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The collision of high energy heavy ions is the most promising laboratory for the study of

nuclear matter at high energy density and for creation of the Quark-Gluon Plasma. A new

era in this �eld began with the operation and �rst collisions of Au nuclei in the Relativistic

Heavy Ion Collider (RHIC) at Brookhaven National Laboratory during 2000. This work

concentrates on measurement of global hadronic observables in Au+Au interactions at a

centre-of-mass energy of√sNN = 130 GeV, which mainly address conditions in the �nal state

of the collision. The minimum bias multiplicity distribution, the transverse momentum (p⊥),

and pseudorapidity (η) distributions for charged hadrons (h−, h+) are presented. Results

on identi�ed π− transverse mass (m⊥) and rapidity (y) distributions are also discussed. The

data were taken with the STAR detector with emphasis on particles near mid-rapidity.

We �nd that the multiplicity density at mid-rapidity for the 5% most central interactions

is dNh−/dη|η=0 = 280 ± 1stat ± 20syst, an increase per participant of 38% relative to pp̄

collisions at similar energy. The mean transverse momentum is 0.508 ± 0.012 GeV/c and

is larger than in Pb + Pb collisions at lower energies. The scaling of the h− yield per

participant nucleon pair, obtained via a ratio of Au + Au to pp̄ p⊥ distributions, is a strong

function of p⊥. The pseudorapidity distribution is almost constant within |η| < 1. The π−

rapidity distribution is also �at around mid-rapidity in the region |y| < 0.8, with a yield of

pions for central collisions of dNπ−/dy|y=0 = 287± 1stat ± 21syst. However, the slope of the

m⊥ distributions is not the same for di�erent rapidity bins, suggesting that boost-invariance

is not fully achieved in the collisions.
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Chapter 1

Introduction

Based on statistical Quantum Chromodynamics, our current expectation is that strongly

interacting matter at extreme energy density (ε & 1 GeV/fm3) and temperature (T &

170 MeV) is found in a state where hadrons no longer exist as discrete entities [1, 2]. The

relevant degrees of freedom for such a system are those of the underlying partons, and we

label this state the Quark-Gluon Plasma (QGP). [3�6]

Such a state of matter is believed to be the one in which the early universe existed in a

time scale ∼ 10−6 s after the Big Bang [7, 8] and is also predicted to exist in the interior of

neutron stars [9, 10].

Ultra-relativistic heavy ion collisions are the most promising tool for the creation of a

QGP in the laboratory. The appearance and study of predicted signatures in such colli-

sions has been the subject of intense theoretical and experimental work for more than two

decades (for recent reviews one can refer to the proceedings of the `Quark Matter' confer-

ences [11�25]). In the Alternating Gradient Synchrotron (AGS) at the Brookhaven National

Laboratory (BNL) collisions have been produced using beams from Si to Au with energies

of 11-14 GeV per nucleon. The corresponding centre-of-mass energy for Au + Au collisions

at the AGS is √sNN = 5 GeV. We use √sNN to denote the centre-of-mass energy per nu-

cleon pair. The Super Proton Synchrotron (SPS) at the Conseil Européen de la Recherche

Nucléaire (CERN) has yielded results from O, S and Pb beams with energies of 60-200 GeV
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per nucleon, this is a centre-of-mass energy of √sNN = 17.2 GeV for Pb + Pb collisions.

There has been considerable excitement in the �eld during the last year with the com-

missioning of the Relativistic Heavy Ion Collider (RHIC) at BNL [26]. Dedicated experi-

ments began taking data in the summer of 2000 with the highest colliding energy heavy ion

beams available. RHIC ran during this period with Au beams at a center of mass energy of
√

sNN = 130 GeV. Studying collisions at di�erent energies helps to map the phase diagram

of nuclear matter, where RHIC is expected to probe the region of high temperature and

near-zero net-baryon density, a regime accessible by QCD lattice simulations.

For all heavy ion experiments, global event observables have played an important role.

It remains true that to understand speci�c plasma signatures one must �rst understand the

global character of the reaction dynamics. The momentum distribution of the bulk of the

particles measured in the detectors provide evidence mainly of the �nal phase of the system

formed in the collision, also called the freeze-out phase. In order to obtain information about

the early stages where plasma formation is expected to occur, one must use indirect methods

such as hard probes which must be gauged to reference observables related to the global

character of the reaction. The information obtained in the �nal state in the form of particle

spectra is one of the main sources of global event information. In addition, global �nal

state observables help provide limits on the possible evolution of the system at earlier times.

All experiments at RHIC and elsewhere have some capability to measure global observables

in order to characterize and classify events, compare results with other experiments, and

perform systematic studies. Measuring the �nal state particle spectra is therefore a basic

requirement for the study of the collision dynamics.

The measurements of global observables for the �rst year of RHIC collisions are an

exciting �rst topic of study in an energy regime where perturbative phenomena are expected

to dominate. The contribution to the total charged particle multiplicity coming from hard

processes (jets and mini-jets) at RHIC is estimated to be between 30− 50% [27�30]. Since

particle production is a dominant feature of the collision, one of the �rst observables to

study is the multiplicity of charged particles for each event. This quantity and related global
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observables such as the transverse energy (E⊥) and the energy deposition in the very forward

region as measured typically by zero degree calorimeters (ZDCs) is related to the impact

parameter of the collision. The more central the collision is, the more nucleons from both

projectile nuclei will participate in the interaction, and hence the more secondary hadrons

will be produced (large multiplicity and total E⊥). A geometrical correlation between the

impact parameter b, E⊥ and the energy reaching the zero degree calorimeter can be given in

terms of the number of �wounded� nucleons [31]. Central (high multiplicity) events have a

special interest as it is for these events that the largest fraction of the incoming energy will be

redistributed to new degrees of freedom. The next key observable is the distribution of the

particles in momentum space. Rapidity and transverse momentum distributions allow one

to address properties of the reaction dynamics such as the extent to which the nucleons are

slowed down in the collision (stopping), the approach of the system to thermal equilibrium,

and the shape of the emitting source of particles.

The Solenoidal Tracker At RHIC (STAR) is one of the 4 experiments that partake in

the RHIC program. The analyses presented here are based on data taken by STAR during

the 2000 summer run. The pith of the experiment is a large acceptance cylindrical Time

Projection Chamber (TPC) placed in a uniform solenoidal magnetic �eld for momentum

determination. The TPC provides charged particle tracking in the mid-rapidity region with

full azimuthal coverage and particle identi�cation for low momentum particles. The STAR

detector is thus ideally suited for the study of hadronic observables and will therefore focus

on such measurements early on, although the STAR physics program includes other topics

in addition to QGP physics. Since hadrons are the most copiously produced particles in

the collision and π mesons comprise ∼ 80% of the total hadron population, this work con-

centrates on the study of charged hadron (h− and h+) and identi�ed π− meson production

and momentum spectra for Au + Au collisions at √sNN = 130 GeV. The minimum bias

h− multiplicity distribution is presented. For di�erent selections of event centralities, we

present the pseudorapidity (η) and transverse momentum (p⊥) distributions for h−. We

compare the p⊥ distributions to those expected in similar energy pp̄ collisions as reference.
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We also discuss rapidity (y) and transverse mass (m⊥) distributions for identi�ed π−.

This work is organized in the following manner. It starts with a discussion on general

aspects of Quark-Gluon Plasma physics and a review of hadronic particle production at the

AGS and SPS (chapters 2, 3 and 4), followed by a description of the STAR detector (chapter

5). An overview of the tracking strategy and detector calibration procedures is then given

(chapter 6). After a discussion of the detector simulation (chapter 7) and a layout of the

analysis technique and corrections (chapter 8), we present the results on hadron production

and identi�ed pion spectra and discuss their implications regarding the dynamics of the

collision features at RHIC (chapters 9 and 10). Finally, we present our conclusions (chapter

11).
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Chapter 2

The Physics of the Quark-Gluon
Plasma

We give now an overview of the high temperature phase of QCD and the Quark-Gluon

Plasma. For recent reviews on the subject, see e.g. [32�34], review articles in the proceedings

of the `Quark Matter' conferences [35,36] and the growing collection of books [3,5,6,37,38].

2.1 Decon�nement in QCD

At the fundamental level, strongly interacting matter is described by interactions of quarks

through the exchange of gluons. The theory that describes these interactions, quantum

chromodynamics (QCD), has the remarkable properties that at large distances or small

momenta q, the e�ective coupling constant αs(q2) is large, and it decreases logarithmically

at short distances or large momenta. This behaviour can be seen from perturbative QCD.

The QCD Lagrangian is given by

LQCD = iψ̄γµ(∂µ − igÂµ)ψ −mψ̄ψ − 1
4
F a

µνF
µν
a (2.1)

where the colour potential Âµ is a 3 × 3 matrix (indicated by the circum�ex symbol) and

can be represented by a linear combination of the 8 Gell-Mann matrices:
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Âµ =
1
2

8∑

a=1

Aa
µ(x)λa . (2.2)

This potential is introduced to make the Lagrangian invariant under local (space-dependent)

rotations of the 3 colour components of the quark wavefunction ψ. The eight-component

�eld strength tensor expressed as

F a
µν = ∂µAa

ν − ∂νA
a
µ + gfabcA

b
µAc

ν , (2.3)

where fabc are the antisymmetric structure constants for the Lie group SU(3). The product

F a
µνF

µν
a also remains invariant under a local colour gauge transformation.

The perturbative quantization proceeds in QCD in a similar manner as in Quantum

Electrodynamics. The quadratic terms in the lagrangian de�ne free quark and gluon �elds,

described by propagators with the same form as those in QED for electrons and photons.

The free propagators D0(q2) are proportional to 1/q2, and if this were the only ingredient

would lead to a colour force which would fall o� like 1/r. The main di�erence comes from

the coupling of the gluon �eld to itself. This modi�es the true gluon propagator, because one

has to evaluate contributions arising from terms in the perturbation series corresponding to

the virtual creation of a pair of coloured particles from the vacuum. We call this the `vacuum

polarization' function Π(q2), and it turns out to be proportional to −1/q2 ln(−q2).

The higher order diagrams, in which the gluon interacts consecutively once, twice, three

times with the vacuum polarization, etc. can be summed into a geometric series yielding

the full propagator

D(q2) = D0(q2) + i2D0(q2)Π(q2)D0(q2) + i4D0ΠD0ΠD0 + . . .

=
D0(q2)

1−Π(q2)D0(q2)

=
(
1/q2

) 1

1 + (33−2NF )αs

12π ln(−q2/µ2)

(2.4)

where µ is a reference point introduced by renormalization, and NF counts the number of

�avours with mass below |q2| 12 . So after renormalization, the second factor in Eq. 2.4 acts
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as a momentum-dependent modi�cation of the strong coupling constant. Combining it with

αs we obtain the �running� coupling constant

αs(q2) =
4π

(11− 2NF /3) ln(−q2/Λ2)
∝ 1

ln(q2/Λ2)
(2.5)

where Λ is a (dimensional) parameter introduced also by the renormalization process. We

see that the running coupling exhibits a pole; in this approximation it is at q2 = −Λ2. More

sophisticated expressions for the gluon propagator indicate that the pole is really at q2 = 0,

and that αs(q2) should behave as 1/q2 in the limit q2 → 0.

Converted into coordinate space, this means that αs(r) grows like r2 for large distances,

corresponding to a linearly rising potential. The logarithm in Eq. 2.5 causes a gradual

decrease of the coupling strength between colour charges at large momenta or small distances.

It is this property that is known as `asymptotic freedom'. This behaviour of the running

coupling at large distances results in the con�nement of quarks (i.e. isolated quarks are not

observed in nature).

It is important to note that the behaviour of the strong coupling constant outlined above

is derived for interactions in vacuo. The usual point of comparison for measurements and

calculations of the strong coupling constant is at the mass of the Z0 boson, MZ = 91 GeV/c2,

where the world average is αs(MZ) = 0.1172 ± 0.0045 [39]. The typical initial momentum

transfers at even the highest RHIC energies are signi�cantly lower than MZ , so we are

really talking about a running of the coupling with temperature. One must instead focus

on obtaining an expression for the coupling constant using expressions for the propagators

which have corrections due to the presence of a coloured medium [3]. Using this modi�ed

propagator we again sum all diagrams with successivemedium polarization functions Π(q, T )

to obtain an e�ective running coupling constant. Leaving aside the contribution of quark

loop diagrams, this yields [3]

αs(q, T ) =
g2

4π(1−Π(q, T )/q2)
=

4π

11 ln(−q2/Λ2)− 48G(q/T )
(2.6)
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where

G(ζ) =
∫ ∞

0
zdz

f(z)
eζz − 1

and

f(z) = (z − 1/2z + 1/8z3) ln
( |1− 2z|
|1 + 2z|

)
− 1 + 1/2z2. (2.7)

In the q → 0 limit, the polarization function remains �nite, which means that the propagator

e�ectively contains a mass term, D(q, T ) = 1/(q2−Π(q, T )), in a manner analogous to Debye

screening in an electrolytic medium. This leads to the property that a test colour charge will

cause a polarization of the charges in the coloured medium in the same way as electric charges

in an electrolyte. In addition, an important property that follows from the temperature

dependence of Eq. 2.6 is that as the temperature increases in QCD, the coupling becomes

weak, falling logarithmically with increasing temperature. As a consequence, nuclear matter

at very high temperature should not exhibit con�nement.

Another important property that arises from the study of the QCD Lagrangian is that

of chiral symmetry breaking (i.e. the quarks con�ned in hadrons do not appear as nearly

massless constituents, but instead possess a mass of a few hundred MeV that is generated

dynamically). The expectation value 〈ψ̄ψ〉 ≈ −(235 MeV)3, usually called the quark con-

densate, describes the density of qq̄ pairs found in the QCD vacuum, and the fact that it is

non-vanishing is directly related to chiral-symmetry breaking. In the limit of zero current

quark mass, the quark condensate vanishes at high temperature, i.e. chiral symmetry is

restored. It is this phase of QCD which exhibits neither con�nement nor chiral-symmetry

breaking that we entitle the Quark-Gluon Plasma.

Since the quark condensate is zero in the high temperature phase and non-zero at low

temperature, it therefore acts as an order parameter. This behaviour leads to the expectation

that the change between the low-temperature and high-temperature phases should exhibit

a discontinuity. For 2 (3) massless quark �avours, universality arguments predict a second-

(�rst-) order phase transition [40,41]. The question of the order of the transition, or if there

is a phase transition as opposed to a rapid cross-over, for QCD with the real values for the

u, d and s quark masses is still the subject of current investigations [42,43].
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2.1.1 Phase Diagram

Figure 2.1: Phase diagram of hadronic matter, showing hadron gas and quark-gluon plasma
regions. The temperature T and the baryochemical potential µB data are derived from
particle yield ratios. The solid curve through the data points represents the chemical freeze-
out of hadronic-matter. Figure is taken from Ref. [44,45], for the chemical analysis of RHIC
data, see e.g. Ref. [46].

One of the �rst pictures that can serve as a guide to the behaviour of QCD can be

obtained from the simpli�ed `MIT bag model' [47]. We can identify two regions where we

expect decon�nement to occur: when compression causes the hadrons to overlap signi�-

cantly, reaching densities 3 to 5 times higher than those of ordinary nuclear matter (0.17

fm−3), or when the temperature of the medium exceeds some critical threshold. Figure

2.1 shows the usual representation of the `T − µB' phase diagram, where µB is the Baryon

chemical potential. It is normally represented with a continuous curve connecting the high

temperature transition region at µB = 0 with the high baryon density region at T = 0. The

�gure shows the regions probed by the di�erent beam energies from the SIS to RHIC. At

high densities and near-zero temperature we expect a decon�ned phase. This decon�ned
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high-density phase is predicted to exist for example in the interior of neutron stars. The

near-zero Baryon chemical potential and high temperature region is the one probed by the

highest energy RHIC collisions. The region where µB = 0 is believed to be the one in

which the early universe existed, and is also accessible to numerical simulations of QCD

on a lattice. The data points in the �gure are from an analysis of particle ratios which is

customarily employed to evaluate the degree of chemical equilibration observed in the �nal

state. To roughly illustrate the region that is probed by RHIC in the diagram, prelimi-

nary analysis from mid-rapidity particle ratios at RHIC (see e.g. [46,48]) indicate a value of

µB ' 0.045 GeV and of the chemical freeze-out temperature of Tch ' 175 MeV. We discuss

chemical and kinetic freeze-out in Chapter 3. It should be noted however, that we do not

really know where the transition curve really lies, or even if there is a transition as opposed

to a rapid cross-over at �nite baryon number density. First principle numerical calculations

of QCD, discussed in the next section, have provided us with guidance, but most results so

far pertain to the µB = 0 region.

2.2 Lattice QCD Results

From sophisticated numerical simulations of QCD on the lattice, we have gained much

insight into the structure of the QCD at high temperature.

The approach is based on the Feynman path integral: the aim is to calculate the action

on the lattice and use it to evaluate expectation values of di�erent observables. The �rst

results used pure SU(3) gauge theory, sometimes called pure glue theory. A problem arises

when one introduces the (discrete) fermion �elds in a straightforward way, one obtains a

`doubling' of the �avour spectrum in the quark sector. We get 2d = 16 copies of each quark

species (in d = 4 dimensions). Di�erent approaches were then introduced to incorporate

the fermion degrees of freedom in a way that reduces the doubling problem. The approach

proposed by Wilson [49] solves the �avour doubling essentially by giving the doublers a

mass proportional to 1/a, where a is the lattice spacing, so they go away in the continuum
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limit. The disadvantage is that the mass introduces a chiral-symmetry breaking piece into

the action. Another action known as the Kogut-Susskind [50], or also as the `staggered'

fermion action [51,52], has the advantage of preserving a part of chiral symmetry. However,

it does not completely eliminate the �avour problem. The number of doublers is reduced to

4. This leads for example to having 42 − 1 = 15 pions instead of the usual 22 − 1 = 3. In

addition, the Wilson action yields results that in general need corrections of O(a), where a

is the lattice spacing, whereas the staggered fermion action is �ne up to O(a2).

In the last decade, there have been signi�cant developments that provide a solution to the

doubling problem. The �domain wall� [53] approach relies on introducing a �fth (�ctitious)

dimension such that the chiral zero modes live on 4D surfaces. If N5 is the number of

lattice spacings along the �fth dimension, in the limit N5 → ∞ the left- and right-handed

�elds live in surfaces in opposite ends of the 5D lattice and do not mix, so we have exact

chiral symmetry with no doublers. An alternative approach has been presented where chiral

symmetry is preserved in the lattice if the lattice Dirac operator is of a certain form (see

e.g. Ref. [54]). Although several constructions for the Dirac �overlap� operator exist, they

all satisfy an identity, originally due to Ginsparg and Wilson [55], which guarantees having

exact global chiral symmetries directly on the lattice. For a recent review of the overlap

approach, see e.g. Refs. [56,57].

2.2.1 Critical Temperature and Energy Density

Over recent years, thermodynamic calculations on the lattice have steadily been improved.

This is partly due to the much improved computer resources, however equally important

has been (and will continue to be) the development of improved discretization schemes, i.e.

improved actions.

Early calculations of the QCD transition temperature performed with standard Wilson

fermions [49, 58] and staggered fermion actions [52] led to signi�cant discrepancies of the

results. These di�erences were greatly reduced based on improved Wilson fermions (Clover

action) [52, 59, 60], as well as improved staggered fermions [42, 61], and domain wall [53]
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approaches. We shall not discuss these here, but only take the current results from improved

staggered fermion actions for the following discussion.

Typically, one can look at the dependence of the energy density ε and pressure versus

temperature where one expects a change due to the increase in the number of degrees of

freedom (d.o.f.). In order to illustrate this point, we can obtain some semi-quantitative

insight into the number of degrees of freedom and the energy density using the following

simpli�ed scenario. A massless non-interacting hadron gas is made up basically of pions, of

which we have 3 types (π+, π−, π0) neglecting the resonances. From an ideal relativistic

Bose gas at Temperature T we obtain the energy density

εg =
∫

d3p

(2π)3
p

ep/T − 1
=

4πT 4

(2π)3

∫ ∞

0

x3 dx

ex − 1
dx =

π2

30
T 4 , (2.8)

where we have rescaled the momentum as x = p/T . This is the usual Stefan-Boltzmann

relation (ε = aT 4). The energy density for the hadron gas is therefore simply

εHG = 3 εg = 3
π2

30
T 4 . (2.9)

For a QGP consisting of 2 massless quark �avours (u and d) at vanishing net baryon

density (µ = 0) we must sum the quark and the gluon contributions to the energy density.

The gluon contribution is given by Eq. 2.8 times the 16 gluonic d.o.f. (2spin× (32−1)colour).

The quark contribution is obtained from a similar integral for a Fermi gas

εq =
∫

d3p

(2π)3
p

ep/T + 1
=

4πT 4

(2π)3

∫ ∞

0

x3 dx

ex + 1
dx =

7
8

π2

30
T 4 . (2.10)

Multiplying by the number of (anti)quark d.o.f. (2spin × 3colour ×NF ) we obtain the energy

density

εQGP = 16εg + 6NF (εq + εq̄) = 16
π2

30
T 4 + 12NF

7
8

π2

30
T 4 = (16 +

21
2

NF )
π2

30
T 4 . (2.11)

Figure 2.2 shows recent results for the energy density ε as a function of temperature

in lattice QCD simulations with NF = 0, 2 and 3 light quarks as well as two light and
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a heavier (strange) quark (2+1 �avour QCD). The pressure p is shown in Figure 2.3a for

QCD with di�erent number of �avours as well as for the pure SU(3) gauge theory. The

curves clearly re�ect the strong change in the number of degrees of freedom when going

through the transition. In the high temperature limit (T & 1.5 Tc), we expect both ε and p

to asymptotically approach the Stefan-Boltzmann free gas limit Eq. 2.11, indicated by the

arrows in the �gures. From the �gure, it is evident that even at 4Tc the Stefan-Boltzmann

limit is not reached. This has been taken as indication of a signi�cant amount of interactions

among partons in the high temperature phase, with only a logarithmic approach to the free-

gas behaviour.

Figure 2.2: Energy density ε obtained from a numerical evaluation of QCD on the lattice [42].
ε is divided by T 4 to exhibit the sudden rise of the number of thermally excited degrees of
freedom near the critical temperature Tc. Arrows show the ideal gas values as given by
Eq. 2.11.

In addition, the dependence of Tc on the number of partonic degrees of freedom is clearly

visible in Figure 2.3a. It is therefore striking that p/pSB is almost �avour independent when

plotted in units of T/Tc as shown in Figure 2.3b.

The most recently reported results on the value of Tc from lattice calculations are found

to be, for one particular choice of actions (improved staggered fermion action) [43]
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Figure 2.3: The Pressure p in lattice QCD [42]. Left panel: Curves with NF = 0, 2 and 3
light quarks as well as the �(2+1)� case. Right panel: T axis scaled by the value of Tc for
each curve.

NF = 2 : Tc = 173± 8MeV

NF = 3 : Tc = 154± 8MeV . (2.12)

The results also suggest that the transition temperature in (2+1)-�avour QCD is close to

that of 2-�avour QCD.

The behaviour of the di�erent actions (improved staggered, Wilson, Clover, etc.) cur-

rently studied in lattice QCD should show agreement in the vicinity of the phase transition.

In this regime, the correlation lengths become large and cut-o� e�ects in the calculations

become less important. One can therefore compare calculations made with di�erent actions.

In particular, the recent results for the energy density at Tc yield

εc ' (6± 2)Tc
4 = 0.70± 0.23 GeV/fm3. (2.13)

as shown in Figure 2.2 by the vertical line at T = Tc. It is important to stress that these

values refer to initial energy densities, when the medium exists at the early stages of QGP

evolution, and must be translated into a �nal energy density that can be measured in

an experiment using detected particles. Bjorken [62] introduced a relation to address this
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question. One can experimentally estimate the energy density achieved in a nucleus-nucleus

collision via the energy measured in the central rapidity region, dE⊥/dy, divided by the

e�ective interaction volume, (AT · τ). In this case, we estimate the energy by a product

of the particle multiplicity (dN/dy|y=0), times the mean transverse mass of the particles,

(〈m⊥〉).

ε =
dN
dy |y=0 · 〈m⊥〉

AT · τ . (2.14)

In this expression, the factor AT is the transverse area of overlap in the collision. The

quantity τ is less accurately de�ned. It is normally interpreted as the parton formation

time, i.e. the time needed to pass from the initial hadronic environment to the partonic

degrees of freedom. Usually, this time is taken as 1 fm/c at SPS in order to compare di�erent

experiments. However, there is currently no real consensus as to what is the appropriate

formation time τ to use at RHIC, although if anything there are arguments that it should

be smaller than 1 fm/c at high energies [63] because it should take less time to equilibrate

the system. An estimate of the energy density using this relation should then be at best

considered a lower limit (with respect to this formation time).

For reference, in the case of STAR, this relation can be calculated for a given centrality

selection, we choose the 5% most central collisions, using the total charged multiplicity and

the transverse momentum distribution for charged particles (Sec. 9.3, and 9.2 respectively).

The transverse area AT can be computed in a geometrical model that reproduces the mea-

sured multiplicity distribution (Sec. 4.1.1). Equation 2.14 is a very accessible experimental

observable, but there are additional caveats associated with its interpretation of which the

formation time is but one example. We discuss the applicability and additional uncertainties

associated with equation 2.14 in Section 9.3.
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2.2.2 Heavy Quark E�ective Potential

In the lattice approach, an interesting quantity one can calculate is the e�ective potential

between two heavy quarks, for it is the example which most cleanly illustrates the modi�ca-

tion of the behaviour of the coloured �elds at high temperature. From the previous section,

we delineated the behaviour of the strong coupling constant: at large momenta or small

distances it should be small and at small momenta or large distances the coupling rises as

1/q2 (asymptotic freedom). This leads to an e�ective potential that rises linearly with r,

the distance between the coloured constituents, and can be calculated in the lattice.

Figure 2.4 shows the results of a lattice calculation for the heavy quark potential as a

function of distance. We see the potential is very weak at small distances and the expected

(a) (b)

Figure 2.4: The heavy quark e�ective potential as a function of distance r in lattice QCD.
The left panel shows a quenched (Nf = 0) calculation using Wilson loops, in physical units.
The right panel shows a comparison between a quenched calculation (red) and one including
quark loop e�ects (blue) showing nice agreement. Vertical bars near the horizontal axis show
the scale of the lattice spacing a, and intervals in physical units 0.1 fm wide for reference.
Figures are from Refs. [64] (a) and [65](b).

linear rise at large distances. The slope of the linear rise is usually called the string constant,

since it can be thought of as the tension of a spring.

One can test the idea of decon�nement at high temperature in lattice calculations in
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a straightforward way. As we raise the temperature, one can study the behaviour of the

e�ective potential. We expect that near the critical temperature, the linear piece of the

potential should be modi�ed and weakened. At high temperature, the energy cost to create

light qq̄ pairs from the vacuum is reduced (this is related to the vanishing of the quark

condensate and the restoration of chiral symmetry in the T > Tc phase of QCD). These light

qq̄ pairs then act as screening colour charges around the heavy quark pair, thus weakening

the potential.

Figure 2.5 shows the heavy quark potential for di�erent temperatures in the region near

Tc. It is clear that there are important modi�cations to the strength of the potential at

Figure 2.5: The heavy quark e�ective potential for di�erent temperatures, taken from
Ref. [42]. The linear rise of the potential is weakened as one approaches the critical temper-
ature. The solid curves show the Cornell potential V (r) = −α/r + σr with α = 0.25± 0.05,
which is used to normalize the �nite temperature free energies at the shortest distance
available, r = 1/(4T ).

high temperatures. We see that as the temperature increases, the strength systematically

decreases. The potentials in Figure 2.5 also do not show the steep rise as in the quenched

case. This is an expected phenomenon that had proved elusive in lattice calculations. As

the quark-antiquark pair separate, we expect the formation of a tube of �ux, or string,

which should break in the presence of light quark-antiquark pairs. The results in the �gure
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show that the string does in fact break in the con�ning phase at non-zero temperature. The

weakening of the potential at high temperature has important consequences for heavy quark

bound states. In particular, it is this behaviour that is the basis for the concept of J/ψ

suppression in a decon�ned medium [66].

We next need to address how we can measure the properties of excited hadronic and

partonic matter in the laboratory and how can we hope to see a signal of QGP formation.

We therefore proceed to discuss the experimental side of QGP physics.
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Chapter 3

Experimental Search for the QGP

The use of beams of heavy elements allows us to distribute the incoming energy over an

extended region of space, large compared to the size of one nucleon, with the hope of

creating conditions that are suitable for the formation of a QGP. One can identify the

following phases, shown schematically in Fig. 3.1:

Figure 3.1: 1-D Space-time picture of the evolution of an ultra-relativistic nuclear collision,
distinguishing 3 regions: (a) Pre-equilibrium state, (b) thermalized QGP, (c) hadronization
stage. (see text). The z axis denotes the beam direction, and the dashed lines indicate the
colliding nuclei near the light-cone region.

i) The interpenetration of the nuclei with partonic interactions at high energy. This
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stage features the creation of e.g. high-p⊥ jets, cc̄ pairs or other products of high momentum

transfer scattering processes on the parton level. In addition, large cross-section soft nucleon

nucleon scattering between the two highly Lorentz-contracted nuclei help redistribute a

fraction of the incoming kinetic energy into other degrees of freedom. The small cross-

section hard processes are used as experimental probes for the hot and dense zone.

ii) The interaction of the particles of the system, driving it towards chemical and thermal

equilibrium. Partons materialize out of the highly excited QCD �eld. If QGP forms, the

quark mean free path at energy densities ε = 2 GeV/fm3 is λ ≈ 0.5 fm, and individual

parton-parton scattering is expected to play a role in thermalizing the system during this

early stage as the nuclear dimensions are larger than λ. The interactions also originate the

development of collective �ow. Rapid expansion, mainly along the longitudinal direction,

lower the temperature of the system eventually reaching the cross over temperature Tc.

