

1

m2
ψ

+ permutations , (6.7)

and the diagram with a four-gluon vertex factorized in the form

Mgg4 = Cgg4,1Agg4,1 + Cgg4,2Agg4,2 + C4,3Agg4,3 , (6.8)
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with

Agg4,1 = ig3
s tr

[
γν/ε(Sz)

/pψ +mψ

2mψ

]
(gαγgνβ − gαβgνγ)

1

m2
ψ

εαεβ2 ε
∗γ
3 , (6.9)

Agg4,2 = ig3
s tr

[
γν/ε(Sz)

/pψ +mψ

2mψ

]
(gανgγβ − gαβgγν)

1

m2
ψ

εαεβ2 ε
∗γ
3 , (6.10)

Agg4,3 = ig3
s tr

[
γν/ε(Sz)

/pψ +mψ

2mψ

]
(gαγgνβ − gανgγβ)

1

m2
ψ

εαεβ2 ε
∗γ
3 . (6.11)

We include 5 diagrams from gq → cc̄q which written in terms of Dirac spinors are,

Agq,1 = −ig3
s tr

[
γν/ε(Sz)

/pψ +mψ

2mψ

]
[ū(k3)γν(/k1 + /k2)/ε1u(k2)]

1

m2
ψ

1

2k1 · k2

, (6.12)

Agq,2 = −ig3
s tr

[
/ε1(/pc − /k1 +mc)γ

ν/ε(Sz)
/pψ +mψ

2mψ

]
[ū(k3)γνu(k2)]

× 1

−2pc · k1

1

(−k3 + k2)2
, (6.13)

Agq,3 = −ig3
s tr

[
γν(/pc̄ + /k1 +mc)/ε1/ε(Sz)

/pψ +mψ

2mψ

]
[ū(k3)γνu(k2)]

× 1

−2pc̄ · k1

1

(−k3 + k2)2
, (6.14)

Agq,4 = −ig3
s tr

[
γν/ε(Sz)

/pψ +mψ

2mψ

]
[(k3 − k2 − pψ) · ε1gµν + ε1µ(−k1 − k3 + k2)ν

+ (pψ + k1)µε1ν ][ū(k3)γµu(k2)]
1

m2
ψ

1

(−k3 + k2)2
, (6.15)

Agq,5 = −ig3
s tr

[
γν/ε(Sz)

/pψ +mψ

2mψ

]
[ū(k3)/ε1(/k3 − /k1)γνu(k2)]

1

m2
ψ

1

−2k1 · k2

. (6.16)
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We include 5 diagrams from gq̄ → cc̄q̄, which are,

Agq̄,1 = −ig3
s tr

[
γν/ε(Sz)

/pψ +mψ

2mψ

]
[v̄(k2)/ε1(−/k2 − /k1)γνv(k3)]

1

m2
ψ

1

2k1 · k2

, (6.17)

Agq̄,2 = −ig3
s tr

[
/ε1(/pc − /k1 +mc)γ

ν/ε(Sz)
/pψ +mψ

2mψ

]
[v̄(k2)γνv(k3)]

× 1

−2pc · k1

1

(−k3 + k2)2
, (6.18)

Agq̄,3 = −ig3
s tr

[
γν(−/pc̄ + /k1 +mc)/ε1/ε(Sz)

/pψ +mψ

2mψ

]
[v̄(k2)γνv(k3)]

× 1

−2pc̄ · k1

1

(−k3 + k2)2
, (6.19)

Agq̄,4 = −ig3
s tr

[
γν/ε1/ε(Sz)

/pψ +mψ

2mψ

]
[(k3 − k2 − pψ) · ε1gµν

+ ε1µ(−k1 − k3 + k2)ν + (pψ + k1)µε1ν ][v̄(k2)γµv(k3)]
1

m2
ψ

1

(−k3 + k2)2
,(6.20)

Agq̄,5 = −ig3
s tr

[
γν/ε1/ε(Sz)

/pψ +mψ

2mψ

]
[v̄(k2)γν(−/k3 + /k1)/ε1v(k3)]

× 1

m2
ψ

1

−2k3 · k1

. (6.21)
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Finally, we include 5 diagrams from qq̄ → cc̄g, which are

