

Assume withat loss of generaliss th. 4
 our light is polerized

$$
\begin{aligned}
& \overrightarrow{E_{1}}=\left(E_{i} e^{i(k, z-\omega t)}+E_{r} e^{-i\left(k_{1}, z+\omega t\right)} /\right) \hat{e}_{1} \\
& \vec{E}_{2}=\left(E_{+} e^{i(k z-\omega t)}+\vec{E}_{3} e^{-i\left(k_{2}+w t\right)}\right) e_{1}
\end{aligned}
$$

$$
\vec{E}_{3}=E_{t} e^{i\left(k_{3} z-w t\right)} \hat{e}_{1}
$$

\square
where $K_{1}=\frac{n_{1}}{c} w \quad K_{2}=\frac{n_{2}}{c} w-$
aw bowrdarg cofitious are
(1) $E_{i}+E_{r}=E_{t}+E_{-}$
(3) $E_{+} e^{i k_{2} \partial}+E_{-} e^{i k_{2} d}=E_{+}, e^{i k_{1} d}$
(4) $K_{2}\left(E_{+} e^{i K_{2} \prime}-E_{-} e^{i k_{\delta} d}\right)=K_{3} E_{t} e^{i k_{3} d}$
7.2 cont
combine (1) (2) to eliminite Er
(5)

$$
\begin{aligned}
\|_{2} E_{i} & =E_{+}+E_{-}+\frac{K_{1}}{K_{1}}\left(E_{+}-E_{-}\right) \Rightarrow E_{1}\left(1+\frac{K_{2}}{K_{2}}\right)=2 E_{-}-E_{-}+\frac{K_{2}}{K} E_{-} \\
E_{+} & =\frac{1}{\left(1+\frac{K_{1}}{K_{1}}\right)}\left(2 E_{1}+E_{1}\left(\frac{K_{2}-1}{K_{1}}\right)\right)=\frac{2 E_{1} K_{1}+E_{1}\left(K_{2}-K_{1}\right)}{K_{1}+K_{2}}
\end{aligned}
$$

(6)

$$
\begin{align*}
& \text { Combine } 3 d 4 \text { to Eliminte } E_{\tau} \\
& E_{+} e^{i k_{2} d}+E_{-} e^{-i k_{2} d}-\frac{k_{2}}{k_{3}}\left(E_{+} e^{i k_{d} d}-E_{-} e^{-i k_{d} d}\right)=0 \\
& E_{+}\left(e^{i k_{d} d}-\frac{k_{2}}{k_{3}} e^{i k_{2} d}\right)=-E_{-}\left(e^{-i k_{2} d}+\frac{k_{2}}{k_{3}} e^{-i k_{2} d}\right) \\
& E_{+}=-E_{-}\left(\frac{1+\frac{k_{2}}{k_{3}}}{1-\frac{k_{2}}{k_{3}}}\right) e^{-2 i k_{d} d} \\
& E_{+}=-E_{-}\left(\frac{k_{2}+k_{3}}{k_{2}-k_{3}}\right) e^{-2 i k_{2} d}
\end{align*}
$$

Set S^{\prime} and b^{\prime} equal to eliminate E_{+}

$$
\begin{aligned}
& \frac{2 E_{1} k_{1}+E_{-}\left(k_{2}-k_{1}\right)}{k_{1}+k_{2}}=E_{-}\left(\frac{k_{2}+k_{3}}{k_{2}-k_{3}}\right) e^{-2 i k_{2} d} \\
& \frac{2 E_{1} k_{1}}{k_{1}+k_{2}}=E_{-}\left(\frac{k_{2}+k_{3}}{k_{2}-k_{3}} e^{-i d_{1}}-\frac{k_{2}-k_{1}}{k_{1}+k_{2}}\right) \\
& \frac{2 E_{1} k_{1}}{k_{1}+k_{2}}=E-\left(\frac{\left(\frac{2 x+\left(k_{2}+k_{3}\right)\left(k_{1}+k_{2}\right)-\left(k_{2}-k_{1}\right)\left(k_{2}-k_{3}\right)}{\left(k_{2}-k_{3}\right)\left(k_{1}+k_{2}\right)}\right)}{}\right.
\end{aligned}
$$