Direct photon signals from the QGP are generated from collisions of charged particles during

the expansion stage, although there are also photon signals from the hot hadron gas stage.

Final formation of charmonium states (J/ψ, ψ′) from the initial cc̄ pairs happens also during

this stage.

iii) The hadronization stage and the `freeze-out' of the �nal state particles is then reached

at T < Tc, as the system cools down so that there is not enough energy in each collision

to further change the di�erent species' populations or ratios (chemical freeze-out, T ∼
160 − 170 MeV). Eventually, the energy is small enough and the system dilute enough

such that the interactions cease and the momentum spectra do not change further (kinetic

freeze-out, T ∼ 120 MeV). To obtain information of the di�erent stages, experimentally

one must start from the measurement of �nal state particles. Global observables are useful

to determine the initial conditions such as centrality, initial volume, and possibly energy

density.

There are some observables that also provide information from the early stages. Signals

such as direct photons and dilepton pairs that originate during early times are interesting

since they are little disturbed by the hadronic �nal state. The caveat in studying such signals
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is that they typically have a much smaller cross section compared to hadronic observables.

There are also a class of hadronic observables that are thought to be sensitive to early

times. In particular, the measurement of an azimuthal anisotropy in the emission of particles

(with respect to the reaction plane, i.e. the plane formed by the beam direction and the

direction of a vector connecting the center of the two colliding nuclei) is one example. In

non-central collisions, an initial spatial anisotropy would result in pressure gradients which

drive the emission of particles, producing a modulation in the azimuthal distribution of

particles with respect to the reaction plane. This e�ect is typically measured by a Fourier

analysis of the azimuthal particle distribution, where the 2nd Fourier component is called

elliptic �ow (in reference to the picture of particles in a �uid moving under the in�uence

of the initial pressure gradient) and is denoted as v2. The STAR experiment [67] already

measured the charged particle elliptic �ow signal at low p⊥, and from these results we already

see evidence of signi�cant collective behaviour during the early stages of collisions at RHIC

energies.

3.1 QGP Signatures

Many di�erent e�ects have been proposed as possible ways to detect experimentally the

formation of the QGP state of matter. These range from the earliest and most naïve studies

which involved plotting mean p⊥ (〈p⊥〉) as a function of particle multiplicity as a quick way

to look into the structure of the T − ε phase diagram [68], to the more current searches for

modi�cation of particle properties (enhancement, suppression or medium-induced changes

in mass or width), and the statistical studies of charge (or other observable) �uctuations

event-by-event. While some probes give information primarily about `surface' e�ects, like

the hadrons' p⊥ distributions discussed here, strangeness production and particle interfer-

ometry which reveal �nal state information; some others deal with deeper `volume' e�ects

which are sensitive to early times after the collision. These include most `hard' processes,
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i.e. those which involve large momentum transfers, for example charm and beauty produc-

tion (J/ψ, D mesons, Υ), jets and high-p⊥ particle production. Usually, the attention is on

`volume' probes that address the features of the QGP itself, i.e. those probes which provide

more direct information from the hot and dense phase of the reaction and are not in�uenced

much by the high number of hadrons produced in the collision (e.g. by hadronic rescatter-

ing). This is the ideal case, but the experience has been that one must carefully study the

modi�cation of the proposed signals by conventional nuclear means (i.e. non-QGP). It is

also important to emphasize that all of the di�erent clues must be investigated as a function

of the associated particle multiplicity or equivalent probe giving information on global char-

acteristics. One would like to understand the onset of all of the observed signals in terms of

the di�erent handles at our disposal. Experimentally we can vary the collision centrality (se-

lecting on multiplicity or transverse energy), we can collide di�erent nuclear species (a more

controlled variation of system size) and we can vary the centre-of-mass energy. The experi-

mental data will in turn help to constrain the theoretical model parameters and input (e.g.

equation of state, expansion dynamics and collective �ow, size and lifetime of the system

for hydrodynamical models; and initial parton densities, parton mean-free path and cross

section, nuclear shadowing of initial parton distributions, and amount of parton energy loss

in the plasma for perturbative approaches). For example, using hadron and electromagnetic

spectra from several SPS experiments, attempts have been made to constrain the equation

of state and initial conditions in a hydrodynamical approach [69].

In the following we will brie�y mention some of the experimental signals that have been

proposed to probe the system created in heavy ion collisions. For a recent review on QGP

signatures, see Ref. [34].

3.1.1 Charmonium Suppression

The arguments for charmonium suppression were laid out in Section 2.2.2. Essentially, the

weakening of the heavy quark e�ective potential with increasing temperature, or alternately

viewed as the Debye screening of free colour charges in a QGP, is responsible for the breakup
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of charmonium states [66]. Excited states of the cc̄ system, such as ψ′ and χc, are easier to

dissociate due to their larger radii, and are expected to dissolve just above Tc. The smaller

J/ψ becomes unbound at a higher temperature, T & 1.2Tc. Similar arguments apply to the

dissociation of the heavier bb̄ bound states, but they require much shorter screening lengths

to dissolve, i.e. greater temperature and energy densities [70]. The Υ state may dissolve

above a temperature of ∼ 2.5Tc, while the Υ′ could also dissolve near Tc.

�Anomalous� J/ψ suppression has been reported by the NA50 collaboration for central

Pb + Pb collisions at SPS which has been heralded as evidence for QGP formation [71�73].

There are nuclear e�ects, such as the breakup of the J/ψ by hadronic comovers, which also

suppress the measured cross section in nucleus-nucleus collisions [74]. This issue is still one

of intense debate, with many journal publications devoted to the topic. There are already

some model predictions on J/ψ suppression at RHIC and LHC energies based on normal

nuclear e�ects, such as p⊥ broadening and nuclear shadowing of the parton distribution

functions [75]. Such an analysis lead for example to anti-shadowing at RHIC energies, i.e.

the modi�cations introduced by cold nuclear matter enhance quarkonium production at

RHIC (at LHC the opposite occurs). It has become clear that several mechanisms need to

be considered in order to fully comprehend quarkonium production and suppression: the

underlying physics description at di�erent energies (hadronic at AGS and SPS, partonic

at collider energies), nuclear e�ects such as shadowing, interaction with comovers, J/ψ

production due to the decay of higher mass resonances, and the signals from pA data. For the

most recent developments, one can see for example the talks in the dedicated J/ψ session at

Quark Matter '01 [25], where suppression from the comover mechanism [74], a model based

on E⊥ �uctuations for the most central events to explain the NA50 Pb + Pb data [76],

and even enhancement of J/ψ production in decon�ned matter at RHIC energies [77] were

discussed.
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3.1.2 Jet Quenching

The colour structure of QCD matter can be probed by its e�ect on the propagation of a

fast parton. The mechanisms are similar to those responsible for the electromagnetic energy

loss of a fast charged particle in matter: energy may be lost either by the excitation of

the penetrated medium or by radiation . The QCD analog of this e�ect indicates that the

stopping power of the Quark-Gluon Plasma should be higher than that of ordinary matter

[78]. This e�ect is called jet quenching [79, 80] and has several consequences that could be

observable in experiments. Of more direct relevance to particle spectra, a comparison of the

transverse momentum spectrum of hadrons compared to appropriately scaled distributions

from pp or pp̄ collisions should show a suppression at high-p⊥ (& 4 GeV/c). In addition,

a quark or gluon jet propagating through a dense medium will not only lose energy, it will

also be de�ected. This will destroy the coplanarity of the two jets with respect to the beam

axis. The angular de�ection in addition leads to an azimuthal asymmetry. One can then

perform angular correlations among high p⊥ particles to study the energy loss e�ects of the

partons in the medium.

3.1.3 Medium E�ects on Hadron Properties

The widths and masses of the ρ, ω and φ resonances in the dilepton pair invariant mass

spectrum are sensitive to medium-induced changes, especially to possible drop of vector

meson masses preceding the chiral symmetry restoration transition. The CERES data from

S+Au and Pb+Au collisions at SPS showed an excess of dileptons in the low-mass region 0.2

< M < 1.5 GeV/c2, relative to pp and pA collisions [81, 82], which has been the subject of

active discussion. Although the CERES data can be explained by a hydrodynamic approach

assuming the creation of a QGP [83], alternative scenarios have also provided explanations.

These have included for example microscopic hadronic transport models incorporating mass

shifts of vector mesons, and calculations involving in-medium spectral functions (coupling

the ρ with nucleon resonances) without requiring a shift in the ρ mass [84]. With the addition
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of a TPC to the CERES experiment [85], the resulting increase in resolution (and statistics)

should help verify or falsify some of the con�icting hypotheses on the origin of the low-mass

enhancement in the dilepton spectrum.

3.1.4 Direct Photons and Thermal Dileptons

The detection of radiation from a high temperature QGP would be an ideal signal to detect,

as black body radiation is one of the most directly accessible probes of the temperature of

a given system. In the quark-gluon phase, the gluon-photon Compton process gq → γq is

the most prominent process for the creation of direct (thermal) photons (with additional

contributions from the qq̄ → γg annihilation process). Unfortunately, a thermal hadron gas

with the Compton scattering reaction πρ → γρ (and pion annihilation ππ → γρ) has been

shown to `shine' as brightly as a QGP (or even brighter still) [86]. However, a clear signal

of photons from a very hot QGP possibly formed at RHIC could be visible at transverse

momenta in the range 2�5 GeV/c [87�89]. However, it is also possible that �ow e�ects can

prevent a direct identi�cation of the temperature and the slope of the p⊥ distribution. WA98

has observed a direct photon signal Pb + Pb collisions at SPS [90]. Comparing the results

to pA data, they observe an enhancement for central collisions, suggesting a modi�cation of

the photon production mechanism.

In addition, dileptons can also carry similar information as photons on the thermody-

namic state of the medium (thermal dileptons). Since dileptons interact only electromag-

netically, they can also leave the hot and dense reaction zone basically unperturbed. The

di�culty of this type of signal is that one does not have a signi�cant feature, such as a

mass peak. One has to analyze a spectrum which is a convolution of several complicated

backgrounds on top of the (small cross-section) signal. At CERN-SPS, the expectation is

that the contribution of hadronic backgrounds to the dilepton spectrum will dominate over

the QGP radiation. The main backgrounds are, at low masses: pion annihilation, resonance

decays, π − ρ interactions. At high masses, the Drell-Yan process dominates at SPS. At

RHIC energies there is an additional charm contribution above 2 GeV/c2. There is only
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a small window, 1 < M < 1.5 where the rates for a plasma (at very high temperatures,

T ≈ 500 MeV) may be dominant. This signature has proved to be a di�cult experimental

observable, but there is a continued e�ort to improve the sensitivity of the measurements:

a study of the p⊥ dependence of various mass windows might perhaps help to disentangle

the di�erent contributions to the spectrum.

3.1.5 Strangeness Enhancement

In hadronic reactions, the production of particles containing strange quarks is normally

suppressed due to the high mass of the s-quark (ms ' 60 − 170 MeV/c2) compared to

u and d masses. In the presence of a QGP, the temperature of the order of the s-quark

mass and the rapid �lling of the phase space available for u and d quarks should favor the

production of ss̄ pairs in interactions of two gluons [91, 92]. This should be re�ected in an

enhancement of the production of multi-strange baryons and strange antibaryons if a QGP

is formed compared as compared to a purely hadronic scenario at the same temperature.

Important observables in this respect are the yields and ratios of strange hadrons (mesons,

strange and multi-strange baryons and their antiparticles) which allow the determination

of the relative strangeness equilibrium. To account for incomplete chemical equilibration,

a strangeness fugacity γs is introduced in a thermochemical approach. The particle ratios

can be calculated assuming either a hadron gas scenario or a QGP and a comparison can

be made of the values thus extracted in conjunction with other model parameters such as

T and µB.

Because strange hadrons interact strongly, their �nal-state interactions must be modelled

in detail before predictions and comparisons of strange particle yields can be done. It is also

important to stress that an understanding of the enhancement mechanism present in pA

collisions is crucial in order to interpret the signals in AA collisions.

STAR is currently addressing several of these topics. The large acceptance of the de-

tector coupled with precise tracking allows for the reconstruction of the decays of strange

particles [93]. Studies of high-p⊥ hadron spectra [94] and angular correlations [67] are well
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suited for STAR as the detector has full azimuthal coverage. Additional detector compo-

nents for future runs, speci�cally the completion of a barrel electro-magnetic calorimeter,

will permit studies of dilepton production and J/ψ suppression.

In all cases, the speci�c observables that are expected to be sensitive to decon�nement

have to be correlated with the global characteristics of the collision in order to better un-

derstand their systematics. For example, critical in the debate of the J/ψ results has been

the dependence of the e�ect on the measured transverse energy (E⊥) of the collision, an

observable similar to multiplicity in that it is correlated with the collision geometry, and the

determination of the number of participants (see Sec. 4.1.1) from the measured E⊥. It is

therefore essential to understand the global observables involved in the systematics of any

QGP signature. In the following chapter, we therefore turn our attention to these global

hadronic observables, and their relationship to the collision geometry.
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Chapter 4

Global Observables and Charged
Hadron Spectra

The search for the new state of matter has not been an easy one. There appears to be

no simple and unambiguous experimental signature of plasma formation, and one of the

main lessons we have learned in this �eld is that an understanding of QGP formation and

an elucidation of its properties will only come about through systematic studies. It is

necessary to measure nucleus-nucleus (AA) collisions at various centre-of-mass energies, to

use di�erent beam species, and to make comparisons with reference data. These comparisons

are especially important since from proton-proton (pp) collisions one can measure basic

processes in a cleaner environment, and from proton-nucleus (pA) collisions one gains insight

into the modi�cation of the basic processes by the presence of normal nuclear matter. These

are required to understand any signal in AA collisions. For a recent review on hadronic

particle production in nucleus-nucleus collisions from SIS to SPS energies, see [95].

Through global distributions one gains insight into the `kinetic freeze-out' stage of the

system produced in the collision when hadrons no longer interact and their momenta no

longer change. These �nal-state measures supply information that constrain the possible

evolutionary paths of the system and can help establish conditions in the early, hot and

dense phase of the collision.
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Typically, the �rst information studied in heavy ion collisions comes from the observed

particle distributions, both the transverse momentum (p⊥) and rapidity (y) distributions.

The spectral shapes are intimately related to the underlying collision dynamics. The ex-

pected behaviour of these distributions from scenarios consistent with a phase transition can

be tested. While these may not be su�cient to completely answer the question as to whether

a quark-gluon plasma is found, they are most certainly a necessary �rst step to provide con-

sistency with any given scenario, be it QGP or other. The studies of the proposed QGP

signatures so far, however, have not provided unambiguous evidence for quark-gluon plasma

formation. It is the general belief that the proposed experimental programme of high energy

heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National

Lab will yield key pieces of the puzzle. In the analysis presented here, we focus on charged

particle distributions from the �rst collisions measured by the Solenoidal Tracker at RHIC

(STAR) experiment. These measurements will serve as a baseline for studies of QGP sig-

natures and as a guidance for theoretical models. We now give some background for the

distributions that we will present here.

4.1 Particle Multiplicity

The negatively charged hadron (h−) particle multiplicity distribution (Nh−) yields informa-

tion on both the impact parameter and energy density of the collision. It is not possible to

directly measure the impact parameter of the collision, so one must use an indirect measure.

The event multiplicity is one of the observables that is correlated to the impact parameter.

The idea is simple. Each of the nucleons in the nuclei that participate in the collision pro-

duces (on average) a certain number of particles. We can calculate in a geometrical model

the average number of nucleons that participate in the collision (Npart) at a given impact

parameter b. We can thus obtain a statistical mapping of 〈Nh−〉 → 〈Npart〉 → 〈b〉. The

number of participants (Npart) is also called number of wounded nucleons [31], and we will
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use them interchangeably here. The scaling of the multiplicity with the number of partici-

pants is typically thought of as a re�ection of the particle production due to low momentum

transfer (soft) processes. There are re�nements to this model. At high energy, it is expected

that there will be an increased particle production from large momentum transfer (hard)

processes. Hard process cross sections in pA collisions, e.g. the p⊥ distributions at very high

p⊥, are found to be proportional to the number of elementary nucleon-nucleon collisions,

which we call the number of binary collisions (Ncoll). Some recent models [96] include for

example the assumption that the particle production is derived from a linear combination

of the soft and the hard processes, i.e. a linear combination of Npart and Ncoll.

To make the distinction between the two quantities Npart and Ncoll clear, since the two

are related and sometimes lead to confusion, we describe the concepts in more detail. Npart

refers to the number of nucleons that were hit, or that interacted in some sense, which is why

they are also sometimes called wounded nucleons. For a head-on (b = 0) Au + Au collision

assuming the nucleus to be a hard sphere, or rather, to be a bag �lled with hard spheres,

we then �nd simply Npart = 197 + 197 = 394. There will be deviations from this, as one

introduces a more realistic density pro�le for the Au nucleus. In addition, the distribution of

nucleons in the nucleus is not always the same, there are volume �uctuations and the nuclei

have Fermi motion. This is typically introduced in the models by adding a parameter to

represent the size of the �uctuations. It is also common to �nd in the literature references

to the number of participant pairs and comparisons made this way. If one normalizes the

particle production �per participant pair�, it is straightforward to compare to pp or pp̄ data

which can be thought of as the limit of 1 participant pair. Again, for a head-on Au + Au

collision assuming hard spheres, the number of participant pairs is just Npart/2 = 197.

Ncoll refers to the number of elementary nucleon-nucleon collisions. It includes all par-

ticipating nucleons (i.e. Ncoll ≥ Npart). The di�erence can be thought of in the following

simple picture. Let us follow one particular nucleon through the collision as if it were a

billiard ball and do its accounting. If it does not interact at all, it does not count for either

Npart or Ncoll purposes, and we call it a spectator nucleon. If it interacts, then we count
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it once for Npart purposes and that is the end of our Npart accounting using this nucleon.

We of course also count it for the purposes of Ncoll at this point. The di�erence is that

there are can still be other nucleons in its path, and if it interacts again, we increase our

Ncoll counter. We do this for every time our original nucleon collides, whereas our Npart

counter remains at 1. Since each nucleon in a nucleus can interact many times as it �punches

through� the other nucleus, it is evident that Ncoll ≥ Npart. The corresponding simple limit

for Ncoll for the hard sphere case is Ncoll ∝ Npart
4/3. This can be seen from the following

argument. It is easy to see that Npart is proportional to A (e.g. Npart = 2A for central

collisions). Every nucleon that counts for Npart must also count for Ncoll. The number of

additional collisions that count for Ncoll have to do with the number of additional nucleons

(from the target nucleus) that lie in the path of our original nucleon (from the projectile

nucleus). As seen from the target nucleus, the path of the projectile nucleon is a straight

line parallel to the beam axis. A nucleon that punches through the center of the target

nucleus will cross a length 2R of the target nucleus, where R is the nuclear radius. If the

nucleus is not in the center, the length will still be proportional to R. For the hard sphere,

the nucleon density is constant and therefore the additional collisions that sum up to Ncoll

are then proportional to R. Since the nuclear radius is proportional to A1/3, we arrive at

Ncoll ∝ A ·A1/3 = A4/3 ∝ Npart
4/3.

It is important to stress the limitations of our mapping from Nh− to impact parameter.

First of all, it relies on the accuracy of the simpli�ed model relationship between the number

of participants and particle production. In addition, the relationship is statistical only, i.e.

we cannot experimentally measure the impact parameter of a given event. We can only

measure the multiplicity of each event, and for a given ensemble of events compute the

mean multiplicity. Then we can relate this to an average number of participants, since for

every event, even if we keep the number of participants �xed, there will still be multiplicity

�uctuations. Furthermore, even keeping the impact parameter �xed does not �x the number

of participants either, since we expect �uctuations in the initial con�guration of the nucleons

in the nucleus for every event due to Fermi motion as well as small variations in the size of
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the nucleus. We therefore expect that such a statistical map will probably work best for the

central collisions (i.e. we know that the highest-multiplicity events must come from central

collisions) and be less reliable for peripheral collisions where �uctuations will dominate.

The multiplicity distribution Nh− belongs to the most global class of observables (or

rather, of the most integral sort of observables, as we measure the cross section integrated

over azimuth, over p⊥ and for a wide pseudorapidity slice). The information that can be

derived from the multiplicity distribution is basically related to whether there are signi�cant

deviations from the simple geometrical picture of the collision, commonly referred to as the

Glauber model (see e.g. [38]). We now discuss the relationship between the nuclear geometry

and the �nal multiplicity in this model in more detail.

4.1.1 Glauber Model

To clarify the meaning of the geometrical model, which can have di�erent a priori assump-

tions in di�erent implementations in the literature, we discuss here the characteristics we

consider. The starting point is to assume that the nuclei are composed of discreet and

point-like nucleons. We distribute the nucleons according to the Woods-Saxon spherically

symmetric density pro�le

ρ(r) =
ρ0

1 + e
r−r0

c

. (4.1)

For the case of Au, the parameters are r0 = 6.38 fm, ρ0 = 0.169 1/fm3 and c = 0.535 fm,

obtained from eA scattering [97]. The density is shown in Fig. 4.1. With these parameters,

we get a total number of nucleons in the Au nucleus of
∫ ∞

0
ρ(r) 4πr2 dr = 196.6 . (4.2)

It is also common in the literature to take a di�erent value of ρ0 such that the integral over

the density is normalized to unity. We can then interpret ρ(r) as the probability of �nding

a baryon in the volume element d3x = d2bdz at the position (~b, z). With this convention,

when calculating quantities such as the number of binary collisions, we see that there will

be factors of A every time this integral appears.
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Figure 4.1: The Woods-Saxon Density pro�le for the Au nucleus.

The next assumption is that the interaction probability is just given by the pp cross

section, neglecting e�ects like excitations and energy loss. At these energies, the pp and

the pp̄ cross sections are very similar in value, and can therefore be used interchangeably.

Unfortunately, there are no measurements of either cross section, σpp or σpp̄, at √s =

130 GeV. The experiments UA5 [98] and UA1 [99] at CERN-SPS have reported the pp̄

cross section at √s = 900 GeV. Although UA5 took data at √s = 200 GeV, in Ref. [98]

they only measure the ratio of the cross sections at the two di�erent energies and use a

parameterization given in [100] (Eq. 4.3) to get a value for the total cross section. Then,

based on the ratio σel/σtot of elastic to total cross section, they obtain a value for σinel.

σpp̄(
√

s) = C1E
−ν1 + C2E

−ν2 + C3 + C4 ln2(s) (4.3)

σpp̄(p) = A + Bp−n + C ln2(p) + D ln(p) . (4.4)

For Eq. 4.3, the important part at energies above ∼ 100 GeV is the ln2(s) term. The �rst

two terms are used to describe the data at lower energies and the di�erence between pp and

pp̄ collisions, E is the beam energy. At √s = 130 GeV and above, the pp and pp̄ cross

sections are very similar. The parameterization found in the Particle Data Book [39] is
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√
s = 200 GeV

√
s = 130 GeV

σtot 52.40 mb 49.26 mb
σel 10.66 mb 8.91 mb
σinel 41.74 mb 40.35 mb

Table 4.1: The pp̄ total, elastic and inelastic cross sections obtained from the parameter-
ization from the Particle Data Book [39]. The errors on the values are on the order of
1%.

given in Eq. 4.4 in terms of the laboratory momentum p. They quote parameters for the

total and for the inelastic cross section. The relevant numbers are found in Table 4.1. At

the energy of the RHIC 2000 run, we obtain a value of σpp̄(130 GeV) ∼= 40.35 mb. For head

on collisions b = 0, as we said before, in the hard sphere limit the number of participants

will just be 2A where A is the mass number of the nucleus. We need a prescription to

calculate the overlap at any given impact parameter. This is given by the nuclear overlap

integral, TAA, which is a calculation of the overlap of the density pro�les (in cylindrical

coordinates, where the z direction is the beam direction) of two speci�c nuclei at a given

impact parameter b:

TAA(b) =
∫

d2s dz1 dz2 ρ1(~s, z1) · ρ2(~s−~b, z2) (4.5)

We limit ourselves to the case of symmetric AA collisions. The coordinate system is shown

schematically in Fig. 4.2. For a given impact parameter, we calculate the product of the

densities of each nucleus at a given point ~s and integrate over all space. We normalize the

integral such that ∫
TAA(~b)d2b = 1 . (4.6)

Since d2b is an element of area, TAA then has units of inverse area. With this de�nition, we

can obtain the probability of having n interactions at a given impact parameter

P (n, b) =

(
A2

n

)
(TAA(b)σpp)

n (1− TAA(b)σpp)
A2−n . (4.7)

The �rst terms takes care of the combinations of choosing n nucleons out of A2, the second

term is the probability of having exactly n collisions and the third term is the probability
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Figure 4.2: Schematic of the collision geometry for the calculation of the overlap integral
TAA, Eq. 4.5. The area of overlap is the �football� shaped region in the middle of the two
spheres. The z1 and z2 coordinates are perpendicular to the plane of the paper.

of having exactly A2 − n misses. The total hadronic cross section for Au + Au collisions is

then found to be:

σAuAu =
∫

d2b
[
1− (1− TAA(b)σpp)A2

]
= 7.2 barn (4.8)

which can be read as 1 minus the probability of not having any collision (n = 0) at a given

impact parameter (i.e. the probability of having at least one interaction at each b) integrated

over all impact parameters.

The mean number of binary collisions 〈Ncoll〉 and the mean number of participants

〈Npart〉 are obtained from TAA at a given impact parameter as

〈Ncoll〉(b) = σpp ·A ·A · TAA(b)

〈Npart〉(b) = 2A
∫

d2s TAA(~s)
{

1−
(
1− TAA(~s−~b)σpp

)A2
}

. (4.9)

Since the de�nition of the overlap integral takes care of counting interactions, it is not

surprising that the number of binary collisions is simply proportional to TAA. In the above

de�nition of Ncoll, the factor A2 comes from our choice of normalization.
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(a) (b)

Figure 4.3: 〈Npart 〉 and 〈Ncoll 〉 as a function of impact parameter.

Fig. 4.3 shows the resulting statistical relation between the impact parameter and Ncoll

(Npart) in the left (right) panel. For large impact parameter, both Npart and Ncoll are close

to zero. For the most central collisions, Npart is found to be ∼ 394 as expected. We see that

the shapes are similar, although the overall scale is the di�erent.

Indeed, Fig. 4.4 shows the statistical relation between Npart and Ncoll as a function

of impact parameter. The dotted curve corresponds to Ncoll = (Npart/2)4/3. The above

de�nitions and relations are the basis of the geometrical model. We obtain a relationship

between the Npart and Ncoll as a function of impact parameter. These are still not directly

measurable quantities in experiments. In a �xed target environment, one can try to esti-

mate Npart by placing a hadron calorimeter to measure the forward-going energy, and thus

approximately determine the spectator nucleons. In the RHIC environment, the closest we

can get to such a scheme is to place calorimeters in the forward-backward regions, called

zero degree calorimeters (ZDC's) at RHIC, which detect the spectator neutrons (see Section

5.3). So there has to be another indirect step to model the particle production based on

Npart, Ncoll, and TAA. There is not a unique way to do this. We will describe the �eikonal�

approach to particle production given in Ref. [101] which was used already in the analysis

of PHOBOS data [96].

We assume that each participant contributes to particle production, i.e. 〈Nh−(b)〉 =
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Figure 4.4: 〈Ncoll 〉 correlated to 〈Npart 〉. The curve is the limit Ncoll = (Npart/2)4/3 .

q〈Npart(b)〉 where q is a scale factor. This approach has worked well at low energies, but

at higher energies the hard processes contribute to particle production as well. Therefore,

in [96], the assumption is that particle production scales as a linear combination of Npart and

Ncoll. This model also attempts to incorporate the multiplicity measured in pp collisions.

The particle production is then given by:

〈Nh−(b)〉 = q · npp

(√
s
) (

(1− x) · 〈Npart(b)〉
2

+ x · 〈Ncoll(b)〉
)

(4.10)

The idea is that x is a number between 0− 1 which gives the fraction of particle production

that scales as ∼ Ncoll. We also need the expected particle production per participant from

pp collisions. It is measured at 200 GeV [99, 102]. The number of charged particles in the

collision per unit of pseudorapidity at mid-rapidity is reported in Ref. [99] to scale as

dNch/dη(
√

s) = −0.32 + 0.55 ln(
√

s/GeV) , (4.11)
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which at 130 GeV yields npp = dNh−/dη|η=0 = 2.36/2 = 1.18 .

The next assumption is to pick the statistical distribution to model the �uctuations

about the mean value. One can choose e.g. a Poisson distribution [103, 104] or a Gaussian

distribution [31,96]. We follow the Gaussian prescription here, we then require an additional

parameter to get the variance for the Gaussian, which is taken as simply

σ2
g = a · q2 · 〈Nh−(b)〉 . (4.12)

The parameters of the model are thus a, x and q.