Aqq̄,1 = −ig3
s tr

[
γν/ε(Sz)

/pψ +mψ

2mψ

]
[(−k1 − k2 − pψ) · ε∗3gµν

+ ε∗3µ(k3 + k1 + k2)ν + (pψ − k3)µε
∗
3ν ][v̄(k2)γµu(k1)]

1

m2
ψ

1

(k1 + k2)2
, (6.22)

Aqq̄,2 = −ig3
s tr

[
/ε∗3(/pc + /k3 +mc)γ

ν/ε(Sz)
/pψ +mψ

2mψ

]
[v̄(k2)γνu(k1)]

× 1

2pc · k3

1

(k1 + k2)2
, (6.23)

Aqq̄,3 = −ig3
s tr

[
γν(−/pc̄ − /k3 +mc)/ε

∗
3/ε(Sz)

/pψ +mψ

2mψ

]
[v̄(k2)γνu(k1)]

× 1

2pc̄ · k3

1

(k1 + k2)2
, (6.24)

Aqq̄,4 = −ig3
s tr

[
γν/ε(Sz)

/pψ +mψ

2mψ

]
[v̄(k2)γν(−/k3 + /k1)/ε∗3u(k1)]

× 1

m2
ψ

1

−2k1 · k3

. (6.25)

The color factors, C, in the squared amplitudes are calculated separately by summing

over all colors and averaging over the initial state colors. We assume that the angular

momentum of the proto-J/ψ is unchanged by the transition from the parton level to the

hadron level. We then convolute the partonic cross sections with the CT14 PDFs [15]

on the domain where pψ · k = 0. We restrict the partonic cross section calculations

within the perturbative domain by introducing a regularization parameter such that all

propagators are at a minimum distance of q2
reg = M2 from their poles as used in Ref. [91].

We take the factorization and renormalizaton scale to be µF/mT = 2.1+2.55
−0.85 and µF/mT =

1.6+0.11
−0.12 respectively, where mT is the transverse mass of the charm quark produced (mT =√
m2
c + p2

T , where p2
T = 0.5

√
p2
Tc + p2

T c̄). We also vary the charm quark mass around

1.27± 0.09 GeV. These variations were determined in Ref. [72] where the uncertainty of

total charm cross section were considered.
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6.2 Polarized production of direct J/ψ

We factor the polarization vector, ε(Sz), from the unsquared ampltidues for all sub-

processes, giving us the form

Mn = εµ(Sz)Mn,µ (6.26)

for each sub-process denoted by the initial states, n = gg, gq, gq̄, qq̄. The polarization

vectors for Jz = 0,±1 in the rest frame of the proto-J/ψ are

ε(0)µ = (1, 0, 0, 0) , (6.27)

ε(±1)µ = ∓ 1√
2

(0, 1,±i, 0) , (6.28)

in the convention that the fourth component is the z-component. While the unpolarized

cross section does not depend on the choice of z-axis, the polarized cross sections depend

on the orientation of the z-axis. In this calculation, the y axis is chosen to be the normal

vector of the plane formed by the two beams with momenta ~P1 and ~P2,

ŷ =
−~P1 × ~P2

|~P1 × ~P2|
. (6.29)

In the helicity frame, the zHX-axis is the flight direction of the cc̄ pair in the center-of-

mass of the colliding beams. In the Collins-Soper frame, the zCS-axis is the angle bisector

between one beam and the opposite direction of the other beam. The x-axis is then

determined by the right-handed convention.

We compute the polarized cross sections matrix element, σi,j, in the rest frame of the

cc̄ pair by first taking the product of the unsquared amplitude with polarization vector of

Jz = i and the unsquared amplitude with polarization vector of Jz = j in each sub-process

(n), then adding them, and finally calculating the cross section according to Eq. (6.1)

σi,j =

∫ ∑
n=gg,gq,gq̄,qq̄

(ε(i) · Mn)(ε(j) · Mn)∗ , (6.30)

where i, j = {−1, 0,+1}, and the integral integrates all variables explicitly shown in