7.2 cont

$$
E_{-}=\frac{2 E_{1} k_{1}\left(k_{2}-k_{3}\right)}{e^{-2 k_{2} d}\left(k_{2}+k_{3}\right)\left(k_{1}+k_{2}\right)-\left(k_{2}-k_{1}\right)\left(k_{2}-k_{3}\right)}
$$

combine (1) and (2) to eliminate E_{+}
(8

$$
\begin{aligned}
& E_{i}+E_{r}-\frac{K_{1}}{K_{2}}\left(E_{i}-E_{r}\right)=z E \\
& E_{1}\left(1+\frac{k_{1}}{k_{2}}\right)=2 E_{-}-E_{i}\left(1-\frac{k_{1}}{k_{2}}\right) \\
& E_{1}\left(k_{2}+k_{1}\right)=2 k_{2} E_{-}-E_{i}\left(k_{2}-k_{1}\right) \\
& E_{r}=\frac{2 k_{2}}{k_{2}+k_{1}} E_{-}-\frac{\left(k_{2}-k_{1}\right)}{k_{2}+k_{1}} E_{:} \\
& =\frac{4 k_{2} k_{1}\left(k_{2}-k_{3}\right) E_{i}}{\left(k_{2}+k_{1}\right)\left(\left(k_{2}+k_{3}\right)\left(k_{1}+k_{2}\right) e^{-2 i k_{2} d}-\left(k_{2}-k_{1}\right)\left(k_{2}-k_{3}\right)\right)}-\frac{k_{2}-k_{1}}{k_{2}+k_{1}} E_{i} \\
& \left.E_{1}=\frac{1_{1}}{k_{2}+k_{1}}\left[\frac{4 k_{2} k_{1}\left(k_{2}-k_{s}\right)}{\left(k_{2}+k_{3}\right)\left(k_{1}+k_{2}\right) e^{-2 i k_{d} d}-\left(k_{2}-k_{1}\right)\left(k_{2}-k_{3}\right)}\right\rangle-\left(k_{2}-k_{1}\right)\right] \\
& \text { Si } \left.h_{n} \rightarrow\right\rangle^{-} \ggg \ggg>
\end{aligned}
$$

7.2 cont

$$
\begin{aligned}
& R \not \perp\left|E_{1}\right|^{2} \quad \text { with } \quad k=\frac{n_{n}}{2} w \quad k_{2}=\frac{n_{2} w}{2} w \\
& =\mid-R
\end{aligned}
$$

$\bullet\left[n 1, n_{2}, n 3, d, w_{1}\right]:=$
$\operatorname{Abs}\left[\left(\frac{1}{(n 1+n 2)}\right) \star\left(\frac{4 \star n 1 \star n 2 \star(n 2-n 3)}{\left((n 2+n 3)(n 1+n 2) e^{-21} \approx n 2 d /=-(n 2-n 1)(n 2-n 1)\right)}-(n 2-n 1)\right)\right]^{2}$
$\mathrm{c}=1$

With $\mathrm{n} 1=1, \mathrm{n} 2=2, \mathrm{n} 3=3$
$\operatorname{Plot}\{\{(1,2,3,1, x], 1-\in\{1,2,3,1, \mathbf{x}\}\},\{\mathbf{x}, 0, \mathrm{P} 1\}\}$

With $\mathrm{n} 1=3, \mathrm{n} 2=2, \mathrm{n} 3=1$
$\operatorname{Plot}\{\{\mathbf{c}[3,2,1,1, \mathbf{x}], 1-\mathbf{e}[3,2,1,1, \mathbf{x}]\},\{\mathbf{x}, 0, \mathbf{p} 1\}]$

2 | ladkan-72nb

$$
d=0 ? ~ o r
$$

$$
n_{1}=n_{2}=n_{3} \text { or }
$$

$$
\begin{gathered}
n_{2} v_{a} y_{\text {lag }} \operatorname{var} y \\
\text { this simp }
\end{gathered}
$$

Does this simplify to known results?

Meaning you have to take extreme case what if n 2 goes to infinity then $\mathrm{R}=1$ or $\mathrm{T}=0$. Does your result reproduce that?
7.2 b)

$$
0=+\left(n_{2}-n_{1}\right)\left(n_{2}+n_{3}\right)\left(n_{1}+n_{2}\right) \sin \left(2 \omega n_{2} d / c\right)
$$

So $2 \omega n, d / c=M \pi$ where $m \in \mathbb{Z}$

$$
d=\frac{m \pi c}{2 \omega n_{z}}
$$

back to the kew part:
note ghat we can now insert our solution for d, to see that $\cos \left(2 \omega n_{z} d / c\right)=\cos (\mu \pi 1)=(-1)^{\mu}$