We are �nally in the position to calculate the multiplicity distribution, which is the actual

experimental observable. This is done by convoluting the various Gaussian distributions

obtained for each impact parameter, weighted by the appropriate interaction probability

and integrating over all impact parameters:

dσAuAu

dNh−
(Nh−) =

∫
d2b (1− P (0, b))

1√
2πσg

e

N
h−−〈Nh− (b)〉

2σ2
g (4.13)

From such a picture, we expect roughly the following behaviour as a function of impact

parameter. The cross section is largest for very peripheral collisions (b ∼ 12 fm), dropping

rapidly at �rst (b ∼ 12 − 10 fm) and then falling more slowly in the region of mid-central

collisions (b ∼ 8−4 fm), eventually reaching a limit for the most central collisions (b . 3 fm).

A schematic curve of the cross section as a function of multiplicity obtained from the hijing

model [105,106] is given in Figure 4.5. The multiplicity is the lowest ordinate axis. A related

experimental observable is the transverse energy E⊥ in the next axis. The percentage of

the hadronic cross section is then given. The ordinate axes at the top of the �gure are the

non-measurable quantities which one can relate in the geometrical model to the multiplicity:

Npart and the impact parameter b. In this model, we obtain for the 5% most central Au + Au

events 〈Npart〉/2 = 172 participant pairs [96] and 〈Ncoll〉 = 1050 using σinel = 40.35 mb.
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Figure 4.5: Schematic of a multiplicity distribution from the hijing model, showing the
relationship between the shape of the distribution and the underlying collision geometry
(see text). Figure prepared by T. Ullrich.

4.2 Kinematic Variables: p⊥, m⊥, y and η

The next observable after a simple measurement of the charged multiplicity is to look at

the momentum distribution of particles. Particle spectra are often treated separately in the

longitudinal and transverse directions.

For the transverse direction one normally employs the transverse momentum (p⊥) or for

identi�ed particles the transverse mass

m⊥ =
√

p⊥2 + m2 (4.14)

where m is the mass of the particle.

It is convenient to treat longitudinal momenta using the rapidity

y =
1
2

ln
(

E + pz

E − pz

)
(4.15)

where E and pz are the energy and longitudinal momentum of the particle. The use of

rapidity guarantees that the shape of the corresponding distribution is independent of the
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Lorentz frame. Under a Lorentz transformation from a reference system R to a system R′

moving with velocity βz with respect to R in the longitudinal direction, the rapidity y′ in

the R′ frame is related to y in the R frame only by an additive constant: y′ = y− yβ , where

yβ is the rapidity of the moving frame

yβ =
1
2

ln
(

1 + βz

1− βz

)
(4.16)

For the incident energy of the Au beams at RHIC (γ = 70), the initial rapidity of each Au

beam is ybeam = ±4.94, since the beams are symmetric. The rapidity of the centre-of-mass

system, called mid-rapidity, is y = 0; i.e. the centre-of-mass reference frame is the same as

the laboratory frame for the collider geometry.

In the limit of a particle whose mass is much smaller than its momentum, the pseudora-

pidity variable η is often used. It is de�ned as

y =
1
2

ln
(

E + pz

E − pz

)
≈ 1

2
ln

( |~p|+ pz

|~p| − pz

)
= ln

(√
1 + cos θ

1− cos θ

)
= − ln (tan θ/2) ≡ η (4.17)

For the case of negative hadron distributions, since no particle identi�cation is performed,

this is the variable of choice since one only needs to measure the angle θ of the detected

particle relative to the beam axis (polar angle in spherical coordinates, also called dip angle

in the helix parameterization commonly used in tracking). Sometimes in the literature

h− distributions are also presented under the assumption that all particles are pions, e.g.

[107,108]. For the present work, the h− distributions are given in pseudorapidity since this

is the actual measured observable, the identi�ed π distributions are given in rapidity.

The momentum distributions are usually presented in terms of the invariant cross-section

E
d3σ

d3p
=

d3σ

dφdyp⊥dp⊥
=

d2σ

2πdyp⊥dp⊥
=

d2σ

2πdym⊥dm⊥
(4.18)

The double di�erential in Eq. 4.18 is obtained from integration over φ, and the last equality

follows from the de�nition of transverse mass, Eq. 4.14.

It is important to understand the di�erence in shape of the y and η distributions that

arises simply from the change of variables. In particular, the Jacobian ∂y/∂η characterizes
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the di�erence between a distribution given as d2N/dp⊥dη and one given as d2N/dp⊥dy.

From the relation pz = m⊥ sinh y = p⊥ sinh η, the Jacobian at �xed p⊥ is

∂y

∂η
=

p⊥ cosh η

m⊥ cosh y
=
|~p|
E

= β . (4.19)

From this relation we again see that η approaches y for highly relativistic particles. The

Jacobian in terms of the variables (p⊥, η) and (m⊥, y) is

∂y

∂η
(m⊥, y) =

√
1− m2

m⊥2 cosh2 y
(4.20)

∂y

∂η
(p⊥, η) =

(p⊥/m)2 cosh η√
(p⊥/m)2 cosh2 η + 1

. (4.21)

We can then infer from Eq. 4.20 that in the region y ≈ 0, there is a small depression in the

pseudorapidity distribution dN/dη relative to dN/dy. At high energy, where dN/dy has a

plateau shape, this leads to a small dip at mid-rapidity for dN/dη, with the dN/dη yield

being smaller by a factor of approximately
√

1−m2/〈m⊥〉2 relative to dN/dy.

4.3 Dynamics from the Kinematics

To understand the dynamics of relativistic heavy-ion collisions, it is essential to have infor-

mation on certain basic aspects of the collision dynamics. The basic idea is that particle

spectra act as kinematic probes. By analyzing the rapidity and transverse momentum distri-

butions of the particles produced in the collision, one can study the energy density ε, pressure

P , and entropy density s of the hadronic matter formed in the collision, as a function of

temperature T and baryochemical potential µB [109]. From Lattice QCD, the expectation is

to observe a rapid rise in the e�ective number of degrees of freedom, expressed by the ratios

ε/T 4 or s/T 3 over a small range of temperatures [110]. Experimental observables which are

thought to be related (e.g. in hydrodynamics) to T , s, and ε are the average transverse mo-

mentum 〈p⊥〉, the hadron rapidity distribution dN/dy [111,112], and the transverse energy

dE⊥/dy, respectively [68]. (The average transverse momentum, or the related slope of the

transverse momentum distributions, actually re�ect not just the temperature in such models
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but also the transverse expansion of the system.) If there is a rapid change in the e�ective

number of degrees of freedom due to decon�nement in the medium, the �rst hope was that

one might see vestiges of this e�ect in a plot of 〈p⊥〉 as a function of dN/dy, which would

be expected to show a rise, then a characteristic saturation of 〈p⊥〉 while the mixed phase

persists and then a second rise when the underlying matter undergoes a structural change to

its coloured constituents [68]. This simple picture however has several caveats. We discuss

here a few of them. We already stated that it is much too naïve to identify 〈p⊥〉 or the

inverse slope parameter of a transverse momentum spectrum directly with the temperature

of the system. It is also simplistic to assume that the exponential shape arises in an iden-

tical manner as that of a Boltzmann gas that reaches thermal equilibrium through a series

of internal collisions of the particles in the system. Statistical thermal models [113] have

even been applied to e+e− collisions in �ts to hadronic particle spectra [114]. The observed

spectra for e+e− collisions certainly do not come about because of a hadronic rescattering of

the �nal state particles, but are a the result of a sampling of the available phase space, i.e.

the particles are already born into equilibrium [115]. Furthermore, if the system formed in

AA reaction does in fact thermalize through collisions, the �nal state particles observed in

the experiments, and in particular the momentum spectra, will only re�ect the coolest phase

of the evolution of the system. Stated another way, if thermalization occurs the e�ective

temperature extracted from the spectrum (even if we assume we can take care additional

collective e�ects such as �ow which modify the p⊥ distributions) will probably not carry

information of the hot initial phase, smearing any structure in a 〈p⊥〉 vs. dN/dy plot. In

addition, a visible �at structure in the `T vs. ε' diagram necessitates a signi�cant duration

of a mixed phase, an e�ect that probably requires the presence of a strong �rst-order phase

transition. However, lattice simulations currently favour a more smooth cross over, perhaps

a second order transition. In this respect, critical phenomena in the form of increased event-

by-event �uctuations are possibly a more robust observable with respect to the existence

of a phase transition. Even in this case, �uctuation studies would necessitate probing the

region near a possible critical point in the T − µB phase diagram, and current e�orts to
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shed light as to the presence and location of a critical point indicate it is in the large µB

region [116].

Rapidity and transverse momentum distribution also allow us to address properties of

the particle emitting source. The degree to which the incoming nuclei are stopped by the

collision is re�ected in the rapidity distributions of produced particles as a shift with respect

to beam rapidity. At su�ciently high energies for example, a picture due to Bjorken [62],

assumes that the mid-rapidity region should undergo an idealized hydrodynamic longitudinal

expansion. The charged particles found at mid-rapidity would be mainly produced particles,

the energy of the incoming nuclei would be so great that the collision among the nucleons

would be insu�cient to stop the nuclei, so the incoming nuclei would essentially go right

through each other. The incoming baryons are then found very close to their initial rapidity.

More importantly, the rapid longitudinal expansion would have as a result that the rapidity

distribution of produced particles should be �at around mid-rapidity.

This contrasts the picture found at AGS energies, where a signi�cant amount of stopping

is observed and the mid-rapidity region is net-baryon rich. This is re�ected in the rapidity

distribution of charged particles which is peaked at mid-rapidity, as are the net-proton

distributions (p − p̄). Full stopping as in the model of Landau [111] is expected then to

work at low energies, and the rapidity distribution of produced particles at mid-rapidity is

found to more closely follow a Gaussian shape [117�119]. Since the observed width of the

distribution is signi�cantly narrower than that observed for lighter systems, this has been

understood as evidence for strong baryon stopping.

From the rapidity distributions, we can therefore obtain information for example, as to

whether the source is spherically symmetric or elongated, whether it is static or expanding,

and the degree of longitudinal and transverse expansion. The momentum distributions,

when paired with elliptic and transverse �ow studies, can also test if there is signi�cant

collective behaviour in the system and approach the question of whether the system reaches

thermal equilibrium. Experimentally, one can test the hypothesis of boost invariance by

measuring η and y distributions. If the system is boost invariant to a certain extent and
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dN/dy is �at as a function of rapidity in some phase space range, the h− pseudorapidity

distribution should be well approximated by Eq. 4.21. The rapidity distribution of identi�ed

particles should simply be constant as a function of y. The slope parameter of π distributions

have also been found to show a signi�cant rapidity dependence at lower energies [117�120].

We can measure the rapidity dependence of the π spectra at RHIC and further test the

hypothesis of boost invariance. These are of course not su�cient conditions to establish

boost invariance, but they are necessary in case it does hold.

4.4 Overview of Transverse Momentum Spectra

The transverse momentum spectra possess many interesting features in AA collisions. The

use of the transverse mass m⊥ is sometimes preferred because experimentally the cross-

section (1/p⊥)(dσ/dp⊥) of a given particle species is better described by an exponential

in m⊥ rather than in p⊥ [121]. There are contributions to the spectrum that come from

the various physics processes of interest. In order to extract correct information about the

collision, it is necessary to take these into account. Even now, our understanding of all

the features of the spectra is incomplete. A brief overview of the main features of the p⊥

distributions will be discussed.

A general feature emerging from measurements of transverse momentum distributions

in central collisions of heavy nuclei is that the invariant distributions d2N/m⊥dm⊥dy are

approximately exponential, i.e. d2N/m⊥dm⊥dy ∝ exp(−m⊥/T ). One approach to analyze

the p⊥ distributions has been to treating the system as a hadronic gas, and in particular

to use the measured 〈p⊥〉 to estimate the freeze out temperature T of the gas and its

transverse �ow velocity βflow
⊥ . These also have inverse slope constants T increasing linearly

with the mass of the particle under study. This has been interpreted as evidence for collective

transverse �ow: since p⊥ = mγβ⊥, if there is a common �ow velocity βflow
⊥ superimposed on

the random thermal motion of particles βthermal
⊥ , the slope constant T , which is proportional

to 〈p⊥〉 increases linearly with m. It is important to note, however, that in these models,
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T and βflow
⊥ are coupled: a higher T can compensate for a lower βflow

⊥ and vice versa. This

approach relies only on the analysis of p⊥ spectra. It must also be noted that in a plot of

T vs. mass, it is di�cult to make meaningful comparisons of slope parameters when they

are obtained from di�erent phase space regions, and there is the danger of obtaining a very

di�erent slope simply by �tting in a di�erent part of the p⊥ spectrum. Therefore, rather

than concentrating on the slope parameters, more realistic models incorporate additional

observables such as two-particle correlation data [122] and attempt to describe both the

observed p⊥ distributions and the observed correlations to obtain T and βflow
⊥ .

The slope of the p⊥ distribution is also seen to increase in going from pp to AA. The

spectrum of the pion, due to its low mass, is not as a�ected as the spectra of heavier particles

by a given collective �ow velocity. Thus, the pions are good probes for studying thermal

properties at freeze-out. These features of spectra can be measured at RHIC energies, and

the linear scaling of spectra with the mass of the particle checked. The scaling could very

well be reduced given that RHIC energies are a signi�cant leap with respect to SPS energies,

and the collision process can occur in a short enough time scale such that particles involved

might not have time to develop a signi�cant �ow velocity. On the other hand, an increase

in the radial �ow (and also of the elliptic �ow v2) would signal an signi�cant amount of

collective behaviour. Uncertainties remain, and they will only be clari�ed once we measure

spectra and compare them with the various scenarios: from superposition of pp collisions

governed by measured hadronic cross sections; to relativistic microscopic models based on

string formation and string fragmentation (where a string is represented by the color �ux

tube from a quark and a diquark. In longitudinal exchange string formation, the excitation

of the string originates from a stretching of the original partons in the hadron caused by a

large longitudinal momentum exchange from the hadronic collision. hijing, fritiof and

rqmd use this scheme.); to hydrodynamics, which can be thought of the limit where the

mean free path of the constituents is zero and the system is a �uid.

It is also known that there are signi�cant deviations from a purely exponential spectrum,

both at low and high-p⊥ [123]. The high-p⊥ region (at SPS, p⊥ & 1.5 GeV/c) shows
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an enhancement present already in pA collisions known as the Cronin e�ect [124]. This

enhancement shows a strong dependence on both target and projectile mass, and a weak

rapidity and √s dependence. It is thought to be partly due to multiple low-momentum

scattering at the partonic level inside nuclear matter. Perturbative QCD calculations for

pA have been done [125] and agree reasonably with data. However, a complete quantitative

understanding of this e�ect has not yet been achieved. The CERES collaboration measured

spectra in pA collisions, found a similar e�ect when comparing to pp, and reached similar

conclusions. Their S+Au data indicated that the onset of this enhancement occurred at

lower p⊥ and that the overall enhancement was larger. This was taken as evidence that in

AA collisions, there is an increased number of scattering processes per parton compared to

pA collisions, leading to increased thermalization of the collision system. In addition, the

shape of the high p⊥ spectrum was very close to being exponential. These two observations

suggested that a large degree of thermalization is reached very early for central S+Au

collisions at √sNN ∼ 20 GeV.

The low-p⊥ region shows an enhancement as well. This enhancement, however, shows

di�erent systematic behaviour than the high-p⊥ excess. The underlying physics that give rise

to this enhancement are di�erent than in the high-p⊥ region. In �xed target experiments, the

low-p⊥ enhancement was observed to have a strong target dependence but weak projectile

dependence, as well as a strong rapidity dependence. These e�ects are not yet completely

understood. There have been several attempts at explaining the enhancement (at least

qualitatively). Resonance decays are thought to contribute signi�cantly in this region [126,

127], and their contribution to the low-p⊥ enhancement would also be consitent with the

observed strong dependence on target and rapidity. Produced particles can also rescatter in

the target nucleus, and the ensuing cascade would yield additional soft pions and resonances.

In addition, at the lowest p⊥ one should expect that the treatment of a radiating gas based

on Boltzmann statistics must break down, and one should really use either Bose-Einstein or

Fermi-Dirac distributions to �t the data. For pions, a Bose-Einstein �t will give a natural

low-p⊥ enhancement compared to a Boltzmann �t to the spectrum. Other processes can
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also contribute to the low-p⊥ region, but our understanding of the enhancement is by no

means complete at this point. Studying this region at RHIC energies will certainly help to

shed light on the subject.

To fully understand the non-hadronic e�ects that may arise in an AA collision, studying

the particle distributions, in order to obtain basic information about the collision dynam-

ics, is a necessary step. Several approaches have been proposed to describe the observed

transverse momentum spectra, and to obtain di�erent types of information from them. In

the absence of any collective behaviour, the spectra should be a simple geometrical super-

position of nucleon-nucleon scatterings. A deviation of the particle distributions observed

in AA collisions from those observed in pp or pp̄ collisions is already strong evidence for

some form of collective behaviour. We discuss two models that have almost diametrically

opposite assumptions.

In hydrodynamic models, the colliding system is treated as a �uid, and can be thought

of as the limit of zero mean free path among the constituent partons. The transverse mo-

mentum distributions are obtained from a transverse �ow velocity pro�le of the component

particles of the �uid. The pro�le will depend in general on the initial conditions (central-

ity, initial energy density) as well as the underlying equation of state (including or not a

phase transition) as a function of time. This models typically yield the strongest signals for

collective e�ects such as elliptic �ow an longitudinal expansion. They should work best at

low transverse momentum, and their signals can be tested for example by measuring the

centrality dependence of the elliptic �ow signal.

In partonic cascade models, the energy deposition in the collision is broken up into scat-

tering of the constituent partons of the colliding nuclei. They rely on the framework of

perturbative QCD, following the perturbative interactions among partons until they reach

thermal equilibrium. These models predict a very rapid thermalization, mainly due to radia-

tive energy degradation, which yields a transverse momentum distribution that is exponen-

tial to a high degree. In all these theoretical models, the shape of the particle distribution

yields information to the underlying collision dynamics. Since they rely on perturbative
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calculations, they should work best for hard processes such as jets and high-p⊥ momentum

spectra.

There are, of course, other observables that need to be studied to provide further insight

into the full picture of the reaction process. These include studies of strangeness produc-

tion, HBT correlation analyses, and �uctuations of observables on an event-by-event basis.

These and other questions are also being addressed in STAR. The particle distributions are,

however, a very basic building block of the collision picture, and one of the �rst that can

and has to be addressed in the initial stage of the experiment.

In previous heavy-ion experiments at lower energies, the study of the particle spectra

has helped to provide guidance into interesting aspects of the collision dynamics, and has

also provided a means to compare results with model calculations [45]. The usefulness of

studies with particle spectra is best illustrated with a few examples.

4.5 Previous Studies Using m⊥ Spectra

At the BNL-AGS, E877 [117] measured hadron spectra from Au+Au collisions at 10.8 GeV/c

per nucleon. They measured proton and pion m⊥ distributions as a function of y and

performed exponential �ts to extract inverse slope constants from the spectra. For both pions

and protons, the spectra showed deviations from the simple exponential, e.g. an excess for

pions was observed at m⊥ −mπ < 0.2 GeV/c2, with the excess increasing systematically as

one approached mid-rapidity. They compared the Au + Au inverse slope constants extracted

from the measured m⊥ spectra with a lighter system, Si+Al. The slope parameter in the

Au + Au case systematically increased when going from the fragmentation region to central

rapidities. The data indicated that the maximum the observed slope parameter would be

reached around mid-rapidity (e.g. the measured inverse slopes for protons at y/ybeam = 0.7

were Teff ∼ 150 MeV for Si+Al and Teff ∼ 250 MeV for Au + Au). This could be interpreted

as being due to a larger collective transverse �ow component in Au+Au compared to that

of Si+Al. The proton rapidity distribution was also measured for both systems, being much

48



narrower in Au+Au. This provided information as to the degree of stopping in the collision.

The greater stopping observed in the Au+Au system was interpreted as being a consequence

of the smaller surface to volume ratio as well as the increased average number of rescatterings.

E877 also measured pion spectra in Au+Au collisions. The rapidity distributions were well

matched by calculations from RQMD, an event generator based on hadronic rescattering

using a mean �eld approximation [128]. The m⊥ spectra, and speci�cally the low-m⊥ region

(m⊥−mπ < 0.2 GeV/c2) showed an enhancement above the pure exponential. In addition,

the deviations were seen to be systematically larger for π− than for π+. This asymmetry

was also observed to systematically decrease as a function of rapidity, an e�ect seen also

by the E866 collaboration [129]. This was interpreted as due to the di�erent Coulomb

potentials seen by the di�erent charge types at freeze-out. (Coulomb interactions are also

relevant to the interpretation of particle correlation studies.) The study of the in�uence

of the Coulomb e�ect on the shape of the particle spectra provided E877 with a di�erent

approach to determine the spacetime particle distribution at freeze-out.

At the CERN-SPS, several experiments have measured charged hadron spectra. NA49

[122] in central Pb+Pb collisions measured m⊥ spectra of charged pions. They also measured

two-particle correlation functions to deduce parameters from the collision dynamics. As

mentioned earlier, in a typical �t to an m⊥ distribution, one can trade lower values of

βflow
⊥ for higher values of T . NA49 applied a model including longitudinal and transverse

expansion [130, 131] using both the h− and deuteron transverse momentum spectra as well

as results from two-particle correlations. They were thus able to constrain the region for the

freeze-out temperature T and the transverse �ow velocity βflow
⊥ to T = 120 ± 12 MeV and

βflow
⊥ = 0.55±0.12 [122]. Comparison of the charged hadron spectra to predictions of a simple

hydrodynamical model [45], yields similar values for T and βflow
⊥ assuming a quark-gluon

plasma �rst order phase transition at a temperature Tc ∼ 160 MeV (where Tc was �xed

by the lattice results then available). Under these assumptions, the data favor a relatively

low kinetic freeze-out temperature compared to the critical temperature, consistent with the

picture from Fig. 3.1.
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CERES [107] in Pb+Au collisions measured m⊥ spectra of identi�ed pions and negative

hadrons as well as `net proton' (h+− h−) spectra. Fourier analysis studies of the azimuthal

charged particle distribution with respect to the reaction plane were performed. The am-

plitude of the �rst harmonic, v1, is associated with directed �ow. The second harmonic

coe�cient, v2, is called elliptic �ow. The pseudorapidity dependence of these two coe�-

cients was studied as a function of centrality, giving strong evidence for collective behaviour

in these collisions. In addition, a comparison of the `net proton' spectrum from CERES

with random-walk models allowed one to conclude that these models were not suitable to

describe the �ow-like features observed in the transverse momentum spectra.

For many of these measurements, a large acceptance detector such as STAR is ideal. We

now proceed to discuss the STAR experimental setup for the RHIC summer 2000 run.
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Chapter 5

The STAR Experiment

The main thrust of the STAR detector is dedicated to the heavy ion collision programme.

It must cope with the large event multiplicities associated with central heavy ion collisions,

and with the large interaction rates expected at RHIC. The collider was designed to deliver

a luminosity of L = 2× 1026 cm−2 s−1 for Au + Au collisions at √sNN = 200 GeV. STAR

is also designed with several other physics programmes in mind. It has the capability to

measure the products from ultra-peripheral heavy ion collisions in order to study coherent

photon and pomeron interactions from the intense electric �elds originated by the Au nuclei

[132,133]. There will also be pp and pA collisions at RHIC to obtain information on nuclear

parton distribution functions and for heavy ion reference data. In addition, there is a

strong programme of polarized pp collisions starting in 2001 which aims to measure the

contributions from the gluon (and from sea-quarks) to the total spin of the proton [134].

This presents a challenge, since STAR has to deal with a wide dynamic range in several

areas. For heavy ion collisions, the number of particles to be reconstructed in the detector

vary from less than 10 for peripheral Au + Au events to as many as ∼ 1000 for central

collisions. The interaction rates are large: RHIC reached its goal for the �rst year of

delivering 10% of the design luminosity. The collider is designed to operate with 60 bunches

in each ring. The time between beam crossings assuming all 60 bunches are �lled and taking

into account the perimeter of the RHIC rings (3.83 Km) is ' 0.21 µs.
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The rates will be even larger for polarized pp collisions (2 × 1032 cm−2 s−2). Coupled

to the large amount of information recorded in the TPC, STAR must handle a large rate to

tape (20 Mb/s for the 2000 run, double the number for 2001). As this would be the �rst year

of RHIC operations, this also presented an opportunity: a wide range of available energies

would now fall under experimental scrutiny. The excitement of getting the �rst glimpse

at the data taken by the experiments was felt throughout the community, and was well

matched with the struggle to understand the systematics of the di�erent detector systems.

The STAR experimental setup for the year 2000 run centered around charged particle

tracking using a large acceptance Time Projection Chamber (TPC). The trigger detectors

were a pair of hadron calorimeters placed in the very forward/backward direction and a

barrel of scintillator slats surrounding the TPC. In addition, a Ring Imaging �erenkov

detector (RICH) placed at mid-rapidity provides particle identi�cation for high momentum

particles. The STAR experiment with the main detector subsystems which are in place for

year 2001 data is illustrated in Fig. 5.1. In place for the year 2000 were the Central Trigger

Barrel, the Zero Degree Calorimeters, the magnet, the TPC and the RICH (the ZDC and

the RICH are not shown, as the ZDC is far from the detector center and the RICH is located

under the TPC and obstructed from view in the �gure).

5.1 Magnet

Of critical importance to the experiment, the STAR magnet is designed to provide a very

uniform �eld parallel to the beam direction. It is constructed as a large solenoid which

must house the main subsystems of STAR: the TPC, central trigger barrel, and RICH. The

strength of the �eld can be tuned from 0 up to 0.5 T, the strength used for the 2000 run

was set to Bz = 0.25 T. Having a uniform �eld is desirable for it greatly simpli�es the track

model used in the pattern recognition in the o�ine analysis: all charged tracks follow a

helical trajectory to �rst order. The �eld uniformity at full strength was better than ±40

Gauss in the radial direction and ±1 Gauss in the azimuthal direction. The magnetic �eld
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Figure 5.1: The STAR Detector

was mapped before TPC installation to a precision of 1-2 Gauss for all components of the

�eld. This allows a calculation of the distortion e�ects on tracks due to �eld inhomogeneities

to a precision of ∼ 200− 300 µm.

5.2 STAR Time Projection Chamber

The main tracking detector for STAR is a large Time Projection Chamber (TPC) with

complete azimuthal acceptance. With the magnetic �eld of 0.25 T, the p⊥ acceptance for

charged particles starts is p⊥ ≥ 50 MeV/c. Particle identi�cation is achieved by measuring

the ionization energy loss dE
dx , applying topological cuts, or reconstructing invariant masses

of pairs of particles.
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The TPC tracking volume is 4 meters in diameter and 4.2 meters long. It is shown

schematically in Fig. 5.2. The inner radius of the tracking volume starts at 50 cm. The

Figure 5.2: Schematic view of the STAR Time Projection Chamber.

outer radius subtends a pseudorapidity interval of ±1 unit and the corresponding range for

the inner radius is ±2 units. Thus, the useful tracking volume extends out to ∼ ±1.5 units

due to a requirement of having at least 10 padrow hits in order to reasonably reconstruct a

track. For the analysis discussed in this work, we focused on the tracks crossing the entire

tracking volume to reduce systematic e�ects from variations in acceptance. The tracking

volume is split in two along the beam direction as shown in Fig. 5.2. The two halves

are divided by a high voltage cathode located at the center of the TPC (z=0), labelled

�high voltage membrane� in the �gure, but called simply the central membrane among the

collaboration. The TPC gas is a mixture of 90% Ar and 10% methane (P10). Part of the

considerations to choose P10 were that the gas should not attenuate the drifting electrons
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and it must be pure enough to prevent other modes of electron loss due to attachment on

oxygen and water molecules. This means that the oxygen concentrations should be kept

below a hundred parts per million. These stringent standards have already been met by P10

in the past [135].

The path of a track crossing 150 cm of this mixture is equivalent to 1.17% of a radiation

length. The tracking volume is surrounded by an electrostatic �eld cage which is built with

11.5 mm wide rings to divide the voltage evenly, achieving a uniform decrease from -31

kV at the central membrane to 0 V at the ground wires. Secondary electrons produced by

charged tracks ionizing the gas will drift in the E �eld away from the central membrane

to the nearest endcap. The �eld cages are very thin: 0.62% radiation lengths for the inner

�eld cage and 1.26% radiation lengths for the outer �eld cage. The drift velocity of the

electrons was measured to be 5.44 ± 0.01 cm/µs, where the 0.01 here denotes the size of

variations over a period of several days. For a given run, the drift velocity was monitored to

a precision of ∼ 0.001 cm/µs. For such a large TPC, the gas and magnetic �eld strength are

also important to maintain the di�usion of the drifting electrons to acceptable levels. The

transverse di�usion in P10 at full �eld (0.5 T) is σT ≈230 µm/ √cm or equal to a width of

3.4 mm after the drift; and this sets the scale for the dimensions of the pads under the anode

wires, described below. Similarly, the longitudinal di�usion is σL ≈ 360 µm/
√

cm. For a

cluster that drifts the full length of the TPC, this translates into a longitudinal width σ =

0.52 cm , corresponding to a drift time of ∼95 ns. This determines the electronic sampling

rate of 10 MHz, or every 100 ns, in order for a simple three point tracking and clustering

algorithms to work well.