Eq. (6.1) as well as the Lorentz Invariant phase-spaces in 2 → 3 scatterings. The unpo-

larized cross section is the trace of the polarized cross sections matrix

σunpol =
∑
i

σi,i = σ−1,−1 + σ0,0 + σ+1,+1 . (6.31)
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The polarization parameters are calculated using the matrix elements of the polarized

cross section. The polar anisotropy (λϑ), the azimuthal anisotropy (λϕ), polar-azimuthal

correlation (λϑϕ) are given by [34],

λϑ =
σ+1,+1 − σ0,0

σ+1,+1 + σ0,0

, (6.32)

λϕ =
Re[σ+1,−1]

σ+1,+1 + σ0,0

, (6.33)

λϑϕ =
Re[σ+1,0 − σ−1,0]√

2(σ+1,+1 + σ0,0)
. (6.34)

These parameters depend on the frame in which they are calcualted and measured. Since

the angular distribution itself is rotationally invariant, there are ways to construct an

invariant polarization parameter. One of the combinations to form a frame-invariant

polarization parameter (λ̃) is [34]

λ̃ =
λϑ + 3λϕ
1− λϕ

. (6.35)

The choice of λ̃ here will be the same as the polar anisotropy parameter (λϑ) in a frame

where the distribution is azimuthally isotropic (λϕ = 0). We can remove the frame-

induced kinematic dependencies when comparing theoretical predictions to data by con-

sidering also the frame-invariant polarization parameter, λ̃.

6.3 Results

We first present how our approach describes the transverse momentum distributions

of J/ψ compared to LHCb [99] and ALICE [105] measurements at
√
s = 7 TeV, and com-

pare our results with previous calculations in the ICEM. We then discuss the transverse

momentum dependence of the frame-dependent polarization parameters λϑ, λϕ, and λϑϕ

as well as the frame-invariant polarization parameter λ̃ compared to the data measured

by the LHCb Collaboration [113] and the ALICE Collaboration [112]. In our calculations,

we construct the uncertainty bands by varying the charm quark mass, the renormalization

scale, and the factorization scale as discussed in section 6.1. The total uncertainty band

is constructed by adding the uncertainties in quadrature.
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Figure 6.1. The pT dependence of inclusive J/ψ production at
√
s = 7 TeV with ra-

pidity within the range 2 < y < 4.5 in the ICEM. The combined mass, renormaliza-
tion scale, and factorization scale uncertainties are shown in the band and compared
to the LHCb data [99]. The LHCb data [99] assuming the J/ψ polarization is totally
transverse, λϑ = +1 (red square), and totally longitudinal, λϑ = −1 (blue square),
are shown. The LHCb data assuming λϑ = 0 lie between the red and blue points and
are not shown.

6.3.1 Unpolarized J/ψ pT -distribution

We calculate the pT -distribution of direct J/ψ production at
√
s = 7 TeV with rapidity

within the range 2 < y < 4.5. We assume direct production is a constant fraction of

0.62 of the inclusive production [84] to obtain the inclusive J/ψ pT -distribution. We

compare our ICEM inclusive J/ψ pT -distribution with the data measured by the LHCb

Collaboration [99]. The comparison is presented in Fig. 6.1. By comparing the total cross

section for pT < 11 GeV, we obtain the value of FJ/ψ to be 0.0283, which is consistent

with previous CEM [72] and ICEM calculations [59]. We note that since this calculation

is done using collinear factorization, the variation in the factorization scale does not result

in a large uncertainty band as seen in our previous calculation using the kT -factorization

approach. Overall, we have good agreement with the data over the pT range measured.

We compare our ICEM pT -distribution of inclusive J/ψ production at
√
s = 7 TeV

with rapidity within the range |y| < 0.9 and 2.5 < y < 4 with the data measured by the

ALICE Collaboration [105]. The comparisons are presented in Fig. 6.2. The ALICE data
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Figure 6.2. The pT dependence of inclusive J/ψ production at
√
s = 7 TeV with

rapidity within the range |y| < 0.9 (left) and 2.5 < y < 4 (right) in the ICEM.
The combined mass, renormalization scale, and factorization scale uncertainties are
shown in the band and compared to the ALICE data [105]. The ALICE data are
measured while assuming J/ψ production is unpolarized.

are measured assuming the J/ψ production is unpolarized. We find our ICEM results

in good agreement with the data over the pT range measured in both kinematic regions

using the same FJ/ψ by comparing with the LHCb data.