So our equ becomes

$$
\begin{aligned}
& d=4 n_{1} n_{2}\left(n_{2}-n_{3}\right)-\left(n_{2}-n_{1}\right)\left(n_{2}+n_{3}\right)\left(n_{1}+n_{2}\right)(-1)^{n}+\left(n_{2}-n_{1}\right)^{2}\left(n_{2}-n_{2}\right) \\
&=\left(n_{2}-n_{3}\right)\left(4 n_{1} n_{2}+\left(n_{2}-n_{1}\right)^{2}\right)+\left(n_{1}-n_{2}\right)\left(n_{2}+n_{3}\right)\left(n_{1}+n_{2}\right)(-1)^{n} \\
&=\left(n_{2}-n_{3}\right)\left(4 n_{1} n_{2}+n_{2}^{2}+n_{1}^{2}-2 n_{1} n_{2}\right)+\left(n_{1}-n_{2}\right)\left(n_{2}+n_{3}\right)\left(n+n_{2}\right)(-1)^{-1} \\
&=\left(n_{2}-n_{3}\right)\left(n_{1}+n_{2}\right)^{2}+\left(n_{1}+n_{2}\right)\left(n_{1}-n_{2}\right)\left(n_{2}+n_{3}\right)(-1)^{n} \\
&=\left(n_{2}-n_{3}\right)\left(n_{1}+n_{2}\right)+\left(n_{1}-n_{2}\right)\left(n_{2}+n_{3}\right)(-1)^{n}
\end{aligned}
$$

$7.2 \quad$ b)
to sot $R=0$,
Set $E_{r}=0$

50

$$
\frac{E_{i}}{\left(k_{1}+k_{1}\right.}\left[\frac{4 k_{2} k_{1}\left(k_{2}-k_{3}\right)}{\left(k_{2}+k_{3}\right)\left(k_{1}+k_{2}\right) e^{-2 k_{2}}-\left(k_{2}-k_{1}\right)\left(k_{2}-k_{3}\right)}-\left(k_{2}-y\right]=0\right.
$$

$$
0=\frac{c}{\left(n_{1}+n_{2}\right) \omega}\left[\frac{4 n_{2} n_{1} \omega^{3}\left(n_{2}-n_{3}\right)}{\left(\omega^{2}\left(n_{2}+n_{3}\right)\left(n_{1}+n_{2}\right) e^{-2 i \omega \omega_{2}+1 / c}-\left(n_{2}-n_{1}\right)\left(n_{2}-n_{3}\right)\right]}-\frac{w}{c}\left(n_{2}-n_{1}\right)\right]
$$

$$
0=\left[\frac{4 n_{1} n_{2}\left(n_{2}-n_{3}\right)}{\left[\left(n_{2}+n_{3}\right)\left(n_{1}+n_{2}\right) e^{-2 i m_{1} d / c}-\left(n_{2}-n_{1}\right)\left(n_{2}-n_{3}\right)\right.}-\left(n_{2}-n_{1}\right)\right]
$$

$0=4 n_{1} n_{2}\left(n_{2}-n_{3}\right)-\left(n_{2}-n_{1}\right)\left[\left(n_{2}+n_{3}\right)\left(n_{1}+n_{2}\right) e^{-2 i \omega \omega_{2} d / c}-\left(n_{2}-n_{1}\right)\left(n_{2}-n_{3}\right)\right]$
Lots take real and in a binary ports

$$
0=4 n_{1} n_{2}\left(n_{2}-n_{3}\right)-\left(n_{2}-n_{1}\right)\left[\left(n_{2}+n_{3}\right)\left(n_{1}+n_{2}\right) \cos \left(2 \omega n_{2} d / c\right)-\left(n_{2}-n_{1}\right)\left(n_{2}-n_{3}\right)\right]
$$

(Hen port)
7.2 b) cont.
for M even:

$$
\begin{aligned}
& 0=n_{2} n_{1}+n^{2}-n_{3} n-n_{3} n_{2}+n_{1} n_{2}+n_{1} n_{3}-n_{2}^{2}-n_{2} n_{3} \\
& \left.0=2 n_{2} n_{1}-n_{3} n_{2}\right) \\
& 0=n_{2}\left(n_{1}-n_{3}\right) \\
& n_{2}=0 \quad \text { (unphysiral) }
\end{aligned}
$$

for M odd

$$
0=n_{2} n_{1}+n_{2}^{2}-n_{3} n_{1}-n_{3} n_{2}-n_{1} n_{2}-n_{1} n_{3}+n_{2}^{2}+n_{2} n_{3}
$$

$$
=n_{2}^{2}-n_{3} n_{1}
$$

$$
n_{2}=\sqrt{n_{1} n_{3}}
$$

7.7 a)
in former space

$$
\vec{A}(k, z, t)=\vec{\varepsilon} A(k) e^{i k z-i \omega t}
$$

Thus in real space

$$
\begin{aligned}
& \text { in real space } \\
& \vec{E}(x, z, t)=\vec{\varepsilon} \int \partial R A(K) e^{i k x} \cdot e^{i k z-i \omega t} \\
&=\vec{\varepsilon} \int \partial R A(K) e^{i k x+i k z-i \omega t}
\end{aligned}
$$