The drifting electrons are ampli�ed by a grid of wires on each end of the TPC and the

pulses are read out on small pads placed behind the anode wires. Each endcap of the TPC

is segmented in the azimuthal direction like the face of a clock into 12 pad arrays, called

sectors. This is illustrated Fig. 5.3 which shows the end view of the TPC. The beam (z axis)

goes through the center of the TPC, perpendicular to the page in this view.

The geometry of one of the sectors is shown in Fig. 5.4. Each sector is divided into two
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Figure 5.3: End view of the STAR TPC, where we see the 12 sectors covering the full
azimuthal range.

parts, an inner and an outer sector. The inner sector has 1,750 pads, each pad measures

11.5 mm in the radial direction and 2.85 mm in the tangential direction. The inner sector

pads were made as small as practical in order to provide closer space points for an improved

two-track resolution. The size is limited by the di�usion limit of the TPC. They are grouped

into 13 pad rows located between 60 cm and 116 cm from the beam line, measured from the

center of the padrow. The outer sector has 3,940 pads, and the corresponding dimensions

are 19.5 mm (radial) and 6.2 mm (tangential). The outer sectors spans 32 pad rows between

127.2 cm and 189.2 cm radius. The large outer sector pads completely cover the area under

the anode wires. The gap between adjacent pads in the same row is 0.5 mm for both the

inner and the outer sector.

The wire geometry is depicted in Fig. 5.5 where we see a cross-sectional view of the wire

layers and of the pad plane. There are 3 layers of wires terminating each side of the chamber.
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Figure 5.4: Schematic of a full TPC sector with pads. The �rst 13 rows comprise the inner
sector, and rows 14-45 are the outer sector pads.

The �rst layer is the gating grid. The wires of the gating grid are arranged to terminate

the �eld cage voltage and it is therefore used to prevent ionization from reaching the anode

wires of the chamber when no trigger is detected. The gating grid also helps minimize the

space charge e�ects due to the presence of positive ions with very low mobility. The second

layer is the ground plane, 6 mm below the gating grid, which captures the ions from the

ampli�cation region. The third layer is the anode plane, 2 mm (4 mm) below the ground

plane in the inner (outer) sector, where gas ampli�cation is achieved. The induced signal is

picked up on the pad plane located 2 mm (4 mm) under the anode wires in the inner (outer)

sector. In order to keep the signal to noise ratio constant at 20:1 for both pad sizes, the

anode voltages were set to achieve a gain of 1100 on the outer sector and 3000 on the inner

sector.

Combining the inner and outer sector, there are a total of 5690 pads per sector which

corresponds to a total of 136,560 channels for all 24 TPC sectors. The signal measured

on the pads is ampli�ed using custom CMOS integrated circuits [136]. These consist of a
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Figure 5.5: Side view of the inner and outer sector of the STAR TPC showing the wire
geometry. All distances are shown in mm.

pre-ampli�er and shaper circuit followed by a Switched Capacitor Array (SCA) and a 10

bit Analog-to-Digital Converter (ADC). These are responsible for sampling the arrival of

the electrons into at most 512 time bins and to digitize the signal on the pads. Including

the segmentation in the time (drift) direction, the TPC can be thought of as a large 70

megapixel 3D digital camera. The position of the particle along the drift direction is then

reconstructed by converting from time bin to position by knowing the drift velocity. The

position resolution along the drift direction for the summer 2000 run was on the order of 500

µm. The front-end electronics are bundled into groups of 16, with the pre-amp, shaper and

bu�er in one chip, and the SCA and ADC in another chip. Two groups of 16 channels make

up each front-end board, making a total of 32 channels and 4 chips per board. The data
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are sent to the Data Acquisition system (DAQ) over optical �bers. The full TPC DAQ rate

is designed to be read out once per second for central Au + Au collisions, which produces a

rate to tape of ∼20 Mbytes/s.

For a more complete description of the STAR TPC see [137, 138]. More detail on the

TPC operation will be presented in Chapter 7 where we describe the physical processes

of the TPC that were simulated for Monte Carlo studies. For more information on drift

chambers, the standard reference is [135].

5.3 Trigger Detectors

The trigger detectors are an array of scintillator slats (CTB) arranged in a barrel at the outer

diameter of the TPC; and two hadronic calorimeters (ZDCs) at ±18 m from the detector

center and at close to zero degrees relative to the beam axis. The ZDC units subtend an

angle of ∼ 2.5 mrad from the interaction point. The calorimeters are designed to measure

neutrons emitted from nuclear fragments of the spectator matter, i.e. matter that did not

interact in the collision. In contrast to �xed target experiments, where one can measure all

spectator nucleons in the forward direction, at RHIC the proton trajectories will be deviated

by the dipole magnets in the beam line. The same dipole magnets that are used to steer

the beam head on at each interaction region will bend the charged fragments away from the

ZDCs. Protons of the same momentum as the Au ions are actually deviated by a larger

angle, since they have a larger charge-to-mass ratio. Ergo the ZDC signal is produced by

neutrons. Nevertheless, they still provide possibly the best determination of the collision

centrality at RHIC, and are used for triggering (along with some other observable based on

multiplicity) in all four experiments. This can serve as a standard for comparisons among

the di�erent results.

During the Summer 2000 run, RHIC delivered collisions between Au nuclei at √sNN =

130 GeV. The data presented here are from a minimum-bias sample, triggered by a coin-

cidence of signals above threshold in both ZDCs with the RHIC beam crossing. The ZDC
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threshold was set to ensure e�cient detection of single spectator neutrons. The e�ciency

of the ZDC coincidence trigger for central events was measured using a high-threshold CTB

trigger. The trigger e�ciency was found to be above 99% for the entire range of multiplic-

ities reported in this study. The CTB was used to trigger on central events, as the signal

is correlated to the multiplicity at mid-rapidity. The threshold for the central trigger using

the CTB was set to obtain the events with the 15% highest CTB signals. The maximum

luminosity achieved in 2000 was ∼ 10% of the design luminosity. This translates into a

hadronic interaction rate of R = σAuAu × L ' (7.2 × 103 mb)× (0.02 mb−1s−1) = 144 Hz.

For higher luminosities, the trigger will certainly play an important role.

5.4 RICH

A Ring Imaging �erenkov detector (RICH) was placed outside the CTB. The RICH covers a

smaller area, 1 m × 1 m and is designed to provide high precision velocity measurements for

enhanced particle identi�cation at high momentum. The momentum information is provided

by the TPC. One then uses this information to search for �erenkov photons in 3 di�erent

annulus regions. For tracks with a perpendicular trajectory to the RICH, the regions will be

circles of di�erent radii depending on the particle's velocity, which for a known momentum

uniquely determines the mass of the particle. In the presence of the magnetic �eld, the

trajectory of the tracks will not be normal to the RICH detector, so the �erenkov photons

will not be found in a circular region, but one can still determine the bounds of the search

region analytically. The RICH detector is not used in this analysis, but it is the subject of

another STAR thesis [139]. For more information on the RICH detector see [140].

The detector upgrades planned for the upcoming STAR runs include a Silicon Vertex

Tracker (SVT), an Electromagnetic Calorimeter to cover the barrel at mid-rapidity around

the TPC and one of the endcaps, a Time-of-Flight patch replacing one of the CTB slats, two

Forward TPCs (2.5 ≤ |η| ≤ 4) and additional Beam-Beam Counters for the trigger system.

The hermeticity of the STAR detector when all the components are installed is shown in
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Figure 5.6.

Figure 5.6: Hermeticity of STAR, including all detectors. Note that the RICH occupies real
estate that will used for the full barrel EMC when completed, so this plot only illustrates
their coverage.
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Chapter 6

Reconstruction and Calibration

We discuss here the STAR o�ine reconstruction and analysis software relevant for the re-

sults presented in this work. The o�ine simulation and reconstruction software is a major

component of the experiments, as we rely on it to reconstruct the collision event to a su�-

cient extent that the physics goals and the physics capabilities of the sub-detectors can be

realized, to su�ciently evaluate and visualize the results to determine their adequacy and

correctness, and to generate acceptance and reconstruction e�ciency tables, among other

things. The o�ine software includes all major sub-detectors. We will focus on the recon-

struction done in the TPC, as this was the main detector used in STAR during the �rst

run and is the relevant component of the results discussed here. Then we discuss the STAR

global chain, where vertex �nding and propagation of tracks to �nd the primary track can-

didates is done. The other major detector sub-system in the year 2000 run was the RICH,

and it is discussed in another dissertation [139]. The original design for the STAR o�ine

simulation and analysis software is given in Ref. [141].

6.1 Event Reconstruction in the TPC

The task of the TPC reconstruction software is to reduce the raw data taken in an event

(nearly 7 million ADC values) to lists of meaningful quantities such as space points, particle

62



tracks, vertices, etc. It must employ the best knowledge of the relevant calibration param-

eters for each run. These include for example the drift velocity of the electrons in the gas,

trigger time o�sets, temperature, pressure, magnetic and electric �elds.

Figure 6.1: Schematic of the STAR TPC Software chain.

The procedure employed here is typical of that employed in many experiments. A �ow

diagram of the di�erent software modules is depicted in Fig. 6.1. The chain is designed

to cope with simulated and real data using the same code. We focus on the real data

reconstruction. The details of the detector simulation (labelled �slow simulator� in Fig. 6.1)

are discussed in Chapter 7.

One starts by examining the pixel information for every padrow independently in order

to �nd the location where a charged particle has crossed the row, which we call a hit. A

tracking algorithm then links together series of hits to �nd particle trajectories through the

TPC volume. Information extracted from the ionization or from the topology of the tracks

is then used for identi�cation. We now discuss the reconstruction, emphasizing the two
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parts that are important for the charged hadron distributions discussed in this work: the

determination of the momenta and the identi�cation via dE
dx .

6.1.1 Cluster Finding

The hit reconstruction software converts raw pixel data into reconstructed space points.

The raw pixel data is arranged into time ordered sequences for each pad in a row, where

only pixels above a threshold are taken into account. At this stage, one must be careful to

apply gain corrections and remove channels tagged by DAQ or previous o�ine runs as bad,

noisy or dead. Any relative timing corrections between pads are also applied. The cluster

�nding algorithm then looks for contiguous pixels in a 2D space given by the time direction

and the pad-row direction. After the 2D cluster �nder stage, a pass is made to �nd single

hits and multiple hits in a cluster. The single-hit �nder assumes that the cluster is made

by the crossing of a single track and estimates the centroid of the cluster. The multiple-

hit �nder tries to �nd the local maxima in a cluster and may deconvolute the cluster into

individual hits. Deconvolution of close hits is of critical importance for two-track resolution

and dE
dx measurement. The �tted hits are then transformed into TPC space points, taking

into account the drift velocity, trigger time o�sets, sector geometry, and electronics shaper

response. The space points then contain information on the position of the hit in the STAR

global coordinate system and on the energy deposited by the track.

6.1.2 Track Finding

The detection of charged particle tracks is, of course, the raison d'être of a Time Projection

Chamber. The track �nding algorithm performs the critical task of converting the recon-

structed space points into particle tracks, and of determining their 3-momentum. E�cient

tracking and good momentum resolution are an essential part of the analysis presented here,

and especially for analyses such as high-p⊥spectra and resonance decay reconstruction.

The tracking algorithm starts with overlapping hits in the outer pad-rows as the track

seeds. The �rst stage of the algorithm consists of a follow-your-nose approach which produces
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a collection of track segments, i.e. collections of space points associated with a track, either

complete or partial. Once we have the segments, we perform an initial segment �tting,

which incorporates multiple Coulomb scattering and energy loss in the gas. Outlier space

points, i.e. hits that were assigned to the track in the segment �nding stage but whose

position lies far from the allowed track extrapolation error after the �tting stage, may be

removed at this point. A further extrapolation of the tracks for purposes of segment joining

is then executed, including also multiple Coulomb scattering and the e�ects of energy loss.

The tracking parameters are updated for the joined segments and a clean-up of fragments

is done in the �nal �ltering step.

6.1.3 Particle Identi�cation: dE
dx

The TPC allows us to separate pions using their ionization energy loss. The charge collected

for each hit on a track is proportional to the energy loss of the particle. We parameterize the

particle's trajectory in order to obtain a path length in the gas which corresponds to each

segment, i.e. the deposition that corresponds to a speci�c TPC hit. For a track crossing the

entire TPC we thus obtain 45 dE
dx samples, which are distributed according to the Landau

probability distribution. One of the properties of this distribution is that its tail dies o� very

slowly, and the dispersion of values around the mean is very large (in�nite in theory). A

typical procedure in order to reduce �uctuations from the long Landau tails is to truncate the

distribution. In the case of STAR, we used 70% truncation, i.e. the highest 30% ionization

values were discarded. Using the remaining values, a truncated mean is computed, and

this becomes the basis for any analysis using identi�ed particles in the TPC. The measured

truncated mean for negatively charged primary particles is illustrated in Fig. 6.2, shown as

a function of the momentum.

The curves are the Bethe-Bloch parameterization used in the analysis for the di�erent

particle hypotheses. We see that at the lowest momentum, the pions have a greater ionization

energy loss than the electrons which are already in the saturation region of the curve.

The pions cross over the electron band at ∼ 150 MeV/c reaching a minimum at about
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Figure 6.2: Particle identi�cation via dE
dx in the TPC. The plot shows the truncated mean

dE
dx value for negative tracks as a function of the reconstructed momentum. The expected
ionization energy loss curves for e−, π−, K−, anti-protons and anti-deuterons are also shown.

300 − 400 MeV/c. The pions in the relativistic rise merge with the Kaons, which are still

in the 1/β2 region, at about 1 GeV/c. However, due to the width of the bands, a single π−

peak is only discernible up to ∼ 750 MeV.

dE
dx Resolution

The dE
dx resolution for this analysis was found to be 8.8% for tracks with 45 �t points

(31 dE
dx samples after truncation). This is illustrated in Fig.6.3. A widely used empirical

expression [142] describes the resolution at minimum ionization, for N dE
dx samples of length

h cm in argon gas with up to 20% CH4 at a pressure of P atmospheres:

σdE/dx

〈dE/dx〉trunc
=

0.47
N0.46

(Ph)−0.32 =
0.38
N0.46

(6.1)

For the last equality, typical operation of the STAR TPC is at 1 atm and we assume the same

radial pad length of h = 1.95 cm (outer sector pads) for all ionization samples. Equation 6.1
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Figure 6.3: The dE
dx resolution as a function of the number of dE

dx samples.

then yields an estimate of the best achievable resolution of ∼ 7.8% for tracks with 31 dE
dx

points. Improvements such as the removal of noisy pads, sector-by-sector calibration, and

drift-distance dependence are expected to bring the resolution closer to this expected design

value. These re�nements are however not critical for the analysis presented here.

This is the �rst stage of the track �nding and �tting pertaining to the TPC only. The

information is then passed to the global reconstruction software, discussed next.

6.2 Global Event Reconstruction

There are two additional steps to arrive at the �nal tracks used in the analysis. The connec-

tion of the space point information among di�erent detectors is the next step in tracking, i.e.

a global track �t. This step becomes indispensable when including SVT or any additional

information from a tracking detector. Finally, after the primary vertex is found, this acts

as an additional measured point. If a track's trajectory goes near the primary vertex, a
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subsequent primary track �t is then performed. For the analysis presented here, as we focus

on production of primary charged hadrons, primary tracks are used.

The global event reconstruction o�ine software correlates all the tracking, timing and

energy deposition information from each detector in STAR and produces the overall event

characteristics of the triggered events into a Data Summary Tape format for use in all the

physics analyses. We will discuss the major components here in roughly sequential form,

although one sometimes performs several iterations among di�erent modules. This is the

case for example if one uses PID information in global track propagation, but would also

want tracking information when calculating track segment lengths for the calculation of the

speci�c ionization in a PID module. The �ow of the global software chain is sketched in

Fig. 6.4. The SVT is shown in the �gure, although it was not yet installed for the 2000

run; we will therefore not discuss it here. The main objective of the global part of the chain

however, is to combine the information from all STAR sub-detectors and was therefore

exercised with simulated data to ensure readiness for real data.

Figure 6.4: Schematic of the STAR O�ine Software chain.
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6.2.1 Global Tracking

The task of a global tracking module is two-fold. At its core, it is in charge of matching

track and hit information from the di�erent detector sub-systems. Once this is done, it must

re�t the newly matched tracks taking into account all available information. The role of

the global tracking software was somewhat special for the 2000 run, since only 1 detector

subsystem provided track information. In principle, one could then simply use the same

TPC tracking parameters. However, since this would only be the case once, it was decided

to actually perform a separate �tting routine at this level in order to work in a mode similar

to that of having several sources of space point information.

The global tracking then really performed an independent track �t from the TPC. It

used a 3D helix model and incorporated energy loss and multiple scattering in the TPC gas

when doing the track propagation. The errors assigned to the space points were given by a

parameterization, based on real data, of the hit residuals as a function of the track crossing

angle with respect to the pad-row direction. This is also a case where one needs an iteration

in order to have information �owing both ways: the tracking needs the errors in order to

weigh each space point for a minimization routine to obtain the best track parameters, yet

the hit errors depend on the crossing angle which is known once the track parameters are

set.

6.2.2 Primary Vertex Finding

The o�ine reconstruction �nds a primary vertex for each event by propagating the global

tracks through the �eld towards some reference point which is close to the estimated vertex.

One can choose a start point towards which to propagate the tracks either in the transverse

plane or along the beam line. Since the interaction point is much better determined in

the transverse plane (RMS ∼ 0.5 mm) than along the beam axis (RMS ∼ 90 cm). The

method at the heart of the routine is a χ2 minimization of the perpendicular distances from

the track vectors to a point. We can see the basis for this method in a simpli�ed scenario
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where all the tracks are straight. In the transverse plane, the real vertex can only be a

few millimeters away from the central axis. After propagating the helices to their point

of closest approach to the reference point, we can then approximate them as straight lines

around this point as in a Taylor series. This has the advantage of leading to an analytical

solution. We consider then an arbitrary vector Vi, with a unit vector êVi . The distance from

a point P = (x0, y0, z0) (in cartesian coordinates) to the vector Vi is the norm of the vector

obtained through the cross product of the unit vector êVi with any line connecting the point

P to any point Q along the line of the vector Vi, Q = (xi, yi, zi). The line segment −−→PQ is

(x0 − xi)x̂ + (y0 − yi)ŷ + (z0 − zi)ẑ, and the distance from P to Vi is

|di| = |−−→PQ× Vi| . (6.2)

A least squares minimization must employ a merit function (χ2) to assess the quality of the

�t. We take the partial derivatives of the merit function with respect to the �t variables,

and set them equal to zero in order to solve for the optimum values of the �t variables. For

the vertex �nder, the merit function is the summation of the squares of the perpendicular

distances from the vectors Vi to a point (x0, y0, z0), with the appropriate weight given by

the uncertainty in the propagation of the track,

χ2 =
N∑

i=0

d2
i

w2
i

. (6.3)

By taking the partial derivatives with respect to x0, y0 and z0 and equating them to zero, we

are left with a system of three equations for three unknowns, the coordinates of the vertex

xv, yv and zv.

The vertex �nder then has two main components. One algorithm is used to extrapolate

a helix and calculates the coordinates of the point of closest approach from a given point in

the bend plane, de�ned relative to the ~B �eld which is along the beam axis. The transverse

plane is de�ned perpendicular to the beam axis. The other task is to perform the least

square �t to �nd the common vertex. Additional iterations can be performed such that the

linearization is done as close to the actual vertex as possible, and rejecting outlier tracks in
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the �t. The details of the vertex �nding algorithm are found in Ref. [143]

The vertex resolution for high multiplicity events is approximately 150 µm, both perpen-

dicular and parallel to the beam axis. The vertex �nding e�ciency is 100% for events with

more than 50 primary tracks in the TPC acceptance, decreasing to 60% for those with fewer

than 5 primary tracks. We discuss the vertex �nding e�ciency in more detail in Section 8.1.3

as it is an important part of the analysis of the multiplicity distribution.

6.2.3 Primary Track Fit

Once the vertex has been found, global tracks whose distance of closest approach to the

vertex is less than 3 cm are chosen for a re�t using the vertex as an additional space point,

yielding as a result di�erent parameters associated with primary tracks. For high multiplicity

events, the error associated to the primary vertex is much smaller than the error associated

to TPC space points, so even though we are only adding one additional point to the track

it can signi�cantly improve the momentum resolution for tracks that actually come from

the vertex. This is the reason for choosing the primary track parameters for the analysis

presented here. The track model in the STAR geometry and magnetic �eld can be to �rst

order represented by a helix, which can be parameterized as

x = x0 + R (cos(Φ(s))− cos(Φ))

y = y0 + R (sin(Φ(s))− sin(Φ)) (6.4)

where R is the radius of curvature, Φ = ψ +π/2 and Φ(s) = Φ− (s/R) ∗ cos(λ), and s is the

path length of the helix (see Fig. 6.5). The radius of curvature is related to the transverse

momentum through

R = q/c (6.5)

c = K
qB

p⊥
(6.6)

where q is the charge of the particle, c is the curvature, and B is the magnetic �eld. With

the following units: B in KGauss, p⊥ in GeV/c, and q in units of the proton charge; the
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Figure 6.5: Projection of a helix onto the transverse plane (a) and onto the bend plane (b)

value of K to yield a curvature c in cm is K = 0.000299. The parameters that de�ne the

helix (x0, y0, ψ, λ, q, c) are obtained by two simultaneous 2D �ts. We separate the �ts

in the bend plane and in the transverse plane, shown in Fig.6.5. In the transverse plane,

the space-points of a helix will project onto a circle, so the �t in the transverse plane (x

and y coordinates in the STAR global coordinate system) is to a circle. In particular, the

curvature of the track is obtained from such a �t, which relates to the transverse momentum

as in Eq. 6.6. With the knowledge of the curvature, we can now focus on the �t in the

bend plane. We can think of the helix as a string winding around a cylinder. If we cut the

cylinder and unfold it into a plane, the helix segments will be mapped into straight lines in

this plane. We then perform a straight line �t in the bend plane z = (tan λ)s + z0 where

the coordinates for the �t are the path length (s) of the helix and the beam axis coordinates

(z). The parameter λ is called the dip angle in the helix parameterization, and it is identical

to the polar angle θ in the de�nition of pseudorapidity, Eq. 4.17.

It is possible that secondary and decay tracks that are �t with the constraint of going

through the primary vertex will have worse track parameters than those obtained from the

global track �t. This is especially important for high-p⊥ tracks, since biasing the tracks
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towards the primary vertex can arti�cially increase or decrease the curvature. For the

majority of the tracks however, and in particular for true primary tracks, the resolution is

improved by the primary track �t. Tracks for which the primary �t fails are �agged and not

used in the analysis.

Momentum Resolution

The p⊥ momentum resolution for π− for various multiplicities is shown in Fig. 6.6. This is
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Figure 6.6: π− momentum resolution

obtained from embedding pions into real events using the TPC simulation discussed in the

next section. The e�ects of the momentum resolution in the measurement of the p⊥ spectra

is discussed in Section 8.2.5.
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6.2.4 V0's, Ξ's, and Kinks

A speci�c part of the main STAR reconstruction code is dedicated to the topological iden-

ti�cation of neutral and charged particle decays. Neutral particles such as the K0
S and Λ

can be reconstructed by identifying the secondary vertex, commonly called V0 vertex, of

their charged daughter decay modes, K0
S → π+π− and Λ → p + π−. The more compli-

cated �cascade� decay schema of the Ξ and Ω baryons can also be reconstructed by a series

of topological pattern recognitions using the Λ's found in the �rst iteration through the

decays: Ξ− → Λ + π− and Ω− → Λ + K−.

The charged kaon and pion one-prong decays found in the TPC volume are also recon-

structed at this level (K → µ + ν). The topology signature of this decay is that of a track

which decays in �ight while propagating in the gas of the TPC, with the daughter charged

track following a slightly di�erent direction, and is called a kink decay.

These steps are important for �nding strange hadrons, i.e. λ and Ξ candidates using the

V0-�nder algorithm and charged kaons using the kink-�nder algorithm. In particular, the

identi�cation of charged kaons through the kink decay technique extends the available phase

space to high momenta, where the dE
dx measurement no longer has any resolving power. For

recent results from the analysis of strange hadrons in STAR, see e.g. [93].

The secondary vertices are then reconstructed using the global tracks, propagating them

towards the primary vertex and requiring that the V0 vertex of the track pair should not

be close to the primary vertex. In addition, when combining the pair momenta to obtain

the momentum of the parent, one requires that the parent should point back to the primary

vertex. This is the last important part of the global reconstruction. Additional pieces of the

code mainly organize the reconstructed information into the STAR Data Summary Tape

(DST) to be written to disk for further analysis. Although the main tuning of cuts to �nd

secondary vertices is done at the analysis level, the initial stages of V0 �nding are done at

the reconstruction level since part of the input are the space points, which are not saved to

disk to minimize data volume. We turn our attention now to the TPC simulation.
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Chapter 7

Detector Simulation

This analysis relies heavily on a realistic simulation of the response of the TPC. An esti-

mation of the backgrounds and tracking e�ciency is best done through such a simulation,

and it is therefore necessary to include a signi�cant amount of physics details. The primary

function of the TPC Response Simulator (TRS) [144, 145] is to reproduce the electronic

signals produced by tracks ionizing the gas of the TPC. The physical processes that are

implemented are the drift of the ionized electrons in the gas, the ampli�cation of the signal

in the sense wires, the induction on the readout pads, and the response of the readout elec-

tronics which produce digitized data. While the software was designed to cope with varying

levels of detail in each of the di�erent simulation stages, we describe here the implementation

that was used for the analysis stage in the past year.

7.1 Detector Response Overview

The algorithmic basis for the response simulations is that developed in detail by the ALEPH

TPC group, described in Ref. [135], the standard reference for drift chambers. The TRS

package contains parameterizations of the TPC response at various levels of detail.

As part of the requirements, TRS was designed to deal with two sources of ionization

of the TPC gas: charged tracks and laser events. The charged tracks create clusters whose

distribution of amplitudes (i.e. number of electrons in a cluster) is Landau-like, whereas

75



the laser creates uniformly distributed ionization, resulting in Poisson distributed cluster

amplitudes.

For the simulations used in the analysis, the magnetic �eld was taken to be uniform with

a value of 0.25 T in the z direction, and parallel to the electric �eld. During the analysis

of the year 2000 data, several corrections needed to be applied to the raw data to take

into account various distortion e�ects and modi�cations to the idealized geometry. These

modi�cations were necessary for analyses such as the reconstruction of resonance decays and

tracking of high p⊥ particles. However, for the analysis of low momentum charged tracks

up to 2 GeV/c, these e�ects were negligible. The analysis was repeated every time new

distortion and geometry corrections were added to the reconstruction chain and the results

did not vary signi�cantly. For example, a comparison of the measured raw multiplicity in

the midrapidity region before and after distortion corrections using di�erent event samples

showed that they were consistent to better than 1 %. Therefore, it was su�cient to do the

simulations in this idealized scenario.

There are four main processes that are essential for the simulation to reproduce the

behaviour of a TPC.

• Ionization Transport � charge transport of the ionization and its deposition in the

active region of the readout chambers.

• Charge Collection � electron/ionization collection on the sense wires of the multi-wire

proportional chamber (MWPC).

• Analog Signal Generation � charge induction on the pad plane and generation of the

time evolution of the analog signals on the pads.

• Digital Signal Generation � conversion of the analog signals into ADC counts.

We now discuss brie�y each of the processes.
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7.2 Ionization Decomposition and Transport

The input into the simulation of the TPC response is the charge ionization left by tracks

in the sensitive volumes of the detector generated by GSTAR [146], the GEANT [147]

implementation of the STAR detector. The ionization transport takes the charge deposited

in these active areas of the detector and transports it through the �eld cage structure

to the read-out plane. The GEANT simulation provides the amount of energy deposited

(dE) over a given path-length (ds) by a particle with momentum ~p. Given the average

ionization potential of the gas, one can calculate the total number of electrons such that

the transport can be done at the segment level (dE) or to break each segment into parts

with the limiting case of transporting each ionization electron individually. This provides

a mechanism which allows the possibility to distinguish between a detailed microscopic

simulation and a macroscopic parameterization. In addition, one can also vary the length

of the segment that is transported (and subsequently processed). Thus, the granularity of

the simulation can be adjusted to provide di�erent levels of detail.

The ionization is distributed on the pad plane according to distributions which char-

acterize the e�ects of di�usion. The role of the charge transporter is to alter the x and y

positions according to transverse di�usions, to alter the z position to re�ect the drift time

with longitudinal di�usion folded in, and to alter the amount of charge that reaches the

read-out plane.

7.3 Charge Collection and Ampli�cation

Once the electrons arrive at the read-out plane, they must be collected by the individual

anode/sense wires of the multi-wire proportional chamber (MWPC). It is here that the

avalanche process multiplies the signal of several tens of electrons to several 103 − 105

electrons, depending on the potential of the wires.