We compare the same pT -distribution of inclusive J/ψ production at
√
s = 7 TeV

shown in 6.1 with that from previous calculations in the ICEM. Although this distribution

is for unpolarized J/ψ, the calculation selects only cc̄ with the same spin as the J/ψ. We

thus refer to this calculation as polarized collinear ICEM. We compare this distribution

with the polarized ICEM in the kT -factorization approach [59] and the unpolarized ICEM

in the collinear factorization approach [56]. The former also selects cc̄ with the same spin

as the J/ψ but the latter is a spin-averaged calculation. The unpolarized collinear ICEM

results are calculated in 2.5 < y < 4 and the uncertainty band is constructed in the same

way as the polarized collinear ICEM. The uncertainty band of the kT -factorized ICEM is

constructed by varying the renormalization scale in the interval 0.5 < µR/mT < 2 and

varying the charm mass in the interval 1.2 < mc < 1.5. We find our polarized collinear

ICEM agrees with other calculations in the ICEM.
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Figure 6.3. The pT dependence of inclusive J/ψ production at
√
s = 7 TeV in the

polarized collinear ICEM (this calculation) (blue region), in the polarized ICEM us-
ing the kT -factorization [59] (magenta region), in the unpolarized collinear ICEM
[56] (green region). The LHCb data [99] are shown as in Fig. 6.1.

6.3.2 pT dependence of λϑ, λϕ, and λϑϕ

We calculate the pT -dependence of the frame-dependent polarization parameters λϑ,

λϕ, and λϑϕ at
√
s = 7 TeV within the helicity frame and in the Collins-Soper frame.

We do not observe any rapidity dependence in the polarization parameters. We compare

these results with both the data measured by the LHCb Collaboration [113] and the

data measured by the ALICE Collaboration [112] where the LHCb data are measured

in 2 < y < 4.5 and the ALICE data are measured in 2.4 < y < 4. The comparisons

in the helicity frame and in the Collins-Soper frame are presented in Figs. 6.4 and 6.5

respectively.

The polar anisotropy parameter (λϑ) reflects the proportion of the J/ψ in each spin

projection state, with λϑ = 1 refering to a completely transverse production of Jz = ±1,

λϑ = −1 refering to a completely longitudinal production of Jz = 0. At low pT , λϑ is close

to zero in both the helicity frame and the Collins-Soper frame, indicating equal amounts

of J/ψ being produced in each spin projection state (Jz = 0 ± 1). However, as pT gets

larger, the difference in λϑ increases across the frames. In the helicity frame, λϑ becomes

more negative as pT grows, showing that more J/ψ is produced with Jz = 0 than with
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Figure 6.4. The polar anisotropy parameter (λϑ), the azimuthal anisotropy param-
eter (λϕ), and the polar-azimuthal correlation parameter (λϑϕ) in the helicity frame
at
√
s = 7 TeV in the ICEM. The combined mass, renormalization scale, and fac-

torization scale uncertainties are shown in the band and compared to the LHCb
data [113] and the ALICE data [112].

Jz = ±1. This is consistent with the calculation in Ref. [91] where the calculation in

kT -factorized NRQCD is compared with the CDF data [135]. On the other hand, in the

Collins-Soper frame, λϑ becomes more positive as pT grows, showing that more J/ψ is

produced with Jz = ±1 than with Jz = 0. This relative behavior between λϑ is expected

because the polarization z-axes are parallel at pT = 0 and become orthogonal in the limit

pT →∞.