The basic principle of avalanche creation in a proportional wire is as follows. As an

electron drifts toward the wire it travels in an increasing electric �eld. In the vicinity of the
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wire, the �eld ~E at radius r is given by the linear charge density λ on the wire

~E =
λ

2πε0

r̂

r
. (7.1)

The electron's path is directed towards the wire. The trajectory also terminates in the wire

in the presence of a magnetic �eld if the electric �eld is su�ciently strong. Once the electric

�eld surrounding the electron is strong enough, the electron will have enough energy to

ionize the gas and still pick up su�cient energy between collisions to ionize the gas further,

starting an avalanche. The number of electrons continues to grow until all electrons reach

the wire. The process develops over as many mean-free paths as there are generations of

electrons, typically 50-100 µm, and takes less than 1 ns for most gases. Since the signal is

proportional to the number of electrons collected, the name �proportional wire� was adopted.

For a review see [135] and [148] which also contains a list of texts.

The distribution of avalanches started by single electrons can be modelled as a stochastic

process (see [135], p.144). A simple description is given by the Yule-Furry process, after the

authors who �rst used it to describe biological population growth. The idea was applied

to proportional avalanches by Snyder and Frisch (see [149] for references), and is brie�y

described in what follows.

We start from the idea that as the avalanche (or other stochastic process) develops, the

variation of the number n of ions (or electrons) is followed as a function of some parameter

t. This parameter can be thought of as the time, but it is a bit more general in the sense

that we need only require that its increase describes the progress of the process in the order

given by the causal sequence of events. Therefore, t need only be a monotonic function of

time. We are interested in the probability P (n, t) that at some `time' t there are n electrons

in the avalanche. The initial condition is that the avalanche starts with a single electron,

i.e.

P (1, 0) = 1 . (7.2)

We suppose that the probability for the birth of one electron in any interval ∆t is

proportional to the number of electrons n with some proportionality constant λ. The solution
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to the corresponding di�erential equation giving the probability distribution at a given t is

P (n, t) = e−λt(1− e−λt)n−1 . (7.3)

The mean n̄ and the variance σ2 are

n̄ =
∞∑

n=1

nP (n, t) = eλt (7.4)

σ2 =
∞∑

n=1

n2P (n, t)− n̄2 = eλt(eλt − 1) . (7.5)

Rewriting 7.3 with 7.4 the distribution becomes

P (n) =
1
n̄

(
1− 1

n̄

)n−1

, (7.6)

where the `time' variable no longer appears. In the limit n̄ → ∞, which is appropriate for

avalanches, we obtain

P (n) =
1
n̄

e−n/n̄ , (7.7)

σ2 = n̄2 . (7.8)

We see that the Yule-Furry process has an exponential signal distribution. Subsequent

theoretical re�nements to this simple expression which were made in order to take into ac-

count e�ects like the asymmetric growth of the avalanche pro�le as well as saturation e�ects.

One such re�nement is the Byrne process, which introduces the idea that a �uctuation to

larger n in the �rst part of the avalanche reduces the rate of development in the second

part (so an additional parameter has to be introduced, whose e�ect is to suppress the small

ampli�cation factors). The Byrne process includes the Yule-Furry process as a special case

when the additional parameter approaches zero. The solution to the di�erential equations

for this process is given by the Polya (or negative binomial) distribution function.

Exponential behaviour at low to moderate gas gains (i.e. < 104) is observed experi-

mentally. In parallel plate geometry however, slight deformation from exponential shape is

observed at gas gains above 105. This is probably due to self-saturation e�ects which become
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important in the presence of space charge. Since the STAR TPC is generally operated at

low gas gains, the simple exponential is found to be acceptable for the simulations.

It is important to note that in any drift chamber operation, the e�ect of the �uctuations

in gas gain is to simply degrade the attainable space-point resolution, and for this purpose

it is not critical to use the exact functional form of the avalanche yields. The e�ect of

degradation is the process that the simulation of the gas-gain �uctuation is attempting to

reproduce, and the simple exponential should be su�cient in this regard.

Once the charge has been ampli�ed, we can proceed to calculate the amount of charge

induced on the cathode pad plane.

7.4 Analog Signal Generation

This simulation step has three main parts:

• Determination of the charge induced on single pads from the charge collected on the

anode wires

• Sampling of the induced charge signals in time according to the electronics response

(i.e. pre-ampli�er and shaper)

• Distribution of the analog charge into time bins

7.4.1 Charge Induction

The charge induced on a grounded pad plane by a point charge q located a distance d above

the plane can be calculated by the method of images. The charge density σ on the plane is

given by:

σ(x, y) =
1
2π

qd

((x− xo)2 + (y − yo)2 + d2)3/2
(7.9)

where the charge is located at the position (xo, yo). However, the typical geometry of a

MWPC is a bit more elaborate. The proportional wires normally form a plane between two

grounded cathode planes. In addition, the charge is not point-like, but in the form of a line
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of charge with density λ. We can simplify and locate it in the middle of the parallel plates.

In order to calculate the charge density induced on the pad plane we thus have to include all

higher-order multi-pole terms. The images are alternately negative and positive, situated

at zn = ±(2n + 1)d, (k = 1, 2, · · · ) and zo = d. The total charge density is obtained by

integrating over y and doing the sum

σ(x) = −λ

π

∞∑

n=0

(−1)n (2n + 1)d
(x− xo)2 + (2n + 1)2d2

= − λ

4d cosh
(

π(x−xo)
2d

) (7.10)

which is called the Endo function. The derivation was done without taking into account

the limited extent of the pads in the y direction, i.e. for the limiting case of zero width to

length ratio w/l.

The e�ect of �nite geometry of segmented cathodes can be taken into account with the

addition of another parameter. We can rewrite Eq.7.10 as

σ(x) = C1

1− tanh2
(

π(x−xo)
4d

)

1 + tanh2
(

π(x−xo)
4d

) (7.11)

where C1 is a normalization constant. Eq. 7.11 can be used to generalize the Endo function

to take into account �nite geometry e�ects due to segmented cathode pads, i.e. w/l > 0.

By introducing the constant C2

F (x) = C1

1− tanh2
(

π(x−xo)
4d

)

1 + C2 tanh2
(

π(x−xo)
4d

) (7.12)

we arrive at the generalized solution to the distribution of charge induced on a grounded

pad plane, and is usually dubbed the Gatti function.

A comparison of the Gatti and Endo functions, along with a Gaussian (for comparison

purposes) is given in Figure 7.1. For reference, the functions were normalized to 1 at x = 0

for the plot and the parameters were σ = 1.5 for the Gaussian, d = 2 for the Endo function

and d = 2, C2 = 0.5 for the Gatti function.

For the case of the TPC, the quantity of interest is the total amount of charge (Q)

induced per pad, so we have to integrate a given pad-response function, which gives the
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Figure 7.1: Comparison of Gatti, Endo and Gaussian functions as pro�les of the pad-response
function.

charge density, over the area of a pad:

Q =
1
2π

∫ yu

yl

∫ xu

xl

σ(x, y)dxdy (7.13)

The advantage of using such functions is that they allow the production of longer tails

which have non-Gaussian characteristics. The tails are an important feature to understand,

as they determine the e�ciency of the ionization collection which is of relevance in the study

of dE
dx resolution. As an additional case, the pad response function was measured for the

STAR TPC pads in the directions transverse to and parallel to the anode wires. This allows

us to calculate the pad response as a convolution of the transverse di�usion function with a

parameterization of the measured pad response function.

7.4.2 Sampling of Signal in Time and Shaper Response

Once the amount and centroid of the charge distribution on each pad is determined, this

charge can be sampled in time, thereby emulating the response of the analog electronics.
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The signals are generated by superimposing each analog signal from each of the avalanches

that induce a signal on the pad plane. This permits one to vary the shaping time of the

electronics independently of the width of the pad response function. In reality, the time

evolution of the signal that develops on the wires is almost entirely due to the motion of

positive ions away from the wire. This produces a signal with a long tail. For the STAR

geometry, the duration of this signal is on the order of ∼ 62 µs. In order to make the

detector faster, the signal is di�erentiated after a characteristic time � the shaping time of

the pre-ampli�er. The trade-o� is that only a fraction of the total charge is seen by the

downstream electronics, i.e. the ADC. The fraction F of the charge is given by

F =
ln

(
1 + tm

to

)

ln
(
1 + ts

to

) (7.14)

where tm is the length of time the long, undi�erentiated signal would persist (∼ 62 µs), to is

the characteristic time of the development of the signal (∼ 1 µs) and ts is the shaping time

of the pre-ampli�er (∼ 180 ns).

For STAR this means that the signal shape is dominated by the shaping properties

of the electronics. Therefore, the long time response of the chamber is parameterized in

the electronics processing section of the simulator, instead of modelling the motion of the

positive ions. The shaper response function for the case of one stage di�erentiation and two

stage integration used in STAR is

g(t, τ) = Φ(t)
(

t

τ

)2

e−t/τ (7.15)

where Φ(t) is the step function, and the time constant τ is 55 ns for the STAR electronics.

This function is then convoluted with a Gaussian to parameterize the e�ect of a longitudi-

nally di�used cluster to yield the �nal response of the shaper.

Once we obtain the functional form of the signals induced on a pad over the read-out

period of the TPC electronics, we can distribute the analog signal into discrete time bins.

This sampling simulates the behaviour of the Switched Capacitor Array (SCA) in the front

end electronics. Essentially, this entails integrating the amount of charge in a time interval
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∆t, which is determined by the SCA sampling frequency. Simulated chamber noise and

electronic noise are also added at this point.

7.4.3 Digital Signal Generation

Once the analog charge is distributed into time bins on the pads, we can digitize the signal.

This step is done via a simple conversion from voltage to ADC counts. This is the �nal stage

in the TPC simulation, and the pixel values are then used as input to the reconstruction

chain in exactly the same way as the raw data.

7.5 Embedding

One of the main purposes of the detector simulation response is to obtain estimates of

tracking corrections to the raw particle yields. It is of great importance to have a reliable

detector simulation as detailed in the previous section. To make the environment as realistic

as possible, we use a procedure commonly known as embedding. The idea is to take a real

event and embed into the raw data �le the signal from a few simulated tracks at the level

of ADC counts. The simulated signal is obtained via a GEANT Monte Carlo simulation of

the energy deposited by the tracks in the detector volume followed by a simulation of the

detector response as detailed in the previous section. The �nal simulated ADC signal is then

convoluted with the raw data from the real event and then fed into the STAR reconstruction

software chain. Since we have the information from the GEANT simulation, we can associate

the reconstructed tracks to the corresponding Monte Carlo track. The association is done

at the hit level, since from the reconstruction side the hits are the �seed� from which the

track parameters are built.

The embedding procedure combines the advantages of having a very realistic event en-

vironment along with having a controlled track population. From the comparison of re-

construction output to simulated input we can obtain information about many interesting

performance diagnostics of the detector.
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Figure 7.2: TPC hit position resolution in the drift direction.

Figure 7.2 shows the position resolution for hits in the TPC in the drift direction. The

RMS width is found to be 180 µm, a similar analysis in the padrow direction yields an

RMS width on the order of 120 µm. Once we have a match between the TPC hits, we can

use this information to make a matching between tracks. For every reconstructed track, we

scan through its reconstructed space points and �nd their corresponding Monte Carlo hits.

These simulated hits have the necessary information of the track that generated them, and

so form the basis for the track match. It is this track match information that we use for

the determination of the reconstruction e�ciency. We discuss the corrections to the raw

spectra obtained through the embedding procedure and through background simulations in

the next chapter.
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Chapter 8

Analysis of Charged Hadron Spectra

8.1 Event-wise Studies

In this section we delineate the relevant parts of the analysis that was performed to obtain

the multiplicity distribution. This is also the baseline for any other analysis.

8.1.1 Trigger and event selection

We use the ZDC and the CTB for triggering. All the runs that we used for this analysis were

recorded with a minimum bias trigger, with no pre-scale. The minimum bias trigger consisted

of a coincidence requirement between the East and West ZDC's. This trigger proved to

be better than 99% e�cient. At the beginning of the run, however, this had yet to be

established. The main concern was that there might be an ine�ciency in this trigger for the

most central collisions, where very few spectator nucleons remain to produce a coincidence in

the calorimeters. Therefore, a high CTB signal, indicative of a high multiplicity in the mid-

rapidity region, was used as an additional trigger condition. The ZDC trigger thresholds

were set such that a single nucleon hitting the calorimeter would generate an acceptable

signal. The CTB threshold was set to accept the highest ∼ 30% multiplicities.

A plot of the ZDC vs. CTB trigger signals for a subset of the events used in this analysis is

shown in Fig. 8.1. The peripheral collisions are in the lower left corner, where both the CTB

signal and the sum of the East and West ZDC signals are small. This is indicative of low
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Figure 8.1: The ZDC (sum of East and West calorimeters) signal is plotted vs. the corre-
sponding CTB signal. The most central events have the highest CTB signal (high multi-
plicity) and a low ZDC signal (very few spectator neutrons).

multiplicity at mid-rapidity and a scarce number of dissociation neutrons. In the collider

geometry, neither the excited nucleus nor the dissociation protons reach the calorimeters

because their trajectories are bent by the beam optics. As the overlap of the colliding

nuclei (i.e. the centrality) increases, more neutrons reach the calorimeters and the ZDC

signal increases. Likewise, the multiplicity at mid-rapidity increases. After a certain point,

the collision is su�ciently central that few neutrons reach the ZDC while the multiplicity

continues to increase. The �boomerang� shape observed in Fig. 8.1 is therefore the result of

the correlation between impact parameter b and multiplicity on the CTB side, and of a dual

behaviour on the ZDC side: correlation between b and number of neutrons at high impact

parameter, and anti-correlation for central collisions.

An important input into this analysis is the hadronic cross section in Au + Au, σAuAu.
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This value is necessary to normalize the multiplicity distribution. The calculated value is

σAuAu = 7.2 barn from Eq. 4.8, but it is desirable to have a measurement con�rming this

expectation. The trigger requirement of a ZDC coincidence is not only sensitive to the

hadronic cross section, but also to the mutual Coulomb dissociation of the two Au nuclei.

In this process, there will be a pair of correlated forward- and backward-going neutrons,

but no measurable tracks in the mid-rapidity region. The ZDC's therefore are sensitive to

the sum of the hadronic + mutual Coulomb dissociation cross sections, which we denote by

σxn,xn, i.e. the cross section in which at least one neutron is detected in each ZDC detector.

Since the same ZDC's are used in all interaction zones at RHIC, this combined cross section

can be measured by all 4 RHIC experiments independently. The STAR preliminary result,

measured by the van der Meer scan technique [150] is σxn,xn = 8.9 ± 0.3stat ± 0.7sys barn.

This value has also been measured in an independent analysis by the RHIC accelerator

crew [151]. The value reported in a calculation [152] is σxn,xn = 10.9 ± 0.6 barn, and

seems to be outside of the allowed range of the systematic uncertainty in the measurements.

Attempts to resolve this discrepancy are underway. In order to arrive at a measured hadronic

cross section, σAuAu, it is also necessary to disentangle the contributions from the hadronic

and the Coulomb processes. Since a pp̄ inelastic collision at √s = 130 GeV produces on

average ∼ 2.4 (see Eq. 4.11) charged particles per unit pseudorapidity at mid-rapidity and we

expect to identify the vertex for hadronic events, to �rst order this fraction can be measured

as
σAuAu

σxn,xn
=

Events with Vertex
Total Triggered Events

(8.1)

This simple ratio must be corrected for the vertex-�nding e�ciency and acceptance that

reduce the counts in the numerator and for backgrounds such as beam+gas that generate

a trigger and are therefore counted in the denominator. The vertex �nding e�ciency is

important in this analysis and for the determination of the shape of the h− multiplicity

distribution at low multiplicity.
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8.1.2 Vertex Acceptance

The vertex reconstruction for the summer 2000 run was undertaken essentially up to the

limits of the TPC acceptance, i.e. |zvertex| < 2 m where zvertex denotes the position of the

primary vertex along the z direction parallel to the beam. Although it is possible to try to

obtain a vertex as long as there are tracks in the TPC, this was not pursued for the following

reasons. If an event occurred outside of this region, the TPC sees only the forward- or the

backward-going particles. This also has the disadvantage of reducing the accuracy of the

vertex determination, since the z position of tracks going perpendicular to the beam axis

contribute signi�cantly to the determination of the vertex. In addition, the CTB in this

case is not triggered on multiplicity at mid-rapidity, but rather on multiplicity forward or

backward of mid-rapidity with all tracks having a large dip angle. To avoid these systematic

e�ects, the vertex �nder was set to abort when it determined that the vertex lay outside the

TPC limits.

Due to the large size of the beam diamond, the standard deviation of the vertex Z

position was ∼ 100 cm. This results in valid collision events, even at high multiplicity,

without a vertex determination. In addition, in order to keep a �at acceptance for tracks

with |η| < 0.5, we restricted the multiplicity analysis to events with a vertex between ±95

cm, about a ±1σ cut. To correct for the vertex acceptance, we assume that the distribution

is Gaussian and from the �t parameters estimate the fraction of events that lie outside our

acceptance cut. As an example, the zvertex distribution for 10K triggered events from one of

the runs taken in September 2000 is shown in Fig. 8.2.

For the distribution in Fig. 8.2, the acceptance correction factor is 1.57. Analyzing more

runs for a total of 166K triggered events, we �nd an acceptance correction factor of 1.68, (a

±1σ cut for a Gaussian distribution would yield a correction of 1.46, so our cut is tighter).

With the vertex e�ciency and acceptance correction, we can then determine the numerator

in Eq. 8.1. For the denominator, we must estimate the backgrounds to our minimum-bias

trigger.
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Figure 8.2: Distribution of reconstructed vertex z positions, zvertex, for 10,000 triggered
events. The limits of the TPC are at ±2 m from the center. The acceptance for events used
in the multiplicity analysis was placed at ±95 cm.

8.1.3 Vertex E�ciency

We know that our o�ine vertex reconstruction is not 100% e�cient, therefore we need to

correct for this e�ect when measuring the multiplicity distribution. The vertex reconstruc-

tion is based on tracing the path of reconstructed tracks back to a common space point.

Since tracking is done �rst, before �nding the vertex there is no a priori knowledge of which

tracks are primary and which ones are not. The vertex-�nding therefore depends on all

global tracks (Sec. 6.2.1) found in the event. We will then characterize the e�ciency as a

function of the number of global tracks (Nglobal) in the event. The vertex-�nding e�ciency
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(εvtx) a�ects mainly the low multiplicity events. The reason is that these events provide

the vertex-�nding algorithm with very little information to work with, i.e. very few global

tracks. We �nd that for events with more than ∼ 100 global tracks, the e�ciency is ∼ 100%.

To con�rm the �ndings based on software, a visual analysis of ∼ 100 events was performed,

with a resulting lower bound on the e�ciency for events with Nglobal = 100 of εvtx > 98%.

The more important part is the e�ciency at low Nglobal. To get a handle on this number,

we used hijing events generated with large impact parameter b = 12 - 20 fm. At these impact

parameters, hijing should be a reasonable model, since basically only geometry and the pp

cross section play a role and nuclear speci�c e�ects are not expected to in�uence the results.

These events were then processed through the STAR reconstruction chain and a record was

kept of the number of events generated and whether the vertex was or was not found for

each event. In this way, we obtain a plot of the vertex e�ciency correction factor (1/εvtx).

The correction depends on Nglobal and is illustrated in Fig. 8.3.

Figure 8.3: Vertex �nding e�ciency correction factor as a function of the number of global
tracks, Nglobal.

To take this correction into account in the h− multiplicity distribution, the correction
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in Fig. 8.3 was used as a weight for each event depending on the number of global tracks.

Since the h− multiplicity distribution refers to negative primary tracks instead of global

tracks, this correction a�ects primarily the region Nh− < 5 and is negligible beyond Nh−

= 10. These are the �rst two bins of the �nal distribution. However, most of the cross

section is found in these bins, and the shape of the distribution is sensitive to these values

at low multiplicity. To �gure out what is the fraction of the hadronic cross section that we

actually see, we proceed as follows. We choose events within a ±95 cm range along the z

axis of the beam direction. We can then count the the raw number of events with vertex in

our multiplicity distribution. We compare this to the number of vertex events corrected for

e�ciency, i.e. to the number of events in the multiplicity distribution appropriately weighted

with the correction from Figure 8.3. From these two numbers, we see that the fraction of

the hadronic cross section available to the o�ine analysis is 94.9 ± 0.5 ± 4 % of σAuAu,

where the systematic uncertainty comes from the uncertainty in the estimation of the vertex

e�ciency at the lowest multiplicities based on the simulations.

8.1.4 Trigger backgrounds

We now focus on estimating the contribution to the events in the denominator in Eq. 8.1

that are not part of the total σxn,xn cross section, e.g. beam-gas events. However, knowing

which events are background so that we can take them out of our total trigger sample, is

not trivial.

To investigate this issue, we focus on events for which the vertex was not found. To study

systematic e�ects and variations, from the September data, we used speci�c minimum bias

runs with good statistics, and stable detector operation. The run with the most statistics

in this period has ∼ 77K events (the events in Fig. 8.2 is from this sample). This was used

along with a few other runs to compare backgrounds and other systematic e�ects.

For these background studies, we compared 4 runs with di�erent luminosity conditions

spread over several weeks. Two of these (August 2000 data) had intensities in RHIC which

were about a factor of 3 lower than in the other two (September 2000) runs. We are interested
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in the di�erent intensities because the hadronic interaction rate grows as the product of the

intensity in each beam, while the beam+gas background grows only as the sum. This type of

background should then have a di�erent contribution in runs with di�ering beam intensities.

To illustrate the di�erence between the events with and without vertex, a plot of the

trigger information from 10K events from one of the runs is shown in Fig. 8.4 Events with

a reconstructed vertex are shown in the left panel; the right panel illustrates the trigger

signals for events without a reconstructed vertex.

(a) (b)

Figure 8.4: The trigger signal for events with a valid reconstructed vertex (a) shows the
expected shape. There are additional event classes that show up when plotting the trigger
signal for events without a reconstructed vertex (b).

For events in Fig.8.4(a), we see again the very clean �boomerang� band. These represent

valid hadronic events for the determination of σAuAu. For the events without a reconstructed

vertex, there are several regions to understand. The events which lie in the �boomerang� are

most likely good events that did not have a vertex because the collision occurred outside the

bounds of the TPC, where the acceptance of the o�ine vertex �nder terminates. This does

not present a problem. However, in the 2001 run a cross check will be done using timing in

the ZDC's. There are two other regions that are most probably background and have been
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the subject of further scrutiny:

• ZDC < 30 (low ZDC region)

• ZDC ∼ 80 (mid ZDC region)

Both of these regions have events whose trigger signals extend along the CTB axis. If

the multiplicity is increasing for these events, we should see also an increase in the number

of global tracks. The same thing is found if we plot the ZDC signal vs. Nglobalfor the events

with and without vertex, shown in Fig. 8.5.

(a) (b)

Figure 8.5: The ZDC signal vs. the number of global tracks for events with a valid recon-
structed vertex (a) and without one (b). The same structure as in Fig. 8.4 is seen, indicating
that there is de�nitely an increased number of charged tracks in the detector for the events
in the two regions outside the �boomerang�.

We see that there are events that have ∼ 1000 global tracks, do not have a reconstructed

vertex and lie in a di�erent region than the normal hadronic events.

We studied the characteristics of these two bands to try to understand their origin. We

investigated other di�erences between these bands and the rest of the �good� triggers to

shed light on their nature. We expect that in the region Nglobal≤ 1 most of the events are

of electromagnetic origin. In any case, there can be no vertex reconstructed for events with

less than 2 tracks. By selecting non vertex events with Nglobal>1 we focus on the possible
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backgrounds the we're aiming to understand.

We �nd that the band at low ZDC has both East and West ZDC triggers just above

threshold, and the band in the mid ZDC region has one of the calorimeters just above thresh-

old and the other one high. For the ZDC ∼ 80 region, this is just the opposite behaviour

than is seen in the events with a found vertex, where the ZDC signal is relatively symmetric

between East and West ZDC's. It is possible that a beam+gas event could generate such an

asymmetric ZDC signal with some charged tracks seen in the TPC. Asymmetries in tracking

were also found, but this can also indicate simply an interaction outside the TPC volume.

Several hypotheses were proposed, but there was insu�cient information to unambiguously

discern the nature of the background. In particular, we would like to know its contribution

to the region where the valid events lay. Without this knowledge, we can remove only the

background contribution outside the �boomerang� region. We can therefore only produce a

lower limit on the fraction in Eq. 8.1. The numerator depends on the e�ciency and accep-

tance corrections already discussed. For the purpose of the calculation of the fraction, we

used events within ±2 m to reduce the acceptance correction (6%). For the denominator, we

start with the total triggers. The background is obtained via the number of events without

vertex that have 1 or more global tracks. Since some of these events are valid events that

were not found because of e�ciency or acceptance, we need to subtract the number of events

we added to our numerator due to these two corrections from the background estimate. This

is a lower bound since we don't take into account the background for events without global

tracks. From 10K events from the low luminosity runs and from 15K events from the high

luminosity runs we obtain

Low L :
σAuAu

σxn,xn
≥ 70.0± 0.7 %

High L :
σAuAu

σxn,xn
≥ 73.5± 0.6 % . (8.2)

The errors are statistical, which is enough to compare the two numbers since they were

obtained in the same way. We can see that there is a di�erence beyond statistical. However,
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this was expected as the low-luminosity runs systematically have a greater background

contribution that our procedure does not account for. For the high-luminosity sample, this

background is reduced and the lower limit on the fraction is higher. Using the fraction from

the high-luminosity events and the current measured value for σxn,xn = 8.9 ± 0.5 barn, we

obtain a lower limit on the hadronic cross section σAuAu & 6.5 barn, consistent with the

calculated value of 7.2 barn. There should be an error of ±0.4 barn in this estimate which

comes basically from the cross section measurement (the statistical error on the fraction is

much smaller). This error in turn is dominated by the uncertainty in the measurement of the

beam currents in the RHIC ring, which is on the order of 3%. The systematic uncertainty

on the fraction is the only missing piece, but as discussed, at this point we can only give a

lower bound.

It is clear that with only the ZDC and CTB information at the lowest multiplicities, it

becomes increasingly di�cult to separate the background events such as beam+gas collisions.

It would therefore be of great advantage to obtain an estimate of the interaction point

without having to rely on tracking, but rather on trigger signals, e.g. on timing between

the arrival of the East and West ZDC signal. In addition, improved phase space coverage

for the trigger would drastically reduce uncertainties in the background estimates and help

to provide a more complete topology of the valid low multiplicity hadronic events. For the

2001 run ZDC timing will be implemented; and starting with the 2001 pp run, additional

detectors in the form of scintillator slats covering from the pseudorapidity region 2 < |η| < 4

will be part of the STAR trigger as well. For the analysis of the multiplicity distribution

presented in Sec. 9.1 we will use the calculated value of the Au + Au hadronic cross section

of σAuAu = 7.2 barn for the normalization.

To obtain the multiplicity distribution, one has to obtain the corrected number of nega-

tive hadrons for every event. The analysis done here relies on tracking. We �rst obtain a raw

dN/dp⊥dη distribution as a function of η and p⊥ for every event. Then several corrections

are applied to this raw distribution as discussed in the next section. Finally, the corrected

dN/dp⊥dη distribution is integrated in the range |η| < 0.5, 0.1 < p⊥ < 2 GeV/c to obtain
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a corrected multiplicity. One can therefore also obtain p⊥ and η distributions with this

procedure. Since the algorithm relies on tracking corrections, we now turn our attention to

this subject.

8.2 Tracking Studies

Particle production was studied through the yield of primary negative hadrons, which are

mostly π− with an admixture of K− and p̄. The h− distribution includes the products of

strong and electromagnetic decays. Negatively charged hadrons were the main focus of the

work in order to exclude e�ects due to participant nucleons which would show up in the

positively charged hadron sample. Charged particle tracks reconstructed in the TPC were

accepted for this analysis if they ful�lled requirements on number of points on the track and

on pointing accuracy to the event vertex.

The main goal of this analysis is to determine the corrected yield of primary particles

coming from the collision. What we have in the �nal state are measured tracks, both pri-

mary and secondary, in our detectors. There are several losses and backgrounds that need to

be corrected: acceptance, decay losses, track reconstruction e�ciency, contamination due to

interactions in material, misidenti�ed non-hadrons, and the products of weak decays. The

appropriate corrections were obtained mainly by use of the embedding technique. Back-

grounds were determined by either fully simulated events or by direct measurement when

possible. All corrections were calculated as a function of the uncorrected event multiplicity.

The corrections used in the determination of the �nal spectra are obtained in the following

order:
À Geometrical acceptance and decay losses
Á Reconstruction e�ciency
Â Track merging
Ã Momentum resolution
Ä Track splitting
Å Electron background
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Æ Weak decay and secondary interaction background
Ç Ghost tracks

We now discuss the most important corrections in more detail.

8.2.1 Acceptance

The acceptance correction takes care of two di�erent things. What we really focus on here

is whether or not a charged particle makes a measurable signal in the detector such that it is

possible to reconstruct it afterwards. If the charged particle does not deposit energy in any

sensitive volume of the detector, it will be lost. This is the more common de�nition of the

geometrical acceptance. In addition, a charged particle may also leave no signal if it decays

in �ight before it reaches the detector. In the STARMonte Carlo simulation implemented for

this work, these two losses were taken into account simultaneously by adopting the following

de�nition of acceptance: a track is accepted if it leaves at least 10 Monte Carlo hits in the

TPC. The reconstruction code then at least has the possibility to �nd the track. This

correction can be calculated in a full Monte Carlo simulation and also using embedding, and

should be completely independent of the event multiplicity. There should be a dependence

on particle type, as the decay characteristics are included in our de�nition. This is illustrated

in Fig. 8.6. The left panel is the acceptance for negative pions in three multiplicity bins.

The numbers correspond to the mean raw negatively charged multiplicity (〈h−〉raw) in each

of the 3 bins: 〈h−〉raw = 223 for the high multiplicity, 〈h−〉raw = 152 for medium, and

〈h−〉raw = 33 for the low multiplicity bin. The plot shows that the correction is essentially

independent of the multiplicity, except perhaps at the lowest p⊥. The right panel is the

acceptance for the three particle species which make up the h− distribution. We see that

the K− acceptance is lower than that for the pions, which is expected since cτ = 3.7 m for

kaons, and it is 7.8 m for π−.

The acceptance is on average 90% for tracks within the �ducial volume having p⊥ > 200

MeV/c. We see that the acceptance rapidly drops at low p⊥. For the h− analysis, we accept

tracks which have 0.1 < p⊥ < 2 GeV/c and |η| < 1.0. This accounts for the majority of the

98



(a)
  GeV/cp

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
cc

ep
ta

n
ce

 &
 D

ec
ay

 L
o

ss
es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-π
-K

p

(b)

Figure 8.6: The acceptance correction for the h− analysis. Left panel: π− acceptance for 3
multiplicity selections. Right panel: Acceptance for π− K− and p̄.

produced particles at mid-rapidity, as we �nd the yield beyond p⊥ = 2 GeV/c to be only 1%

of the total yield. A motivation to go as low in p⊥ as possible was driven by the fact that

for 2001 the magnetic �eld would be set to the design operating value of 0.5 T for the bulk

of the data taking, instead of the 0.25 T used in 2000. This raises the low-p⊥ acceptance of

the TPC, so essentially the 2000 data would give us access to the lowest p⊥. Nevertheless,

to study systematic e�ects the multiplicity analysis was carried out three times with various

low-p⊥ cuto�s: p⊥>0 (no cuto�, large systematics expected), p⊥>0.1 GeV/c and p⊥>0.2

GeV/c yielding consistent results.

8.2.2 Tracking E�ciency

Once a track has made it into the detector, we focus on the question of how likely it is

to be found by the o�ine software chain. The reconstruction e�ciency was determined by

embedding simulated tracks into real events at the raw data level, reconstructing the full

events, and comparing the simulated input to the reconstructed output. This technique

requires a precise simulation of isolated single tracks, achieved by a detailed simulation of
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the STAR apparatus based on GEANT and a microscopic simulation of the TPC response

discussed in Chapter 7. The multiplicity of the embedded tracks was limited to 5% of

the multiplicity of the real event in the same phase space as the simulated data, thereby

perturbing the real event at a level below the statistical �uctuations within the event sample.

Fig. 8.7 shows the reconstruction e�ciency obtained from embedding as a function of p⊥ for

a slice at mid-rapidity. The tracking e�ciency varies depending on p⊥ and the multiplicity
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Figure 8.7: The reconstruction e�ciency for the h− analysis. Left panel: π− e�ciency for 3
multiplicity selections. Right panel: E�ciency for π−, K− and p̄ at high multiplicity.

of the event. For the lowest multiplicity events, the π− e�ciency is & 95% in the region

p⊥ > 400 MeV/c. Going to the high multiplicity events degrades the e�ciency to ∼ 80%.

However, since the di�erence between the multiplicities in the high and low bins is about

a factor of 7, a reduction of only ∼ 15% in the e�ciency is a signi�cant achievement for

the o�ine reconstruction. In general, for all multiplicities and all 3 particle species, in the

region p⊥ > 200 MeV/c we always have an e�ciency greater than 80%.

The pseudorapidity dependence of the tracking e�ciency for π− is shown in Fig. 8.8. The

two data sets in the �gure are for selections of events with vertex z position, zvertex, within

±95 cm (blue points) and ±20 cm (red points) of the center of the TPC. The wide vertex
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Figure 8.8: The π− reconstruction e�ciency as a function of pseudorapidity. Two di�erent
vertex selections are shown, illustrating the in�uence of the choice of vertex on the e�ciency
due to the detector geometry.

cut allows us to use most of the available data. The interest in studying such variations

in e�ciency lies in the observation that a particular phase space region, for a given vertex

position, will be measured in a di�erent region of the detector. For example, tracks with η

> 0.5 will not cross all the available padrows in the TPC when the vertex is in a position

zvertex > 95 cm. This is re�ected as a drop in the e�ciency. By making a tighter zvertex cut,

one can probe a wider phase space region with the guarantee that tracks have the chance

to cross all TPC padrows. For a vertex cut of |zvertex| < 20 cm, tracks within |η| < 0.8 will

cross the entire TPC, and one can see a higher e�ciency for these tracks in the �gure (red

points).

Furthermore, even when tracks cross the entire TPC, we also expect a variation in

e�ciency for a given η slice as a function of the vertex position. This arises from di�usion

e�ects, as a track crossing the detector in the region near the central membrane will produce
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space points that must drift across the entire chamber, and their clusters will be wider than

those for tracks near the pad plane. We can test the adequacy of our detector simulation by

studying the raw and corrected yield in a given η bin as a function of the vertex position,

and hence as a function of the position of the track in the detector. In addition, since the

TPC volume is separated into two identical halves separated at z = 0 and set up such that

the ionization drifts toward the wires (located at ±2.1 m), the behaviour for a given choice

η and zvertex should be the same as for −η and −zvertex. This is illustrated in Fig. 8.9 which

shows the raw η distribution for 10 cm slices in the choice of zvertex interval: [20, 30] cm, [80,

90] cm; and the corresponding symmetric zvertex selections [−30, −20] cm and [−90, −80]

cm. The top panels show the raw distributions as a function of η, left for the [20, 30] cm

(a) (b)

Figure 8.9: Raw yield dependence on zvertex. The left panel is for the vertex choice [20,
30] cm (red) and [−30, −20] cm (blue), right panel is for the interval [80, 90] cm (red) and
[−90, −80] cm (blue). Dashed lines in the bottom panels represent tracks with η = ±0.5,
corresponding to the limits given by the vertical dashed lines in the top panels.

interval and right for the [80, 90] cm region. In the bottom panel a sketch of the detector

102



geometry is given, as a slice in the r and z coordinates of the TPC cylinder. The central

membrane is at z = 0, the drift distance is 2.1 m from the membrane to the wires. The

�rst pad row at 60 cm and the last pad row at 200 cm. The lines in this panel represent

the trajectories of tracks originating from the given vertex position at η = ±0.5. We can

see that there are signi�cant systematic variations in the raw yield depending upon where

the event happened. As expected, the raw yield begins to decrease signi�cantly once tracks

do not cross the entire TPC. Such systematics must be taken into account in the e�ciency

corrections.

Since the corrected yield we report must be independent of any detector e�ects, it is

easier to study the adequacy of the corrections by focusing on a single η bin and comparing

the raw and corrected yield for the bin as a function of the vertex position. This is illustrated

in Fig. 8.10 which shows the raw and corrected yields for two choices of η, −0.3 < η < −0.2

(left) and 0.4 < η < 0.5 (right), as a function of zvertex. The lower panel shows the geometry

of the relevant tracks as they cross the detector for the di�erent vertex positions. The steps

in zvertex were done in 10 cm bin sizes between ±100 cm (20 bins), and 4 wider bins with

limits [−190,−140], [−140,−100], [100, 140], [140, 190] in order to get enough statistics (see

the zvertex distribution, Fig. 8.2). We again see that there are systematic e�ects in the raw

yield. We can identify two general trends. For tracks that do not cross the entire TPC, the

yield drops rapidly. For the remaining tracks, the raw yield is the lowest for tracks closest

to the central membrane and increases as the tracks get closer to the pad planes on either

side of the TPC. For reference, a �t to the raw data assuming a constant yield is done

(black points) with a resulting poor χ2; 6.8 (left) and 8.8 (right). The corrected yield is

essentially free of zvertex systematics, except for two cases. In the events closest to the edges

of the TPC, where the acceptance is varying rapidly and most of the tracks in the event lay

outside the TPC, the tracks that do not cross the entire TPC show a corrected yield that

is lower than the rest. This is expected, as tracks with very little information left in the

detector will be di�cult to reconstruct. We also found an additional systematic e�ect in the

e�ciency correction traced back to the simulation of tracks crossing the central membrane.
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Figure 8.10: Raw and corrected yield for −0.3 < η < −0.2 (left) and 0.4 < η < 0.5(right)
as a function of zvertex. Data points in each of the upper plots correspond to tracks crossing
the detector region illustrated schematically in the lower plots.

This e�ect causes a slight over correction of the yield for such tracks, as can be seen by

the corrected yield for these tracks which is coloured di�erently in the �gure. Therefore,

to prevent these systematic e�ects from appearing in the �nal pseudorapidity distribution,

we included only events within ±100 cm of the center of the TPC, excluded tracks going

through the membrane, and excluded tracks which did not cross the entire TPC. Each data

point in the �nal h− pseudorapidity and p⊥ distributions is then obtained as the average of

each of the ∼ 20 independent measurements of the corrected yield obtained for each of the

zvertex bins.

Since the most important correction for p⊥ spectra and yields is the e�ciency, this is

where we concentrated a large fraction of the studies of systematic e�ects. The systematic

uncertainty due to the corrections was estimated in two ways. In order to ensure consistency
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of the results, we studied the variation in the �nal spectra due to a large variation in the

track quality cuts. The distributions of the cut variables are given in Fig. 8.11 from both

data and simulations; the left panel shows the distance of closest approach distribution

and the right panel shows the number of �t points distribution. We varied the selection

based on number of �t points from 10 to 24 and the selection based on distance of closest

approach from 3 cm to 1 cm. These choices are labelled �cut 1� and �cut 2� in the �gure.

The di�erent corrections for the more stringent set of cuts (cut 2) were then recalculated.
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Figure 8.11: Comparisons of the distance of closest approach (a) and number of �t points
(b) distributions for simulated and real data.

The �nal multiplicity distribution obtained in both cases was compared and they were in

agreement to ∼ 1%. To study the sensitivity to the cuts a small variation in the track quality

cuts was then made, accepting tracks with 23 �t points. A corrected spectrum using the

correction factors calculated for tracks with 24 �t points was then applied. This yields then

a corrected distribution that is systematically higher than the measured value, as one is then

over-correcting the raw data. The yield at high multiplicity obtained via this systematic

e�ect was found to be 6.4% above the measured yield. This is the main contribution to the

systematic uncertainty in the total particle yield for the analysis presented here.
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8.2.3 Backgrounds

Instrumental backgrounds due to photon conversions and secondary interactions with de-

tector material were estimated using the detector response simulations mentioned above,

together with events generated by the hijing model [105, 106]. The simulations were cali-

brated using data in regions where background processes could be directly identi�ed. The

measured yield also contains contributions from the products of weak decays, primarily K0
S ,

that were incorrectly reconstructed as primary tracks that must also be accounted for in the

background correction. Figure 8.12 (left panel) illustrates the background fraction of the

(a) (b)

Figure 8.12: Background correction to the h− spectrum coming from weak decays and
secondary interactions in the detector material (a) and electrons (b) as a function of p⊥. The
corrections were obtained via hijing events processed through the STAR o�ine simulation
and reconstruction chain.

raw signal coming from secondary interactions and decays. The shape of the background

correction is independent of multiplicity. We see that the hadronic background is approxi-

mately 15% at p⊥= 100 MeV/c, decreasing with increasing p⊥ to a constant value of ∼ 7%.

The average fraction of hadronic background tracks in the uncorrected sample is 7%. The

error on the background correction increases with p⊥ because statistics are limited, but
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there is also a systematic uncertainty associated with this correction. Since the background

depends on the yields of various particles, in particular K0
S and Λ̄, di�erences between the

model and the data will systematically a�ect the correction. An estimate of the background

correction at p⊥ = 2 GeV assuming the ratios Λ̄/p̄ ∼ 0.8 and p̄/π− ∼ 1 would yield a value

of ∼ 1.15 instead of 1.07. This is the main source of systematic uncertainty in the hadronic

background correction.

The right panel of Figure 8.12 shows the electron background obtained from dE
dx data

(�lled points) and from hijing simulations (hollow points). The shape of the electron

background is exponential, so we can use the shape and normalize to the data in order

to obtain the �nal electron correction. Since the slope of the exponential can a�ect the

�nal slope of the p⊥ distribution, we can also do a correction using the hijing points to

study the variation in the p⊥ spectrum. We �nd that the choice of the slope in the electron

correction changes the corrected value of 〈p⊥〉 by 10 MeV/c and is the main contribution to

the systematic uncertainty of the determination of 〈p⊥〉.

8.2.4 Comparison of TPC Halves and Sector (φ) Dependence

From the design of the TPC, the tracking volume is essentially divided into two independent

halves and it is not a priori obvious that one can combine them without introducing system-

atic e�ects. Therefore, one of the necessary studies in the evaluation of the reliability of the

results is to compare the raw yields in the di�erent halves. However, one has to be careful

in this comparison to isolate the possible di�erences. Because of the design of the TPC, we

expect to see di�erences in the raw yields even within the same half of the TPC simply due

to an increased drift length. As an example, we can take tracks close to midrapidity, which

are emitted at an angle close to 90◦. As the event vertex is not a �xed quantity in the z

axis for the di�erent events, tracks at midrapidity coming from events with di�erent vertex

z positions will have di�erent drift distances, and thus we expect systematic di�erences in

the raw yield at �xed η for varying vertex z positions, as was discussed in Section 8.2.2.

To isolate di�erences between the East (z < 0) and West (z > 0) halves of the TPC, we
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therefore have to make sure that we take event and track samples that are related by the

transformation ηEast = −ηWest and zEast
vertex = −zWest

vertex. In addition, as each TPC half is made

up of 24 independent sectors to cover the full azimuthal range, it is also interesting to do a

comparison of the raw azimuthal yields to make sure there are also no systematic e�ects. In

doing this comparison, one can also separate the raw yields from positively and negatively

charged tracks, for there might be distortions that a�ect these tracks di�erently. The tracks

selected must also satisfy requirement of having at least 10 �t points (�cut 1� in Fig.8.11(b)).

This cut is also used for the h− analysis.

(a) (b)

Figure 8.13: Raw φ distribution of East and West half of the TPC for negatively charged
particles. Left panel: low p⊥ (0.2 - 1 GeV/c). Right panel: moderate p⊥ (1 - 2 GeV/c)

Figure 8.13 shows the raw azimuthal distribution for negatively charged tracks in the

two halves of the TPC. The East half track sample, shown as the hollow square data points,

was obtained from events with −50 < zvertex < −10 cm and from tracks with −0.5 < η < 0.

Similarly, for the West half the events had a vertex selection of 10 < zvertex < 50 cm and

tracks were selected according to 0 < η < 0.5. The left panel shows the yields for the low

p⊥ region, 0.2 < p⊥ < 1 GeV/c. A similar plot showing the raw azimuthal distribution in

the range 1 < p⊥ < 2 GeV/c is shown in the right panel. The samples are normalized per

event to isolate the di�erences in the raw yields.
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The size of the bins in the azimuthal direction is 15◦, or half a sector. We see that there

is a periodic structure to the distribution in both cases. This comes about because charged

tracks will curve in the magnetic �eld. Therefore, depending upon their charge sign and

entrance point to a sector (i.e. their azimuthal angle), will have a trajectory that is either

fully contained in a sector boundary or that crosses a sector boundary. For a speci�c charge

sign, tracks in one side of the sector will be more easily reconstructed than on the other side,

giving the structure seen in Figure 8.13. This e�ect is more pronounced for low momentum

(i.e. large curvature) tracks. The high yield bins for the negative charge tracks should be

the low yield bins for the positive ones. The low momentum positively charged tracks are

shown in Figure 8.14. Indeed we see the expected change, for this case the �rst bin is a high

yield bin (compare to Fig. 8.13).
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Figure 8.14: Raw φ distribution of East and West half of the TPC for low transverse
momentum (0.2 - 1 GeV/c) positively charged particles.

To focus on changes between East and West halves of the TPC, we make a ratio of the

previous histograms. Figure 8.15 shows the ratio for low p⊥ negative (a) and positive (b)

tracks. The average di�erence in both cases is on the order of 1%.

We can also make a comparison of the h−/h+ ratio in both halves of the TPC. Since we

know that there will be systematic di�erences as a function of φ due to the curvature e�ect

mentioned before, we can simply make a ratio of the raw yields integrated over φ. For the
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Figure 8.15: Ratio of raw φ distribution of East and West half of the TPC for low transverse
momentum (0.2 - 1 GeV/c) negatively (a) and positively (b) charged particles.

East half of the TPC we �nd h−/h+ = 0.983±0.005 and for the West half a similar analysis

yields h−/h+ = 0.988± 0.005 where the errors are statistical only. We conclude that for the

purposes of this analysis the two halves of the TPC yield su�ciently similar results.

However, we will still separate the corrections to the raw yields in other variables as

mentioned in Sec. 8.2.2. We expect variations in the raw yields due to di�erent track

geometries and event topology. In summary, we expect that tracks that do not cross the

entire tracking volume of the TPC to be more di�cult to reconstruct than those tracks that

do. In addition, it is much easier to reconstruct the tracks when there are not many tracks

in the detector, so we must see a decrease in the tracking e�ciency in a high multiplicity

environment. Furthermore, low momentum tracks coming from the interaction vertex will

have a di�cult time reaching the tracking volume. The radial distance at the center of

the �rst TPC sensitive pad row is 60 cm, which along with the magnetic �eld of 0.25 T

places an e�ective low p⊥ acceptance cut-o� for primary tracks of ∼ 50 MeV/c. Finally,

as mentioned before even tracks in identical regions of phase-space will have di�erent raw

yields depending upon where the event vertex was placed because they will sample a di�erent

detector geometry. Therefore, we have divided all the tracking corrections according to
• the phase-space cell occupied by the tracks,
• the multiplicity of the event, and
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• the position of the primary vertex.

The previous corrections are the most important ones in the present analysis. The following

corrections to the spectra and yields were also studied. Each of them was found to produce

changes of less than 1%.

8.2.5 Momentum resolution

The momentum resolution is momentum dependent. It is well known that for a p⊥ distri-

bution, the resolution of the detector will introduce a change in the slope of the observed

spectrum. This can be seen from the following simple argument. The e�ect of a �nite mo-

mentum resolution is that a certain number of tracks will be reconstructed with the wrong

momentum, and will therefore be counted in an incorrect bin. It is possible for a track to

be reconstructed with a lower or a higher p⊥. So for a given p⊥ bin, there will be a loss

of particles to adjacent bins and a gain of particles from adjacent bins. The magnitudes of

these �uxes compared to the yield in the given bin are the important quantities. From the

rapid decrease in cross section with increasing p⊥, we expect that the feeding of particles

from the lower to the higher p⊥ bins will be higher than the �ux in the opposite direction,

and hence the net e�ect is to �atten the spectrum to some extent. This e�ect becomes

important when the momentum resolution is of the same order as the size of the p⊥ bin. It

is therefore necessary to quantify this e�ect in any momentum analysis.

For the results presented here we concentrate on p⊥ ≤ 2 GeV/c. We �nd the momentum

resolution to be better than 4% as illustrated in Fig. 6.6. For a p⊥ bin width of 100 MeV/c

we expect the correction due to momentum resolution to be less than 1% in the full range

of p⊥. This e�ect was quanti�ed in two di�erent analyses. The �rst approach relies on the

embedding procedure, and consists of dividing the phase space into bins and using the track

matching between simulated and reconstructed tracks from. We can keep track of the p⊥

bin in which a particle was created, and then see if it was reconstructed in the same bin. We

can thus know, for each phase space bin, what percent of tracks are reconstructed correctly,

what percent are reconstructed in a di�erent bins and correct for the resolution.
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The only signi�cant correction found this way occurs for the very �rst p⊥ bin. The

reason is the following. The raw yield in each bin is composed of two parts: the tracks

which were correctly reconstructed in the same p⊥ bin as the one they were generated in,

let's call these the healthy tracks; and the tracks that are found by the reconstruction but

placed in a di�erent bin than the one they were generated in, let's call these the crippled

tracks. Now let's focus on the region p⊥ < 100 MeV/c where the e�ciency drops very

rapidly with decreasing p⊥. There will be very few healthy tracks in the �rst p⊥ bin because

the e�ciency is low. There will be, however, a considerable amount of crippled tracks in the

�rst bin coming from the feed-down from the next (high e�ciency) p⊥ bins. The crippled

tracks are almost as numerous as the healthy population for this bin. We therefore must

apply a correction to obtain a realistic estimate of the initial healthy population in that

bin. For the region p⊥ > 200 MeV/c the e�ciency is independent of p⊥ so we need only

concentrate on the p⊥ dependence of the parent distribution which we want to measure.

We can also calculate the expected correction based on a knowledge of the momentum

resolution, the bin size, and a given p⊥ distribution. One way to treat this problem is

through an iterative procedure, starting with a given input p⊥ distribution, doing a Monte

Carlo study by smearing the tracks with the measured p⊥ resolution and looking at the shape

of the resulting distribution. We repeat the process until the output distribution matches

the one measured in the experiment. The approach we followed relies on a related method.

Starting from a given input p⊥ distribution we use the measured p⊥ resolution as a function

of p⊥ to construct a set of Gaussians (one for each p⊥ bin). We also used di�erent functional

forms to parameterize the shape of the p⊥ resolution, e.g. Lorenzian and double-Gaussian,

yielding similar results. The area under each Gaussian is the initial yield for each p⊥ bin,

the mean is the center of the p⊥ bin and the σ is obtained from the measured δp⊥ vs. p⊥

curve. We can then �gure out what is the contribution of each p⊥ bin to any other bin in

principle. In practice, each bin only contributes mainly to its nearest and next-to-nearest
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neighbours. The observed yield in the ith p⊥ bin, Nobs
i is then:

Nobs
i =

∞∑

k=0

Nk

∫

p⊥(i)

1√
2πσk

e
(p⊥−p⊥(k))2

2σ2
k dp⊥ (8.3)

We can think of Eq. 8.3 as de�ning a matrix equation

Nobs
i =

∞∑

k=0

NkCki (8.4)

where the elements of the matrix Cki are de�ned by the integral of Eq. 8.3, and are inter-

preted as the percent contribution of bin k to bin i, i.e. the mean of the Gaussian is the

center of bin k and the integration limits are given by the upper and lower limits of the ith

p⊥ bin. The width of the Gaussian is given by the detector resolution at p⊥ bin k. Therefore,

the integral depends only on quantities that are measurable (the resolution) or de�ned by

our analysis (the bin limits and bin center). This matrix then embodies all our knowledge

of the e�ects of resolution.

For a given p⊥ distribution, we can then calculate what the observed distribution will

be and obtain appropriate correction factors for the e�ect of resolution. We have performed

this procedure with di�erent input distributions � power-law function, exponential in p⊥ and

exponential in m⊥ with various slope parameters � and �nd that in all cases the correction

for any given p⊥ bin is less than 1% in the range up to 2 GeV/c with our given bin size.

This is true for both the h−/h+ analysis (bin size 100 MeV/c, range 0.1 - 2 GeV/c) and for

the π− analysis (bin size 50 MeV/c, range 0.05 - 0.75 GeV/c). For higher p⊥ the resolution

plays a more signi�cant role, where we expect a correction of 20% or more at 5 GeV/c

with a 1 GeV/c bin size and the present magnetic �eld of B = 0.25 T.

An additional advantage of this resolution study is that, once we construct the Cki

resolution matrix, we can also use it to recover the original yields Nk by inverting the

matrix, and no iterative procedure is needed:

Nk =
∞∑

i=0

Nobs
i (Cki)−1 (8.5)

113



8.2.6 Track splitting

For a loose track selection based on the number of points reconstructed in the TPC, it is

possible to overestimate the track yield in the presence of split tracks. This e�ect can come

about for example when the track-�nding algorithm fails to recognize two track segments as

belonging to a single particle. This can happen typically when there are gaps in the track

pattern, such as tracks crossing sector boundaries, tracks crossing the central membrane of

the TPC, or tracks crossing a region of the TPC where the read out pad is noisy or dead.

To study the e�ect of splitting in this analysis, we used two approaches that relied

on the detector simulation. An additional study was made using only real reconstructed

tracks. All three results are in agreement both in the size of the overall e�ect and on its

p⊥ dependence. We will discuss the approach that relies on full simulation, since this is the

most straight-forward.

In a full Monte Carlo generated event, we have all the information about the input tracks.

Running the tracks through the GEANT implementation of the STAR detector, we obtain

among other things the information on the TPC energy deposition left by the tracks. This is

the input to the microscopic simulation of the TPC response yielding as output a simulated

raw-data �le that is then passed through the STAR reconstruction chain. A comparison

of the TPC space points that are found by the reconstruction algorithms to the GEANT

input is then performed. As discussed in Section 7.5, the matching as implemented in this

analysis is based on spatial proximity. A feature of this matching procedure is that it allows

a many-to-many matching: if 2 hits are very close together for example there will be a 2-to-2

hit match. Each of the 2 Monte Carlo hits will be matched to the 2 reconstructed hits.

The match of simulated point to reconstructed point serves as the footing for a simulated

track to reconstructed track association. Typically, the association is 1-to-1. A split track

will have a di�erent topology. There will be one original Monte Carlo track, but it will be

associated to 2 (or more) reconstructed tracks. The association algorithm allows a many-

to-many type of matching, so one must be careful to really single out a split track from

114



other matching topologies. We look for a single Monte Carlo track matched to more than

one reconstructed track, and those reconstructed tracks are singly matched to the Monte

Carlo track. Through this procedure, an estimate of the split track population and was

found to be also below the 1% level. In addition, the analysis done with the more stringent

requirement on the number of �t points (�cut 2� in Fig. 8.11(b)) guaranteed that there are

is no double counting from split tracks. The results obtained from both analyses were found

to be consistent.

8.2.7 Track merging

When 2 tracks lie very close together, the cluster �nder might not be able to resolve the 2

ionization peaks and produce a single space point when there were originally 2 for each hit

in the track trajectory. The losses due to this e�ect were estimated to be less than 1% for

the most central collisions and negligible for peripheral collisions.

8.2.8 Ghost Tracks

This correction takes into account possible cases where the track �nding algorithm might

associate space-points from di�erent tracks and give us track parameters from a non-existent

particle. It was not known if this could be of importance in the high multiplicity environment

of a heavy ion collision at high energy. It was found that the TPC occupancy was low

enough that this did not present a problem. Essentially no such tracks were found in all

the simulation and embedding analyses even at higher simulated multiplicities than those

observed in the data.

Finally, all analyses were carried out with 3 di�erent software production versions. As

we understood the systematics of the detector better, we incorporated our knowledge of

the calibrations, distortions and corrections to software bugs. The �rst production was

done in August while data was still being taken. This was followed almost immediately

by a new production one month later with improved calibrations. The data presented here

is produced with the calibrations and distortion corrections processed in early 2001. The
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biggest systematic e�ect observed throughout this process was a 4.5% change in the e�ciency

obtained from the �rst simulations compared to the following two software versions. This

was understood as coming from a more realistic parameterization of the allowed space point

errors used during the track �nding algorithm based on the measured residuals obtained in

the �rst analysis of the data.
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Chapter 9

Results and Discussion: Charged
Hadrons

9.1 Multiplicity Distribution

9.1.1 Results

Figure 9.1 shows the corrected, normalized multiplicity distribution within |η| < 0.5 and

p⊥ > 100 MeV/c for minimum bias Au + Au collisions. For this plot, a total of 350K

minimum bias triggers were analyzed, yielding 119,205 events with a reconstructed vertex

in the region |zvertex| < 95 cm. The distribution for the 5% most central collisions (360

mbarn), de�ned using ZDC coincidence, is shown as the shaded area in Fig. 9.1. The

de�nition adopted here was based on the signals shown in Fig. 8.1, by selecting events with

ZDC sum < 66 ADC counts and a high CTB threshold placed at 8500 ADC counts to

remove the ambiguity between central and peripheral collisions. The actual value of the

ZDC sum threshold is set by requiring the shaded area in Fig. 9.1 to equal 5% of σAuAu.

This is the event selection that was used for the h− p⊥ and η distributions for central events

presented in the following sections.

The data were normalized assuming a total hadronic inelastic cross section of 7.2 barn

for Au + Au collisions at √sNN = 130 GeV, derived from Glauber model calculations. The
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Figure 9.1: Normalized multiplicity distribution of h− with p⊥ > 100 MeV/c, |η| < 0.5 in
Au + Au collisions at √sNN = 130 GeV. The shaded area is 5% most central collisions,
selected by ZDC signal (see text). The solid curve is the prediction from the hijing model.

�rst bin (below Nh− = 5) is not shown, due to systematic uncertainties in the vertex re-

construction e�ciency and background contamination. Its relative contribution to the total

cross section was estimated to be 21% by normalizing the hijing multiplicity distribution

to the measured data in the region 5 < Nh− < 25 (i.e. the �rst three bins of Fig. 9.1). This

procedure relies on the assumption that very peripheral interactions are well described by

the superposition of a few nucleon-nucleon collisions in the geometry of a nuclear collision,

and can therefore be accurately modelled by hijing. A comparison of the actual yield mea-

sured in the �rst bin (after the e�ciency correction) to the shape predicted by the hijing
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model indicates a relative di�erence of 10%. The systematic uncertainty on the vertical scale

is therefore estimated to be ∼ 10% and is dominated by uncertainties in the total hadronic

cross section and the relative contribution of the �rst bin. The systematic uncertainty on

the horizontal scale is 6.4% for the entire range of multiplicity and is depicted by horizontal

error bars on 3 data points only to maintain clarity in the �gure.