The azimuthal anisotropy parameter (λϕ) reflects the azimuthal symmetry of J/ψ

production. When λϕ = 0, the production is azimuthally symmetric. When λϕ = ±1, the

azimuthal distribution is maximally asymmetric. We note that this parameter strongly

depends on the production mechanism as well as the frame the distribution is measured

in. In the helicity frame, this parameter is close to zero over all pT , which means that the
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Figure 6.5. The polar anisotropy parameter (λϑ), the azimuthal anisotropy param-
eter (λϕ), and the polar-azimuthal correlation parameter (λϑϕ) in the Collins-Soper
frame at

√
s = 7 TeV in the ICEM. The combined mass, renormalization scale, and

factorization scale uncertainties are shown in the band and compared to the LHCb
data [113] and the ALICE data [112].

zHX-axis is approximately the azimuthal symmetry axis. In the Collins-Soper frame, this

parameter is negative as pT gets larger, which means the zHX-axis is not the symmetry

axis of the distribution. However, the distribution itself is rotationally invariant. The

discrepancy between λϕ in these two frames is a combination of two factors: zCS and

zHX becomes approximately orthogonal as pT increases, and production is not spherically

symmetric.

The polar-azimuthal correlation parameter (λϑϕ) describes the angular correlation

between 2ϑ and ϕ. When λϑϕ = 0, the two angles are uncorrelated and as λϑϕ departs

from 0, the behavior of the distribution becomes similar at locations where 2ϑ = ϕ. In

both the helicity frame and the Collins-Soper frame, λϑϕ is consistent with 0.

The angular distributions of the production in the helicity frame and in the Collins-
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Figure 6.6. The angular distribution of the ICEM direct J/ψ production in the helic-
ity frame (left) and in the Collins-Soper frame (middle) at pT = 12 GeV. They repre-
sent the same angular distribution separated by one rotation. The angular distribu-
tion in the Collins-Soper frame based on the data collected in the 10 < pT < 15 GeV
bin by the LHCb collaboration [113] is shown on the right for comparison.

Soper frame at pT = 12 GeV are shown in Fig. 6.6. Note that two distributions are almost

identical except they are rotationally approximately 90◦ apart. Thus the two distributions

can be interpreted as a top view and a side view of the production distributions. The

angular distribution in the Collins-Soper frame, based on the data collected in the 10 <

pT < 15 GeV bin by the LHCb Collaboration, is also presented in the same figure.

We compare the polar anisotropy parameter, λϑ, in this calculation with that calcu-

lated in the polarized ICEM using the kT -factorization approach. Since the kT -factorized

ICEM considers only the contribution from off-shell Reggeized gluons at O(α2
s), we com-

pare the pT -dependence of λϑ in the kT -factorized ICEM with that in this calculation

using the contribution from gg → cc̄g at O(α3
s) only. Although the kT -factorized ICEM

considers a 2→ 2 process and this calculation considers a 2→ 3 process, when the emit-

ted gluon is soft, most of the 2 → 3 diagrams resolve into the diagrams in the 2 → 2

process. This explains that the difference in λϑ is comparatively small and within the

uncertainty of the data at small and moderate pT . However, at high pT , the difference

becomes larger as the diagrams considered in these calculations are distinct from each

other.
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Figure 6.7. The polar anisotropy parameter (λϑ) of direct J/ψ production at
√
s =

7 TeV with rapidity within the range 2 < y < 4.5 in the Collins-Soper frame cal-
culated in the collinear ICEM (blue) and kT -factorized ICEM. Both calculations in-
clude only the contribution from gg-channel production only and are compared to
the LHCb data [113].

6.3.3 pT dependence of λ̃

In Figs. 6.4 and 6.5, we observe that at high pT , the ICEM shows better agreement

with the measured data in the helicity frame than in the Collins-Soper frame. However,

even though we are switching from one frame to another, we are still comparing the same

angular distributions. The difference between the ICEM polarization results and the data

is then best quantified by a frame-independent polarization parameter. Thus, we compute

the frame-invariant polarization parameter λ̃ as a function of pT using λϑ and λϕ. We

compare λ̃ as a function of pT with the LHCb data computed in the helicity and the

Collins-Soper frames in Fig. 6.8. We find reasonable agreement with the measured data

across all pT .