The shape of the h− multiplicity distribution is dominated over much of the Nh− range

by the nucleus-nucleus collision geometry, consistent with �ndings from lighter systems and

lower energies. However, the shape of the tail region at large Nh− is determined by �uc-

tuations and detector acceptance. These overall features are also observed in the hijing

calculation, shown as histogram in Fig. 9.1 (although a more detailed comparison indicates

that, for the model, the shape of the tail shows a di�erent contribution due to �uctuations

than that found in the data).

9.1.2 Discussion

The negatively charged particle multiplicity distribution reveals that the bulk features of the

dynamics are dominated by the geometry. The shape shows the same features expected from

a Glauber picture of a superposition of nucleon-nucleon collisions. The model proposed by

Kharzeev and Nardi [96] attempts to extract the contribution to the multiplicity distribution

that scales as either soft or hard processes, or more precisely, as Npart and Ncoll. Such scaling

is expected to be p⊥ dependent, and therefore this study is better suited for a p⊥ distribution

(see Sec. 9.2).

It is nevertheless useful to apply such models in order to obtain a statistical determi-

nation of the number of participants for a given event selection. One implementation of

the Glauber particle production model is illustrated in Fig. 9.2. This was done by a Monte

Carlo implementation, where one generates events with random impact parameter, and then

samples the dσ/db geometrical distribution to �nd the probability to have an event at the

given impact parameter. When an interaction takes place, we calculate Npart and Ncoll

using Eq.4.9. We can thus obtain a dσ/dNpart distribution which we use as a weight in the
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Figure 9.2: Fit to the multiplicity distribution dσ/dNh− using a Glauber model (Sec. 4.1.1)
.

�nal multiplicity distribution (similar to the weight in Eq. 4.13 given by the probability of

no interaction). We can assume that particle production is proportional to the number of

participants (Sec. 4.1.1) 〈Nh−(b)〉 = q〈Npart(b)〉, or use a linear combination of Npart and

Ncoll à la Kharzeev-Nardi [96] (Eq. 4.10). As mentioned before, we also choose Gaussian

�uctuations, Eq. 4.12. The approach works best from mid-central to central collisions, as

the �uctuations in peripheral collisions are large. Figure 9.2 shows the result of applying

such a model to the STAR multiplicity distribution. The blue curves are the distribu-

tions obtained by binning the dσ/dNpart distribution to get successively 0 − 5%, 5 − 10%,

10− 20%, 20− 30%, 30− 40%, 40− 50%, and 50− 60% of σAuAu, which result in the blue

curves with near-Gaussian tails when transformed to dσ/dNh− because of the �uctuations.

The red curve is the convolution of all such distributions, giving a �t to the multiplicity

distribution. The size of the �uctuations in Eq. 4.12 is found to be a = 1.45 ± 0.2. This

parameter is constrained mostly by the shape of the terminus of the distribution. For a

Poisson distribution, this value would be 1. The presence of correlations makes this value

exceed unity. The origin of the correlations from the dynamics of the colliding system is
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a combination of nucleus-nucleus geometry �uctuations, nucleon-nucleon cross section �uc-

tuations and hadron resonance correlations [153]. In fact, this parameter for hijing turns

out to be rather large, a & 4, as is also apparent in Fig.9.1. There are also �uctuations due

to �nite detector acceptance. Since the TPC has a large acceptance, the contribution from

acceptance �uctuations is small. The shape of the terminus of the distribution measured

with a smaller acceptance apparatus should be reveal a less steep shape of the terminus of

the distribution (i.e. a larger a), e.g. the PHENIX Pad Chamber measurement [154].

It is argued [155] that the centrality dependence of the rapidity density per participant

pair can distinguish between models based on particle production from gluon saturation

(EKRT [156]) from those based on �xed scale pQCD such as hijing. In the EKRT model,

particle production is computed assuming that the pQCD growth of low p⊥ gluons is only

integrated up to a certain saturation scale. The saturation requirement has as a conse-

quence that the multiplicity per participant decreases with centrality. For hijing, particle

production arises from two main contributions: (a) a component arising from low-p⊥ hadron

production, modelled as beam jet string fragmentation, which is essentially proportional to

Npart, and (b) a contribution arising from mini-jet production, which is directly proportional

to Ncoll and to the averaged inclusive jet cross section per nucleon-nucleon collision. This

is essentially the same functional dependence as Eq. 4.10. The centrality dependence of the

mid-rapidity density for hijing is then

dNch

dη
= 〈Npart〉nsoft + f〈Ncoll〉

σA
jetA(

√
s)

σNN
in

(9.1)

where nsoft ≈ 1.3 and f ≈ 1.2. A plot of dN/dη/(Npart/2) vs. Npart should then naïvely

grow as ∼ Npart
1/3. Using the Monte Carlo model just discussed, and also the model from

Kharzeev and Nardi [96] applied to the STAR data, we obtain the centrality dependence

of dN/dη shown in Fig. 9.3. The results from PHENIX [154] and from the Kharzeev and

Nardi analysis of the PHOBOS results [96] are also shown. The growth with Npart clearly

disfavours the saturation picture from Ref. [156]. As pointed out in Ref. [96], the original
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Figure 9.3: dN/dη per participant pair vs. Npart.

saturation ideas pertain to the behaviour of partons in the initial wave function of the nu-

cleus; and when taking this approach the predictions surprisingly turn out to be quite similar

to the eikonal Glauber approach discussed in Sec. 4.1.1. There are also deviations from the

simple Npart
1/3 dependence which can arise from the dilute edges of the Wood-Saxon nuclear

distribution (Fig. 4.1) and from other medium e�ects such as nuclear shadowing of the initial

parton distributions [157] or jet quenching [79,80]. The similarity between the conventional

approach and the high-density QCD approach makes it di�cult to distinguish which un-

derlying picture is correct. These e�ects are therefore better studied in the di�erential p⊥

distributions.
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9.2 p⊥ Distribution

9.2.1 Results

Since the yield of charged hadrons at midrapidity depends on the extrapolation of the p⊥

distribution outside the measured range, we discuss the p⊥ spectrum �rst. The shape of the

p⊥ distribution is well suited for more detailed scrutiny. Figure 9.4 shows the p⊥ distribution

for positively and negatively charged hadrons (h+ and h−). Statistical errors are smaller

Figure 9.4: The p⊥ distributions for h− (open circles) and h+ (open �plus� sign) in central
collisions. The inset shows the ratio h−/h+ vs. p⊥. The data are �t to a power law in m⊥
to obtain the extrapolated yield dN/dη (see text).

than the symbols. The correlated systematic uncertainty is estimated to be below 6%.

The p⊥ distributions in this range of centre-of-mass energies are customarily �t by a QCD

inspired power-law function of the form d2Nh−/dp2
⊥dη = A (1 + p⊥/p0)−n where A, n, and

p0 are free parameters. This power-law �t is useful in comparison to other reference data

such as p⊥ spectra from pp̄ collisions [99]. For the extrapolation to p⊥ = 0, it is better
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to use a modi�ed version of the power law, and use m⊥ instead of p⊥ in order to better

reproduce the data at low p⊥. This is the �t shown in Fig. 9.4, using a mass slightly larger

than the π− mass, since the h− spectrum is made not only of pions but includes K− and p̄

as well. The �mean mass� of the h− distribution must therefore be 〈m〉 & mπ. We studied

the e�ect that such variations in the shape of the extrapolating function have on the yield

by comparing the m⊥ and p⊥ power-law �ts and also a simple exponential �t at low p⊥.

The yield in the region 0 − 100 MeV/c was found to be 6.8% using the m⊥ power law,

the other �ts varied from this by about ±1.5% which we take as an additional systematic

uncertainty for the extrapolated yield. The choice of mean mass does not in�uence the

extrapolated yield obtained from the m⊥ power law, it was found to vary less than 0.5%

with mean masses in the range 140 − 200 MeV/c2. The χ2/d.o.f. was minimized with a

value of 〈m〉 ' 187 MeV/c2. In all cases, the yield in the region p⊥ > 2 GeV/c was . 1%.

We therefore use an extrapolation factor of 7± 1.5% to obtain dN/dη.

9.2.2 Discussion

We focus now on the comparison of the measured p⊥ spectrum in Au + Au at RHIC to

other energies and collision systems. We will focus more on pp̄ collisions. Figure 9.5, upper

panel, shows the transverse momentum distribution of negatively charged hadrons for central

Au + Au collisions at mid-rapidity (|η| < 0.1) within 0.1 < p⊥ < 2 GeV/c. The upper panel

of Fig. 9.5 also shows the p⊥-distributions of negatively charged hadrons for central Pb + Pb

collisions at √sNN = 17 GeV from NA49 [108] and for minimum-bias pp̄ collisions at √s=

200 GeV from UA1 [99], �tted with the same function. The NA49 distribution, which

was reported in units of pion rapidity, was transformed to units of pseudorapidity. The

UA1 invariant cross section Ed3σ/d3p reported in Ref. [99] was scaled by 2π/σinel, where

σinel = 42 mb for √s = 200 GeV [98]. The power law �ts all three datasets well. The mean

p⊥ can be derived from the �t parameters as 〈p⊥〉 = 2p0/(n− 3). The �t to the STAR data

gives p0 = 3.0 ± 0.3 GeV/c, n = 14.8 ± 1.2, and 〈p⊥〉 = 0.508 ± 0.012 GeV/c. The strong

correlation of �t parameters p0 and n must be taken into account when calculating the error
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Figure 9.5: Upper panel: h− p⊥-spectra for the 5% most central Au + Au collisions at mid-
rapidity (|η| < 0.1). Central Pb + Pb data from NA49 at lower energy and pp̄ data from
UA1 at a similar energy are also shown. The curves are power-law �ts to the data. Lower
panel: ratio of STAR and scaled UA1 p⊥-distributions (see text).

on 〈p⊥〉. The 〈p⊥〉 from STAR is larger than that from both central collisions of heavy

nuclei at much lower energy (〈p⊥〉NA49 = 0.429 GeV/c) and nucleon-nucleon collisions at a

comparable energy (〈p⊥〉UA1 = 0.392 GeV/c).

Figure 9.5, lower panel, shows the ratio of the STAR and UA1 p⊥-distributions. Since

the UA1 distribution is measured at √s= 200 GeV, dσ/dp⊥ is scaled by two factors for

quantitative comparison to the STAR data at 130 GeV: (i) R(130/200), the p⊥-dependent

ratio of invariant cross sections for charged particle production in pp̄ collisions at √s=
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130 and 200 GeV, and (ii) TAA= 26 ± 2 mb−1, the nuclear overlap integral [28] for the

5% most central Au + Au collisions. R varies from 0.92 at p⊥ = 0.2 GeV/c to 0.70 at

p⊥ = 2.0 GeV/c, and was derived using scaling laws for 〈p⊥〉 and dNch/dη as a function of
√

s [39, 99] together with the extrapolation to 130 GeVof power-law parameterizations at
√

s= 200�900 GeV [99]. The shaded boxes show the total error of the ratio, which is the

linear sum of the errors of the measured data, depicted by the error bars, and the systematic

uncertainty due to uncertainties in the scaling with TAA and R.

There are two simple predictions for the scaled ratio. In lower energy hadronic and

nuclear collisions, the total pion yield due to soft (low p⊥) processes scales as the number

of participants (or �wounded� nucleons) in the collision (see e.g. Ref. [31,108]). The scaled

ratio in this case is 0.164, assuming 172 participant pairs and a mean number of binary

collisions of 1050 (= σinel TAA, σinel = 40.35 mb) for the 5% most central Au + Au events

(Sec. 4.1.1). In contrast, if hadron production is due to hard (high p⊥) processes and

there are no nuclear-speci�c e�ects, the hadron yield will scale as the number of binary

nucleon-nucleon interactions in the nuclear collision and the value of the ratio is unity.

There are important nuclear e�ects which will alter the scaling as a function of p⊥ from

these simple predictions, including initial state multiple scattering [124], shadowing [157],

jet quenching [79,80], and radial �ow [158]. The scaled ratio exhibits a strong p⊥ dependence,

rising monotonically with increasing p⊥ from Wounded Nucleon scaling at low p⊥ but not

reaching Binary Collision scaling at the highest p⊥ reported. This is consistent with the

presence of radial �ow, as well as the onset of hard scattering contributions and initial state

multiple scattering with rising p⊥. From pA collisions at lower energy, the data tend to

show an increase beyond the scaling with binary collisions. This �Cronin� e�ect is thought

to arise from initial state multiple scattering in the nuclear medium, which broadens the p⊥

spectrum [124]. At SPS, the p⊥ spectra indicate a similar increase beyond binary collision

scaling for the region p⊥ ∼ 2 GeV/c. Although a comparison of the p⊥ dependence of

the data at di�erent √sNN is better done in x⊥ = 2p⊥/
√

s rather than in p⊥, there are

indications from preliminary STAR [94] and PHENIX [159] hadron spectra at high p⊥that
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the scaling with Ncoll is not reached even for p⊥ 2 - 6 GeV/c. This e�ect has sparked active

discussions in the community vis-à-vis the possibility of being related to parton energy loss

in a QGP, i.e. jet quenching [160].

9.3 η Distribution

9.3.1 Results

By integrating the p⊥ spectra for di�erent η bins, we obtain the dN/dη vs. η distribution.

Figure 9.6 shows the normalized pseudorapidity distribution of h− and h+ for the 5% most

central collisions within |η| < 1.0. The black points are the measured yield for 0.1 < p⊥ <

2 GeV/c and the hollow points are the extrapolation for all p⊥. The latter was obtained by

Figure 9.6: h− (red circles) and h+ (blue squared) pseudorapidity distribution from 5% most
central Au + Au collisions. Data are integrated over p⊥ > 100 MeV/c (�lled symbols), and
extrapolated to all p⊥ (open symbols).

�tting a power-law function in the range 0.1 < p⊥ < 2 GeV/c and extrapolating to p⊥ = 0

in order to estimate the content of the �rst p⊥ bin, as discussed in Section 9.2. The error
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bars indicate the uncorrelated systematic uncertainties. The statistical errors are negligible.

The correlated systematic uncertainty applied to the overall normalization is estimated to

be below 6% for p⊥ > 100 MeV/c and 7% for all p⊥.

The h− density at midrapidity for 0.1 < p⊥ < 2 GeV/c is dNh−/dη|η=0 = 261±1(stat)±
16(syst). Extrapolation to p⊥ = 0 yields dNh−/dη|η=0 = 280±1(stat)±20(syst). Assuming

an average of 172 participant pairs per central Au + Au collision, this corresponds to 1.63±
0.12h− per participant nucleon pair per unit pseudorapidity, a 38% increase over the yield

in pp̄ collisions extrapolated to the same energy [102] (neglecting isospin correction factors

of order 1�3%) and a 52% increase over Pb + Pb collisions at √sNN = 17 GeV [108]. The

corresponding h+ density for 0.1 < p⊥ < 2 GeV/c is dNh+/dη|η=0 = 268±1(stat)±16(syst),

which after the extrapolation to all p⊥ yields dNh+/dη|η=0 = 287± 1(stat)± 20(syst). The

systematic uncertainty is the same as for the h− since the analysis was done in the same

way. It is a correlated systematic for both charge sign yields, so it does not mean that the

yields can be equal within errors. In other words, the ratio h+/h− is 1.025 ± 0.004 (where

most of the systematic uncertainties cancel and we are left with a small statistical error).

The PHOBOS collaboration has reported a total charged multiplicity density for the 6%

most central Au + Au collisions of dNch/dη||η|<1 = 555±12(stat)±35(syst) [161]. Analyzing

positive charged particles within the framework described above, STAR measures the total

charged particle density dNch/dη||η|<0.1 = 567± 1(stat)± 34(syst) for the 5% most central

Au + Au collisions. The PHOBOS centrality selection is based on charged particles within

3 < |η| < 4.5, while STAR utilizes spectator neutrons in the ZDCs. A precise equality of

the two measurements is therefore not expected, due to the di�erence in centrality selection.

9.3.2 Discussion

The η distribution is almost constant within |η| < 1, exhibiting a small rise at larger η.

This shape is expected from a boost invariant source (i.e., constant in rapidity), taking into

account the transformation from y to η. As a reference, the data are �t by the shape of the

Jacobian dy/dη given in Eq. 4.21, where the �t parameters are (i) the normalization constant
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(which should be equal to dNch/dy for a boost invariant source) and (ii) the dimensionless

ratio p⊥/m, or rather 〈p⊥〉/〈m〉, since the η distribution is already integrated over p⊥ and the

mass should be a weighted average over all 3 species. From the simple �t of the distribution

to Eq. 4.21, we obtain the parameters dNh−/dy = 295±18 and dNh+/dy = 304±18. Using

the value of 〈p⊥〉 from the p⊥ distribution, we can convert the other �t parameter into

an average mass. As discussed previously, the value should be close to the π− mass since

pions dominate, but we expect it to be somewhat larger due to the contribution from kaons

and anti-protons. We obtain 〈m〉 ∼= 0.171 GeV/c2, which is consistent with this simple

picture (and close to the value that minimizes the χ2 for the power-law �t in m⊥ to the

h− p⊥ distribution, 〈m〉 ∼= 0.187 GeV/c2). This signi�es that the system is very close to

a boost-invariant source. Measurement of the rapidity distribution of identi�ed particles is

needed to test boost invariance at mid-rapidity, and will be addressed in the π− analysis. In

particular, the rapidity distribution and the rapidity dependence of the slopes will be useful

to address this question, as we �nd a slight but systematic di�erence in the π− slopes as a

function of rapidity.

The approach to boost invariance is nevertheless quite striking as compared to lower

energy Pb + Pb collisions. Figure 9.7 shows the rapidity distribution of charged hadrons

at SPS energies. The collision systems and beam energies are from central Pb + Pb @

pbeam = 158 AGeV/c (hollow squares), central S+S @ pbeam = 200 AGeV/c (asterisks),

and minimum bias nucleon-nucleon collisions are also shown (hollow rhombi). The data

are shown as dN/dy vs. y where y is calculated assuming the pion mass. The shape of the

distribution is peaked around mid-rapidity in contrast to the relatively �at region we �nd

at √sNN = 130 GeV. The forward and backward region should show deviations from this

behaviour, and it is interesting to study the size of the �at mid-rapidity region. The forward

TPC's in STAR will be in a position to answer this question. From other experiments,

results from the PHOBOS collaboration [162] suggest that the plateau region extends up

|η| . 1.5. The ratio of positive to negative particles h+/h− = 1.025±0.004 already indicate

that the mid-rapidity region is not net-baryon free, as has also been reported by STAR [163]
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Figure 9.7: η distribution of negative hadrons at SPS (shown as yπ in the center-of-mass).
Data are from Ref. [108].

and BRAHMS [164] for the p̄/p ratio.

Lower Limit on Energy Density

With the h− multiplicity and 〈p⊥〉 we can return to the question of estimating the energy

density. As discussed in Section 2.2.1, we can only obtain a lower limit with these simple

observables. We already stated that there is no reliable guidance as to the value of the initial

formation time of the system, τ in Eq. 2.14. We assume a value of 1fm/c, similar to the one

adopted at SPS energies, although the system might equilibrate faster at RHIC energies.

This is not the only assumption that goes into such an estimate. The initial energy density

is also modi�ed, possibly by a large amount, by the longitudinal expansion. Transversal

expansion does not change dE⊥/dy, but is not known how much longitudinal work is done

by the system during the expansion. In this sense, it could be misleading to use the initial

formation time τ but a �nal dE⊥/dy. Since we measure multiplicity instead of transverse

energy, this might turn out to be a better estimate since dN/dy is approximately conserved

during the expansion. However, it is more di�cult to estimate the time dependence of 〈p⊥〉.
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The temperature of the system decreases with time, but the collective �ow increases. In

the best case, both e�ects would cancel, but it is more likely that the build up of �ow does

not fully compensate the decrease in temperature. This also results in an estimate of the

energy density that is a lower limit with respect to 〈p⊥〉. It is also a pre-requisite that the

behaviour of the system in the initial stages can be modelled via hydrodynamics. Given a set

of energy-momentum conservation and particle number conservation equations along with an

equation of state, one can then calculate the energy density, pressure and entropy density

of the system. If the entropy density is approximately conserved during the expansion,

and under the assumption that the entropy density is approximately proportional to the

particle multiplicity in the �nal state [62, 111], then one can estimate the energy density as

in Eq. 2.14.

The estimate under these assumptions proceeds as follows. For central collisions, we have

dNch/dη = 567 and 〈p⊥〉= 0.511 GeV/c. We could also use 〈m⊥〉 instead of 〈p⊥〉because
one should not neglect the masses. In the best of all worlds one actually would obtain the

〈m⊥〉 for each particle and do a sum weighing by the fraction each particle contributes to

the total h− distribution. Since we already mentioned the larger uncertainties that go into

the estimate, such re�nements can be ignored. In addition we do not know 〈p⊥〉 for kaons
and protons yet, nor do we know the ratios K−/h−, and p̄/h−to a degree that we can do

considerably better than the simple assumption. Since we measure only the energy density

carried by the charged hadrons, we also use Bjorken's guess ε ' εch × 1.5. The resulting

equation is:

ε ≥ 1.5× 〈m⊥〉dNch

dy

1
πr2

0A
2/3τ

(9.2)

The parameters we enter into the formula are the following. We use the same value of τ = 1

fm to compare to SPS (although it probably takes less time to equilibrate the system at

RHIC energies). This also allows the estimate to be scaled to a di�erent formation time

once it is better determined.

The radius (r = r0 × A1/3) we use can be simply taken as the one for b = 0. We must
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then extrapolate the multiplicity, since it was measured for �nite impact parameter. In the

geometrical model, 5% corresponds to roughly b = 0−3 fm. For head-on collisions b = 0 the

h− multiplicity increases with respect to the 5% most central by roughly 14% (Nh− ∼ 320

for b = 0 from Fig. 9.1). In addition, we are measuring dN/dη not dN/dy. We can use the

estimate of dN/dy from the �t to the η distributions using the Jacobian dy/dη.

We then have the parameters τ = 1 fm, A = 197, dNch/dy = (295 + 304)× 1.14 = 682,

〈m⊥〉 =
√
〈p⊥〉2 + 〈m〉2 =

√
0.5112 + 0.1712 = 0.538 which we can insert into Eq. 9.2

obtaining

ε & 1.5× 682× 0.538
π × 1.162 × 1972/3

= 3.9± 0.4GeV/fm3 (9.3)

The ∼ 10% systematic uncertainty is based on variations of 〈p⊥〉 and the h−, h+ multiplicity

estimates within their systematic uncertainties.

This is actually somewhat small when one consider that NA49 reports 3.2 GeV/fm3 for

Pb+Pb via calorimetry (dE⊥/dη). Using tracking they get however 2.6 GeV/fm3 [165] for

charged particles. The rather small di�erence between 3.9 and the NA49 result 3.2 also

points to the fact that τ should indeed be smaller for RHIC energies. Other scenarios, such

as a denser core and a less denser shell, cannot be probed with this simple method since

this is just the average density of the source volume. It is probably best to obtain estimates

from actual hydrodynamical simulations that reproduce measured data (e.g. particle yields

and spectra, elliptic and radial �ow) and obtain from these calculation ranges of values for

the relevant parameters, i.e. excluded regions of ε. However, for a mid-rapidity region with

almost zero baryochemical potential, Figure 2.2 already indicates that at T = 1.5 Tc, the

energy density in the decon�ned phase (for the case of 2+1 �avour QCD) is ε ≈ 3.5 GeV/fm3,

so our simple estimate would indicate a favorable environment to reach the decon�ned phase.
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9.4 Centrality dependence

9.4.1 Centrality selection

It is interesting to study how the distributions are a�ected by the centrality of the collision.

As we mentioned in the discussion of the Glauber model, it is not possible to experimen-

tally determine the impact parameter of the collision. In practice, any study on centrality

dependence relies on selecting ensembles of events based on an observable correlated with

the impact parameter. Typically these can be transverse energy production, or the charged

particle multiplicity of the event. That is why the study of charged hadrons is of primary

concern in further studies of heavy ion collisions, such as strangeness production. The focus

of the current work however, is the study of charged hadrons, so to study the centrality

dependence of charged hadron production is somewhat ill-de�ned. The approach we fol-

lowed for the centrality dependence relies on a selection of events based on the ZDC and

CTB trigger signals, Figure 8.1. The most central collisions are studied by selecting events

below a ZDC threshold, Figure 9.8(a). This leads to an ambiguity, since both central and

(a) (b)

Figure 9.8: Centrality classes for h− analysis. Left panel: cuts in ZDC vs. CTB. Right
panel: Resulting classes in the h− multiplicity distribution.

peripheral collisions can have a low ZDC signal, so we set a CTB cut only to break this
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ambiguity (the cut was set at 8500 ADC counts, not shown in the �gure in the interest of

clarity). This approach works up to a point, since the ZDC signal turns around and becomes

correlated with multiplicity instead of anti-correlated, and we must therefore abandon the

the simple ZDC threshold cuts in place of cuts in both ZDC and CTB. Figure 9.8, left panel,

shows the cuts in ZDC vs. CTB signals; the right panel shows the resulting event selection

in the h− multiplicity distribution for reference.

9.4.2 p⊥ and η vs. Centrality

With the previous centrality selections, we obtain a d2N/dp⊥dη distribution for each event

sample. We again apply the tracking corrections (Sec. 8.2) for each event and accumulate the

corrected distributions for each centrality class. The η distribution for the di�erent centrality

bins is shown in Fig. 9.9. The shape of the distributions at mid-rapidity (|η| < 0.5) is very

η
-0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

η
d

N
/d

0

50

100

150

200

250

300

Top 5%

10 - 5% 

20 - 10%

30 - 20%

40 - 30%

50 - 40%

60 - 50%

70 - 60%

80 - 70%

STAR
  > 100 MeV/cp

Figure 9.9: The h− η distribution for di�erent centralities.

similar for all the centrality selections. The p⊥ distribution for the di�erent centrality classes

is shown in Fig. 9.10. The dN/dη and 〈p⊥〉 values are collected in Table 9.1 while the p⊥

distributions for the various centralities are collected in Table 9.2.

It is instructive to do a comparison between peripheral and central p⊥ distributions. It
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σ (%) 〈p⊥〉 [GeV/c] dN/dη (Meas.) dN/dη (Extrap.) 〈Npart〉 〈Ncoll〉 〈b〉 fm
0 - 5% 0.511 266.5 289.8 345± 7 1050± 19 2.3± 0.2
5-10% 0.511 222.5 242.2 289± 9 826± 25 4.3± 0.3
10-20% 0.509 169.7 184.9 221± 4 566± 10 5.8± 0.3
20-30% 0.506 123.5 134.7 152± 9 336± 25 7.5± 0.3
30-40% 0.495 76.1 83.1 102± 4 209± 15 8.7± 0.3
40-50% 0.482 44.7 48.9 63± 4 105± 4 10.1± 0.4
50-60% 0.467 24.4 26.8 35± 3 36± 5 11.2± 0.6
60-70% 0.453 12.7 13.9 20± 2 22± 4 12.0± 0.7
70-80% 0.448 7.1 7.8 9± 4 9± 4 12.6± 1.1

Table 9.1: 〈p⊥〉 and dNh−/dη (in the region |η| < 0.5) for various centralities selected as
fractions of the cross section σAuAu (Fig. 9.8). The quantities statistically related to the
multiplicity using a Glauber model calculation are also shown for reference.

is easier to study di�erences in the distributions by plotting the ratios of the p⊥ spectra,

since slight changes in curvature are di�cult to see in a log scale such as in Fig. 9.10. As

a reference, we take the shape of the measured p⊥ distribution for the most peripheral bin

(70 − 80% of σAuAu). We then take the ratio of each of the distributions in Fig. 9.10 to

the most peripheral. The simplest exercise is to take the ratio without any further scaling.

This is shown in Fig. 9.11(a). If we take the most peripheral distribution as the one which

most closely should follow the spectrum from pp or pp̄ collisions, we see how the shape

of the p⊥ distributions change with centrality. Similarly to the pp̄ comparison, we see an

increase in the h− yield with increasing p⊥ for a particular centrality selection compared to

the peripheral distribution. We also see that the excess at �xed p⊥increases with centrality.

This is more easily seen in a double ratio, where we normalize each p⊥ distribution by the

corresponding dN/dη, i.e. by the integral with respect to p⊥. This double-ratio is shown in

Fig. 9.11. The double-ratio curves then meet at low-p⊥ independent of centrality, and the

rise with increasing p⊥ is evident. We �nd that for the most central collisions, the h− yield

at 2 GeV/c is almost a factor of 2 larger than expected from a superposition of peripheral

collisions that would integrate to the same yield. This change in behaviour is consistent with

the presence of collective e�ects such as increased radial �ow for central collisions. However,

as mentioned before, the p⊥ spectrum for even the most central collisions still does not
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Figure 9.10: The h− p⊥ distribution for di�erent centralities. The data are scaled down by
successive powers of 10 for display purpose.

reach the expected scaling with Ncoll at 2 GeV/c. The measurement of the p⊥ distributions

at higher p⊥ will help be an interesting extension to these studies, as they will shed more

light on the modi�cation of the p⊥ spectra, e.g. whether the �Cronin� e�ect observed in pA

collisions and lower energy AA collisions should be seen at these moderate momenta, and if

so, whether the jet quenching hypothesis is able to reproduce the centrality dependence of

the p⊥ ratios such as Fig. 9.5 and Fig. 9.11.