6.4 Conclusions

We have presented the transverse momentum dependence of the direct J/ψ cross

section as well as the polarization in p + p collisions in the improved color evaporation

model in the collinear factorization approach. We compare the pT dependence to data
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Figure 6.8. The pT dependence of the frame-invariant polarization parameter, λ̃,
in the ICEM compared to LHCb data [113] (blue) and the ALICE data [112] (red)
measured in the Collins-Soper frame (solid box), and in the helicity frame (empty
box). The LHCb in the helicity frame is displaced by 0.05 GeV for visualization pur-
pose.

measured by LHCb. We also present the frame-invariant parameter, λ̃ as a function of

pT , and compare our results with the data. We find direct J/ψ production is consistent

with the unpolarized data at small and moderate pT and becomes slightly longitudinal in

the high pT limit. We will study the effects of feed-down production in this approach in

a future publication.
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Chapter 7

Closing Remarks
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Our pioneering work on the CEM and ICEM polarization calculations has become

successively more complex: first by providing separate polarization predictions for each

quarkonium state and then adding the pT dependence. Since quarkonium polarization

remains a significant source of the systematic experimental uncertainties in quarkonium

production measurements, expanding the ICEM to electro- and photoproduction is es-

sential to reduce the experimental uncertainties in collider detectors including the later

Electron-Ion Collider (EIC), and to make the ICEM competitive with NRQCD.

At this point, we can compare our polarization results in either the prompt production

using the kT -factorization approach or direct production using the collinear factorization

approach with the pT -dependent data in hadroproduction. The higher-order kinematics

employed in the scattering matrix elements in the collinear factorization approach reduces

the calculated uncertainty at high pT arising from the factorization scale dependence of

the unintegrated parton distribution functions in the kT -factorization approach. To have

a full comparison of both approaches, a calculation including the feed-down production

from P states quarkonium at the same order is highly anticipated. In addition, the CEM

and the ICEM have, so far, been applied to calculate the production and polarization of

S and P state quarkonia only. The ICEM production of JPC = 0−+ states, which are the

ηc and ηb states, should be considered in the future.

The current ICEM polarization predictions outperform the NRQCD calculations in

hadroproduction where the initial states are quarks and gluons. To further compare with

NRQCD, a calculation of quarkonium photoproduction and polarization in the ICEM

should also be considered. These calculations can be compared to incoherent photopro-

duction at HERA, where data exist, and also in J/ψ and ψ′ photoproduction in ultrape-

ripheral collisions (UPCs). Production in ultraperipheral p+Pb and Pb+Pb collisions has

been measured by the ALICE Collaboration [136]. Expanding the ICEM to electro- and

photoproduction of quarkonium will also provide guidance for quarkonium production in

the future EIC, the next big facility for high energy nuclear and hadronic physics in the

US.

154



References

[1] S. L. Glashow, Nucl. Phys. 22, 579-588 (1961).

[2] S. Weinberg, Phys. Rev. Lett. 19, 1264-1266 (1967).

[3] A. Salam, Conf. Proc. C 680519, 367-377 (1968).

[4] K. Riesselmann, The Standard Model of particle physics, Symmetry Magazine (2015).
https://www.symmetrymagazine.org/article/july-2015/standard-model

[5] P. W. Higgs, Phys. Lett. 12, 132-133 (1964).

[6] P. W. Higgs, Phys. Rev. Lett. 13, 508-509 (1964).

[7] P. W. Higgs, Phys. Rev. 145, 1156-1163 (1966).

[8] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321-323 (1964).

[9] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Lett. 13, 585-587
(1964).

[10] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01
(2020).

[11] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438-450 (1972).

[12] L. N. Lipatov, Sov. J. Nucl. Phys. 20, 94-102 (1975).

[13] G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298-318 (1977).

[14] Y. L. Dokshitzer, Sov. Phys. JETP 46, 641-653 (1977).

[15] S. Dulat, T. J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin,
C. Schmidt, D. Stump and C. P. Yuan, Phys. Rev. D 93, 033006 (2016).

[16] I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822-829 (1978).

[17] L. N. Lipatov, Sov. J. Nucl. Phys. 23, 338-345 (1976).

[18] E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 45, 199-204 (1977).

[19] F. Hautmann and H. Jung, Nucl. Phys. B883, 1 (2014).

[20] M. Hirai, S. Kumano and T. H. Nagai, Phys. Rev. C 76, 065207 (2007).

[21] K. J. Eskola, P. Paakkinen, H. Paukkunen and C. A. Salgado, Eur. Phys. J. C 77,
163 (2017).

[22] D. de Florian, R. Sassot, P. Zurita and M. Stratmann, Phys. Rev. D 85, 074028
(2012).

155



[23] K. Kovarik et al., Phys. Rev. D 93, 085037 (2016).

[24] J. J. Aubert et al. (European Muon Collaboration) Phys. Lett. B 123, 275-278 (1983)

[25] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T. M. Yan, Phys. Rev. D 17,
3090 (1978); 21, 313(E) (1980).

[26] E. Eichten and F. L. Feinberg, Phys. Rev. Lett. 43, 1205 (1979).

[27] R. Vogt, Ultrarelativistic heavy-ion collisions (Elsevier, New York, 2007).

[28] S. Okubo, Phys. Lett. 5, 165 (1963).

[29] G. Zweig, CERN-TH-401 (1964).

[30] J. Iizuka, Prog. Theor. Phys. Suppl. 37, 21 (1966).

[31] S. Chatrchyan et al. (The CMS Collaboration),JINST 7, P10002 (2012).

[32] K. Gottfried and J. D. Jackson, Nuovo Cimento 33, 309 (1964).

[33] J. C. Collins and D. E. Soper, Phys. Rev. D 16, 2219 (1977).

[34] P. Faccioli, C. Lourenco, J. Seixas, and H. K. Wohri, Eur. Phys. J. C 69, 657 (2010).

[35] G. Aad et al. (ATLAS Collaboration), Nucl. Phys. B850, 387 (2011).

[36] J. D. Bjorken and S. L. Glashow, Phys. Lett. 11, 255-257 (1964).

[37] S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D 2, 1285-1292 (1970).

[38] J. J. Aubert et al., Phys. Rev. Lett. 33, 1404 (1974).

[39] J. E. Augustin et al., Phys. Rev. Lett. 33, 1406 (1974).

[40] M. L. Perl et al., Phys. Rev. Lett. 35, 1489-1492 (1975).

[41] S. W. Herb et al., Phys. Rev. Lett. 39, 252-255 (1977).

[42] R. Baier and R. Ruckl, Z. Phys. C 19, 251 (1983).

[43] C. H. Chang, Nucl. Phys. B 172, 425-434 (1980).

[44] G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D 51, 1125 (1995); 55,
5853(E) (1997).

[45] M. B. Einhorn and S. D. Ellis, Phys. Rev. D 12, 2007 (1975).

[46] H. Fritzsch, Phys. Lett. 67B, 217 (1977).

[47] M. Gluck, J. F. Owens and E. Reya, Phys. Rev. D 17, 2324 (1978).

156



[48] J. Babcock, D. W. Sivers and S. Wolfram, Phys. Rev. D 18, 162 (1978).

[49] J. P. Lansberg, Phys. Rep. (in press).

[50] J. P. Lansberg, Eur. Phys. J. C 61, 693-703 (2009).

[51] M. Butenschoen and B. A. Kniehl, Phys. Rev. D 84, 051501 (2011).

[52] M. Butenschoen and B. A. Kniehl, Phys. Rev. Lett. 108, 172002 (2012).

[53] N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014).

[54] B. Gong, L. P. Wan, J. X. Wang, and H. F. Zhang, Phys. Rev. Lett. 110, 042002
(2013).

[55] K. T. Chao, Y. Q. Ma, H. S. Shao, K. Wang, and Y. J. Zhang, Phys. Rev. Lett. 108,
242004 (2012).

[56] Y. Q. Ma and R. Vogt, Phys. Rev. D 94, 114029 (2016).

[57] V. Cheung and R. Vogt, Phys. Rev. D 95, 074021 (2017).

[58] V. Cheung and R. Vogt, Phys. Rev. D 96, 054014 (2017).

[59] V. Cheung and R. Vogt, Phys. Rev. D 98, 114029 (2018).

[60] V. Cheung and R. Vogt, Phys. Rev. D 99, 034007 (2019).

[61] W. Caswell and G. P. Lepage, Phys. Lett. B 167, 437 (1986).

[62] G. T. Bodwin, H. S. Chung, U. R. Kim, and J. Lee, Phys. Rev. Lett. 113, 022001
(2014).

[63] P. Faccioli, V. Knünz, C. Lourenco, J. Seixas, and H. K. Wöhri, Phys. Lett. B 736,
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