Figure 9.12 shows the multiplicity dependence of 〈p⊥〉 for h−. We use the �tted parame-

ters to the power law in Fig. 9.10 to obtain 〈p⊥〉, the corresponding multiplicity is obtained

by averaging the measured yield in the region |η| < 0.5, 0.1 < p⊥ < 2GeV/c (Fig. 9.9) and

extrapolating to all p⊥ using the power law. This has the e�ect that the average multiplicity

measured in the wider slice is higher (267, compared to 261). The data are collected in

Table 9.1, which shows the multiplicity and 〈p⊥〉 obtained from the spectra for the
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(a) (b)

Figure 9.11: Ratio of the p⊥ distributions for di�erent centralities to the p⊥ spectrum of
the most peripheral bin (70-80%). Left panel: simple ratio of the data. Right panel: Ratio
of data points to the power law �t to the most peripheral bin including a normalization of
each distribution to the corresponding mid-rapidity density dN/dη of each sample.

di�erent fractions of cross section. The error bars representing the systematic uncertainty

are 2% for 〈p⊥〉, 6.4% for measured and 7.1% for extrapolated dN/dη. By using the power-

law �ts to the p⊥ distributions in this range, we obtain the missing fraction in order to

obtain a total yield (∼ 7% for 0 < p⊥ < 0.1 and 1% for p⊥ > 2 GeV/c). The centrality

selection is based on cuts in ZDC and CTB trigger signals as shown in Fig.9.8.

We see an increase in 〈p⊥〉 in the �rst peripheral bins and then a saturation. The value

of 〈p⊥〉 increases by 18% compared to SPS energies, when comparing to central collisions.

To put into perspective the sti�ness of the observed Au + Au p⊥ spectra, the measured 〈p⊥〉
at √s = 900 GeV reported in [99] is 〈p⊥〉 = 0.447± 0.003 GeV/c. At the highest Tevatron

energies, CDF reports [166] 〈p⊥〉 = 0.495 ± 0.014. The saturation of 〈p⊥〉 contrasts the

structure proposed in Ref. [68], where the qualitative dependence for a �rst order transition

(under the assumption that the central multiplicity is approximately proportional to the

sV , where V is the volume of the system and s = ε + p is the entropy density in Landau
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Figure 9.12: The multiplicity dependence of 〈p⊥〉 for h−. The values obtained from the
UA1 [99] and NA49 [108] p⊥ distributions in Fig. 9.5 are also shown.

hydrodynamics, and that 〈p⊥〉 re�ects the temperature of the system) should be an initial

correlation between dN/dη and 〈p⊥〉, followed by a saturation, and then a subsequent rise.

We �nd no such structure. This behaviour helps to strengthen the growing evidence against

a strong �rst order transition. In addition, it is also consistent with current expectations

of a second order phase transition region at higher baryo-chemical potentials with a critical

point followed by a region of a smooth cross over between the QGP and hadron gas phase

below some as yet undetermined value for µB. Initial estimates from particle ratios at RHIC

yield values of µB ' 45 MeV, which would then most probably place RHIC collisions at this

energy in the cross-over region. This will of course need to be studied with more sophisticated

analyses, in particular, an interesting future direction could be the measurement of the 〈p⊥〉
vs. dN/dη, along with 〈p⊥〉 �uctuations event-by-event, studied for di�erent centre-of-mass

energies or collision systems to search for the possible critical point. Theoretical guidance
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in this direction would also be fruitful in this search.
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p⊥ Fraction of σhadronic

(GeV/c) 0-5% 5-10% 10-20% 20-30% 30-40%

0.15 2226.0 ± 94.8 2195.9 ± 84.0 1689.4 ± 53.6 1244.6 ± 42.5 787.3 ± 21.6
0.25 1729.1 ± 36.9 1514.3 ± 52.5 1162.0 ± 33.3 855.7 ± 26.4 537.8 ± 13.3
0.35 1117.1 ± 26.1 965.8 ± 34.5 734.8 ± 21.8 532.6 ± 17.0 331.2 ± 8.6
0.45 732.2 ± 13.7 588.7 ± 22.6 450.1 ± 14.3 326.3 ± 11.2 201.4 ± 5.6
0.55 478.8 ± 7.3 381.8 ± 15.9 291.2 ± 10.1 211.2 ± 7.9 130.1 ± 4.0
0.65 304.3 ± 6.0 251.2 ± 11.5 190.0 ± 7.2 137.4 ± 5.7 83.8 ± 2.8
0.75 204.7 ± 4.0 169.6 ± 8.5 128.6 ± 5.3 92.7 ± 4.2 56.4 ± 2.1
0.85 139.5 ± 4.6 115.0 ± 6.3 86.9 ± 4.0 63.6 ± 3.1 38.0 ± 1.5
0.95 97.6 ± 2.0 80.7 ± 4.8 60.4 ± 3.0 43.8 ± 2.4 26.5 ± 1.2
1.05 68.4 ± 1.9 56.3 ± 3.7 43.1 ± 2.3 31.2 ± 1.8 18.47 ± 0.89
1.15 47.0 ± 1.5 39.8 ± 2.8 30.3 ± 1.8 21.7 ± 1.4 12.71 ± 0.67
1.25 34.2 ± 1.2 28.0 ± 2.2 21.4 ± 1.4 15.33 ± 1.07 9.03 ± 0.51
1.35 23.8 ± 1.0 20.1 ± 1.7 15.24 ± 1.06 10.95 ± 0.83 6.33 ± 0.39
1.45 16.6 ± 0.9 14.20 ± 1.29 10.99 ± 0.82 7.69 ± 0.63 4.50 ± 0.30
1.55 11.72 ± 0.74 10.46 ± 1.02 7.91 ± 0.64 5.70 ± 0.50 3.25 ± 0.23
1.65 8.69 ± 0.46 7.63 ± 0.79 5.76 ± 0.50 4.02 ± 0.38 2.32 ± 0.18
1.75 6.20 ± 0.43 5.61 ± 0.62 4.18 ± 0.39 2.96 ± 0.30 1.68 ± 0.14
1.85 4.44 ± 0.39 3.93 ± 0.47 2.99 ± 0.30 2.14 ± 0.24 1.20 ± 0.11
1.95 3.38 ± 0.32 2.88 ± 0.37 2.20 ± 0.23 1.57 ± 0.18 0.851 ± 0.081

p⊥ Fraction of σhadronic

(GeV/c) 40-50% 50-60% 60-70% 70-80%

0.15 472.0 ± 14.9 268.5 ± 10.7 143.5 ± 6.4 80.6 ± 4.8
0.25 325.3 ± 9.3 183.1 ± 6.6 97.1 ± 3.9 54.7 ± 2.9
0.35 198.8 ± 5.9 110.1 ± 4.1 57.8 ± 2.4 32.6 ± 1.8
0.45 119.1 ± 3.8 65.3 ± 2.7 34.5 ± 1.6 19.3 ± 1.2
0.55 76.0 ± 2.7 41.2 ± 1.8 21.2 ± 1.0 11.91 ± 0.78
0.65 48.8 ± 1.9 26.3 ± 1.3 13.37 ± 0.72 7.26 ± 0.53
0.75 32.3 ± 1.4 16.90 ± 0.92 8.68 ± 0.50 4.67 ± 0.37
0.85 21.5 ± 1.0 11.42 ± 0.68 5.56 ± 0.36 2.97 ± 0.26
0.95 15.12 ± 0.76 7.78 ± 0.51 3.84 ± 0.26 2.08 ± 0.20
1.05 10.03 ± 0.56 5.18 ± 0.37 2.52 ± 0.19 1.35 ± 0.137
1.15 6.89 ± 0.41 3.50 ± 0.27 1.73 ± 0.14 0.910 ± 0.098
1.25 4.97 ± 0.32 2.49 ± 0.21 1.14 ± 0.10 0.629 ± 0.072
1.35 3.50 ± 0.24 1.71 ± 0.15 0.828 ± 0.072 0.449 ± 0.053
1.45 2.47 ± 0.18 1.23 ± 0.12 0.592 ± 0.053 0.317 ± 0.039
1.55 1.76 ± 0.14 0.866 ± 0.087 0.403 ± 0.037 0.210 ± 0.027
1.65 1.24 ± 0.11 0.630 ± 0.066 0.279 ± 0.026 0.154 ± 0.020
1.75 0.940 ± 0.082 0.438 ± 0.049 0.205 ± 0.019 0.120 ± 0.014
1.85 0.652 ± 0.061 0.330 ± 0.038 0.151 ± 0.013 0.089 ± 0.010
1.95 0.474 ± 0.046 0.226 ± 0.027 0.115 ± 0.009 0.061 ± 0.006

Table 9.2: h− yield d2N/(p⊥ dp⊥ dη) at η = 0 for di�erent centralities.
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Chapter 10

Results and Discussion: Identi�ed
Pions

The next step in the analysis of charged particles is to use the particle identi�cation ca-

pabilities of the TPC. This allows us to select a speci�c particle for further study. The

�rst natural candidate is the π meson, the lightest of the hadrons and the most copiously

produced particle in a high energy heavy ion collision.

10.1 Raw Yields

The starting point to obtain the raw yields for the identi�ed particle analyses is Fig. 6.2.

One can obtain the raw yields of pions, kaons and protons (and their antiparticles) selecting

events according to their centrality and �tting the dE
dx distribution in a given y-p⊥ phase

space cell. The procedure adopted here is a variation from this which o�ers a few advantages.

Tracks were selected according to quality criteria based on number of points on the track

and on the pointing accuracy to the primary event vertex. The cuts used in the pion analysis

were more stringent than the ones used for the h− analysis. This was done mainly to select

tracks with a good dE
dx resolution as it depends mainly on the number of valid ionization

samples, see Fig.6.3.

For this analysis, we followed a procedure similar to the one outlined in Ref. [167] for
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ionization measurements. We use the truncated mean to estimate the ionization of a given

track (Im). The expected ionization for a given momentum and a given mass hypothesis

(Ih)is known to an accuracy of better than 0.1%, as represented by the curves in Fig.6.2.

We then construct the z variable de�ned as

z = ln
(

Im

Ih

)
(10.1)

The z variable follows a Gaussian distribution with mean zero for a given particle population

and with standard deviation given by the measured dE
dx resolution as a function of the number

of dE
dx samples, Fig.6.3. The mean will be zero independent of momentum for the given

particle species under consideration, since the momentum dependence is contained in Ih.

By incorporating Ih and the measured resolution σdE/dx, we can obtain a new distribution,

Zπ, that has unit width and zero mean for the particle of interest: Zπ = zπ/σdE/dx.

Fig. 10.1 shows the result of �tting to the Z distributions in di�erent phase-space bins.

Shown is the region 0.2 < y < 0.3 for 6 di�erent p⊥ bins in steps of 50 MeV/c starting from

p⊥= 0.3 GeV/c. The abscissa is in log scale, and the ordinate is in linear scale (note that

Zπ is already the log of the ionization). Strictly, only the pion population should follow a

Gaussian in the zπ variable. One can of course construct a z variable for the other species

(zK , zp and ze) in order to extract their yields. The analysis of the other particle species

is being carried out in STAR also. Here we focus on the pions which are the bulk of the

produced particles as can be seen from the relative heights of the di�erent Gaussians in the

plot. The �gure shows the result of the di�erent �ts using a Gaussian for each of the particle

species. The pion yield is extracted from the Gaussian centered at zero. In the lower right

panel, the electron yield is small enough and close enough to the kaon population that one

can use a single Gaussian function. The �t also stops at Zπ = 5 in the bottom right panel,

thus the anti-proton Gaussian is not shown.
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Figure 10.1: Fits to the Zπ distribution to extract the yield of π−. Shown is the region
0.2 < y < 0.3 and 0.3 < p⊥ < 0.6 GeV/c.

10.2 Corrections

The corrections applied to the raw data follow the same procedure as for the h− distribution

with a few important di�erences. First of all, we chose to do them in cells of (y, p⊥) instead

of (η, p⊥). The acceptance and e�ciency use the embedding procedure as in the h− analysis.

Embedding was done in the region .1 < p⊥ < 2 GeV/c, and |y|<1. For the lowest p⊥ bin,

50 < p⊥ < 100 MeV/c, we used a full hijing simulation. The e�ciency obtained from

embedding is shown in Fig.10.2. The stringent requirement on 24 or more �t points on the

track e�ectively removed the need to undertake a split track correction. For the momentum
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Figure 10.2: The track reconstruction e�ciency as a function of p⊥ for π− mesons. The
e�ciency is lower than in Fig. 8.7 as the requirements for tracks in the dE

dx analysis are more
stringent than for the h− analysis.

range p⊥ < 0.6 GeV/c the distortion of the spectrum due to resolution e�ects was found to

be negligible. This fact and the good statistics of the sample allowed for a much �ner bin

size in the p⊥ spectrum. This was also desirable since this narrowed the phase space where

the �ts were made to obtain the yield. Event though the use of the z variable �xes the region

where the pions are found, the other particles will still vary with momentum. Therefore,

a narrower p⊥ bin will reduce this e�ect making the �ts more stable. The �nal spectrum

was also corrected for the products of weak decays and for the expected contribution of

pions resulting from secondary interactions. Since for this analysis the requirement on

the distance of closest approach to the primary interaction vertex was set at 1 cm, the

background correction was smaller than for the h− analysis, and was found to be . 5%. We

present now the resulting distributions for identi�ed π− mesons.
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10.3 p⊥ and m⊥ Distributions

10.3.1 Results

We �rst look at the spectra for central events. Figure 10.3 shows the p⊥ distribution for π−

for the 5% most central collisions (selected by a cut on raw h− multiplicity). The data are

grouped for di�erent bins in rapidity, and scaled by successive powers of 2 for the �gure.
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Figure 10.3: π− p⊥ distribution for central collisions. The di�erent bins in rapidity are
scaled by successive powers of 2 for display purpose.

The more common way to show such a distribution is in transverse mass, m⊥, and this

is shown in Figure 10.4. The main corrections applied to the raw data are acceptance,

e�ciency and contributions from weak decay background and secondary interactions. The

e�ect of energy loss in the determination of the π− momenta was found to be less than 2% at
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Figure 10.4: π− d2N/(2π dy m⊥dm⊥) distribution for central collisions. The rapidity bins
are scaled by successive powers of 2 for display purpose.

100 MeV/c, decreasing rapidly for larger momenta. We also studied the e�ect of momentum

resolution as for the h− data and found that the main e�ect was the feeding of the lowest

p⊥ bin from its nearest neighbour. The change in the slope for p⊥ > 100 MeV/c was found

to be ¿ 1%. The data for the central rapidity bins, |y| < 0.4, was obtained in the range

0.05 < p⊥ < 0.75 GeV/c, which accounts for ∼ 85% of the total yield. As we go towards

the forward and backward regions, the p⊥ range where the identi�cation via dE
dx in the TPC

can be done shrinks, and we can only measure in the range 0.2 < p⊥ < 0.6 GeV/c.
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10.3.2 Discussion

Pions are the bulk of the produced particles, they are the lightest of the hadrons and have

large interaction cross sections in nuclear matter; they are therefore expected to thermalize

easily. In addition, their spectra are the least a�ected by a given collective transverse �ow

velocity, and are thus good probes to study the kinetic freeze-out properties of the system.

The pion data are �t with a Bose-Einstein distribution of the form A/(exp(m⊥/T ) − 1).

Typically, these distributions are �t with a Boltzmann distribution [123]. The data at low-p⊥
�t with a Boltzmann distribution always seemed to show an enhancement. This partly was

attributed to contributions coming from resonance decays. There are also enhancements in

the high-p⊥ region which can arise from contributions of pions coming from high momentum

transfer of partons early in the collision. A consequence of all these structures was that simple

Boltzmann �ts to the same spectrum would lead to di�erent slope parameters depending

upon the p⊥ region included in the �t. Since we focus here on the low p⊥ part of the spectrum,

and since pions are bosons, we chose to �t the data with a Bose-Einstein distribution. We

�nd that this naturally gives an enhancement in the very low p⊥ region of the spectrum.

Also, we have already estimated the contribution from weak decays to the distribution and

corrected for this e�ect. We have not estimated the contribution from resonance decays

however. We �t the data over the measured range, instead of excluding the low momentum

data from the �t, and �nd no signi�cant enhancement at low p⊥. The absence of a noticeable

contribution from resonances might be due to reinteraction of the daughter decay particles.

A �t using a Boltzmann distribution for the range above p⊥ = 0.3 GeV/c causes a variation

in the slope parameters of ∼ 10 MeV. Since the data at forward and backward rapidity

have a smaller range in p⊥ as a systematic check we performed a �t restricted to the p⊥

range which was measured for all the rapidity bins. This resulted in a change in the slope

parameters of 5-10 MeV for the |y| < 0.4 spectra. We �nd the slope parameter for the

central collisions to be Teff = 210 ± 20 MeV, where the systematic uncertainty comes from

studying the variation in the slope parameter with several changes, including variations in
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the �t range, choice of �t function, centrality selection, and analyzing the pions in η instead

of y. The error on Teff from any particular �t is on the order of 5 MeV. The rapidity

dependence of the π− yield and of the slope parameters is discussed in the following section.

The shape of the low p⊥ pion spectra, in contrast to the h− distribution, shows very

little change when going from SPS energies to RHIC. The slope parameters reported by

NA49 [120] for π− near midrapidity are Teff = 188± 6 MeV for π+ and Teff = 192± 3 MeV

using an exponential �t. WA98 data for π0 spectra for central collisions yields also similar

values of Teff ' 204 (although �tting the data with a Bessel function, m⊥K1(m⊥/Teff) yields

a smaller value of Teff = 155, so one must be careful when comparing). The pion spectra from

NA45 [107] were analyzed in terms of a local inverse slope changing with m⊥ to take into

account the di�erence at low and high p⊥. For the low m⊥ range (m⊥−mπ < 0.8 GeV/c2)

the local inverse slope is found to be in the range 180 − 200 MeV. The slopes at the

AGS have smaller values, E895 �nds [118] Teff ' 110 MeV. While the initial temperature

reached at RHIC is expected to be larger than at the SPS and the AGS, the π− spectrum

probes the �nal state. The saturation of the π− slope parameter would indicate that the

freeze-out temperature, assuming that thermal equilibrium is reached, is the same at SPS

and RHIC. This does not mean that the �nal state is the same, for there is evidence of an

increased collective radial �ow velocity at RHIC based on the preliminary p⊥ distributions

of heavier particles from STAR [48, 168]. Since the collective velocity a�ects the heavier

particles the most, the pion inverse slope is the one numerically closer to the actual freeze-

out temperature, Tf.o.. The slopes of the K− and p̄ will be much larger than for the π− even

if they all freeze out at the same temperature in the presence of large radial �ow.

In order to gain further insight into the dynamics of the system, a study of the heavier

particle spectra can be made to address the question of radial �ow. In a di�erent approach,

the combination of the 2-particle correlation results [169] along with the pion spectra is also

useful: they determine the 6-dimensional pion phase space density, i.e. the dimensionless

average number of pions per 6-dimensional phase space cell ~3 (see e.g. [170]). Such analyses

can help to disentangle the intrinsic freeze-out temperature and the transverse �ow velocity.
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For example, for the 5% most central data, preliminary analysis of the phase space density

yield values of Tf.o. ∼ 120 MeV and 〈β⊥〉 ∼ 0.53. This is a rather large �ow velocity, yet

since the pions are so light, the slope parameter Teff is only increased to ∼ 200 MeV, while

the slope parameter for the heavier K− increases to ∼ 300 MeV and is even larger for

the p̄ [48]. The systematics of the centrality dependence of the pion phase space density

is a currently active area of study in STAR which will certainly help to shed light on the

determination of the kinetic freeze-out conditions of the system.

10.4 Rapidity Distribution

10.4.1 Results

By integrating the p⊥ spectra in Figure 10.3 for each of the rapidity bins, we are able to

obtain the dN/dy vs. y distribution for π−. The result is shown in Figure 10.5. Several

data points are shown. The black circles are obtained by integrating the p⊥ spectrum in the

limited p⊥ region 0.2 − 0.6 GeV/c where we have data for |y| < 0.8. This shows that the

measured yield in this region is relatively independent of rapidity. The measured yield in

this region is, however, only about half of the total yield. To illustrate the behaviour of the

yield in the full available p⊥ region (0.05− 0.75 GeV/c) for a narrower y region, we plot the

data shown as the black squares. Finally, the open circles are the extrapolated yield to all

p⊥ based on the �ts to the data using the Bose-Einstein distribution. We �nd the pion yield

to be dN/dy||y|<0.1 = 286± 10 for the 5% most central events. Not only is it important to

study the yields as a function of rapidity, but it is equally important to examine the rapidity

dependence of the slope parameters. At the SPS and at the AGS, they have been found

to decrease with increasing |y|. The Teff slope parameter extracted from the Bose-Einstein

�t to the data is shown in Figure 10.6. The error bars in the �gure are the uncorrelated

point-to-point systematic uncertainties on Teff , the overall correlated systematic uncertainty

is ±20 MeV. The rapidity dependence of the yield, the slope parameter Teff and 〈p⊥〉 are
collected in Table 10.1. The p⊥ distributions for the most central data for the various y bins
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Figure 10.5: π− rapidity distribution. The black circles (squares) are obtained summing the
yield between p⊥ 0.2 - 0.6 GeV/c (0.05 - 0.75) from Fig. 10.3. The hollow data points are
the yields obtained using the �t function extrapolated to all p⊥.

are collected in Table 10.3.

10.4.2 Discussion

The rapidity distribution has nearly a plateau shape at mid-rapidity. However, there re-

mains a slight rapidity dependence of the slope parameter Teff . This behaviour is indicative

that the idealized boost-invariant mid-rapidity region is not yet reached in Au + Au col-

lisions at √sNN= 130 GeV. A possible cause for the observed e�ect can be a change in

the baryon content of the system with rapidity. In the presence of radial �ow driven by

the dominant π− mesons, a larger fraction of baryons would take away some of the pion's

kinetic energy, reducing the observed slope parameter. The anti-proton to proton ratios

reported by STAR [163] and BRAHMS [164] show a drop in the p̄/p ratio from 0.65 at
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Figure 10.6: π− slope parameter for the di�erent rapidity bins from Fig. 10.4. The �at line
at Teff = 210 is the average for |y| < 0.1

mid-rapidity to 0.41 for the region y ≈ 2, which already hints at such e�ects, but a better

understanding of the dynamics must wait for the measured baryon yields and the baryon

rapidity distributions.

10.5 Centrality Dependence

10.5.1 Centrality Selection

For the π− centrality dependence, we chose to do a selection based on the event multiplicity.

This is in contrast to the centrality selection for the h− analysis which was based on ZDC

151



y dN/dy Teff [MeV] 〈p⊥〉 [MeV/c]
-0.75 273 ± 13 185.0 ± 5.0 356 ± 9.9
-0.65 274 ± 11 198.1 ± 4.2 376 ± 8.4
-0.55 273 ± 10 201.7 ± 4.6 385 ± 9.2
-0.45 280 ± 10 207.5 ± 4.0 391 ± 7.9
-0.35 283 ± 10 215.2 ± 3.6 397 ± 7.2
-0.25 288 ± 10 213.4 ± 3.1 402 ± 6.2
-0.15 284 ± 10 209.5 ± 3.2 396 ± 6.4
-0.05 287 ± 10 207.7 ± 3.9 394 ± 7.8
0.05 285 ± 10 213.3 ± 3.4 400 ± 6.8
0.15 286 ± 10 208.9 ± 3.4 392 ± 6.9
0.25 284 ± 10 216.5 ± 3.8 404 ± 7.6
0.35 285 ± 10 211.9 ± 3.1 400 ± 6.2
0.45 272 ± 10 203.4 ± 3.2 383 ± 6.4
0.55 275 ± 10 206.5 ± 3.4 388 ± 6.8
0.65 275 ± 11 191.5 ± 4.0 367 ± 8.0
0.75 269 ± 14 182.4 ± 5.6 350 ± 11.2

Table 10.1: π− dN/dy, Teff and 〈p⊥〉 vs. y.

and CTB trigger signals. The reason for this choice was simply to use a common set of

cuts which would be useful not just for this analysis, but also for other studies such as

particle correlations (Hanbury-Brown Twiss) and in particular for the studies of the pion

phase space density. Having a standard set of values based on the (uncorrected) h− yield

facilitates comparison and combination of di�erent observables. There was a worry that since

the pions are the main component of the charged hadron spectra, a centrality selection based

on charged multiplicity would introduce a sizable auto-correlation. Certainly, the shape of

the h− multiplicity distribution for 5% most central events (the shaded region in Fig. 9.1)

would look di�erent by selecting events with a straight cut on uncorrected multiplicity. The

mean of this distribution, i.e. the value of dN/dη for the region |η| < 0.5, will also shift

to higher values by doing such a selection. The question is how signi�cant is this shift.

We studied this by selecting the 5% most central events based on uncorrected multiplicity

and comparing the mean of the resulting distribution to the mean of the histogram in the

shaded region of Figure 9.1. The mean of the histogram using the centrality de�nition based
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on multiplicity was 4.5% higher than than the one using the ZDC as centrality de�nition.

The di�erence in the mean of the histograms using these two centrality de�nitions will also

decrease for more peripheral collisions. We therefore conclude that the di�erences are not

problematic, and when encountered, they can be reconciled by at most a 4.5% e�ect.

10.5.2 m⊥ Distributions vs. Multiplicity

Figure 10.7 shows the m⊥ distribution for 10 di�erent centrality selections. The data are

taken in the rapidity interval 0 < y < 0.1. Again, the data are �t by a Bose-Einstein

distribution which agrees well with the spectra even at the lowest m⊥. The slope parameters

are very similar for the di�erent centralities. They are collected and plotted vs. the h− mean

Figure 10.7: π− m⊥ distribution for di�erent multiplicity selections. The distributions are
plotted in the rapidity slice 0 < y < 0.1 units. The data are �t to Bose-Einstein distributions
(curves) from which we extract the slope parameter Teff .

multiplicity of the corresponding centrality bin in Figure 10.8. The horizontal error bars are
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Figure 10.8: Centrality dependence of the slope parameter obtained by a �t to the π− m⊥
distribution.

the systematic uncertainty in the determination of the mean multiplicity of each centrality

bin. The vertical error bars are the uncorrelated systematic uncertainty in the measurement

of the slope parameter. For the most peripheral bins, the statistical error is also important,

and the error bar is therefore larger.

We see that there is a only a slight dependence of the slope parameter with centrality.

The main di�erence happens for the 2nd and 3d most peripheral bins (the most peripheral

bin has a larger error, so it is hard to see a systematic e�ect). The 2nd most peripheral bin

has a slope Teff = 177± 8 MeV, while the most central bin has a slope Teff = 210± 4 MeV

(where the errors are the uncorrelated systematic uncertainties for the comparison). This

yields an increase of 19± 5%. The increase occurs rapidly, as the 60% of σAuAu bin already

has a slope parameter of Teff = 196± 9MeV, and from then on the data are consistent with

having no further centrality dependence. For comparison, the increase in h− 〈p⊥〉 from the
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70−80% bin to the most central bin is 14±3%. In addition, the h− distribution includes a p̄

component, and the p̄ slope has a stronger centrality dependence than the π− slope. At SPS

energies, the centrality dependence of the pion slopes was also found to be rather constant.

This �nding is also in agreement with the argument that the slope of the π− spectrum is

not changed signi�cantly by the collective expansion.

m⊥ −mπ (GeV/c2) 0-5% 5-10% 10-20% 20-30% 30-40%
0.0189 871 ± 70 707 ± 57 550 ± 43 377 ± 31 254 ± 21
0.0478 679 ± 30 544 ± 25 446 ± 19 312 ± 14 214 ± 9.5
0.0842 473 ± 25 388 ± 20 312 ± 13 224 ± 9.7 164 ± 7.0
0.125 357 ± 12 289 ± 11 226 ± 6.9 169 ± 5.9 111 ± 3.9
0.169 281 ± 11 231 ± 11 180 ± 6.4 120 ± 5.2 87.1 ± 2.8
0.214 206 ± 7.2 173 ± 6.7 138 ± 4.1 100 ± 2.8 65.7 ± 2.4
0.261 165 ± 5.8 134 ± 5.8 108 ± 3.2 78.1 ± 2.1 50.8 ± 1.5
0.308 127 ± 5.6 104 ± 6.9 84.3 ± 2.9 61.6 ± 1.8 37.6 ± 1.0
0.356 105 ± 3.2 85.4 ± 3.1 65.1 ± 2.1 46.6 ± 1.6 29.1 ± 1.2
0.404 79.6 ± 2.9 65.6 ± 2.6 50.9 ± 1.5 35.6 ± 1.6 23.8 ± 0.74
0.452 64.0 ± 1.9 47.5 ± 1.7 37.2 ± 1.2 26.2 ± 0.90 18.8 ± 0.60
0.501 47.6 ± 1.6 37.4 ± 1.4 27.7 ± 0.95 20.3 ± 0.77 14.2 ± 0.50
0.550 36.4 ± 1.3 29.7 ± 1.1 22.4 ± 0.77 15.9 ± 0.64 11.1 ± 0.42
0.599 27.7 ± 1.3 24.5 ± 0.98 17.8 ± 0.63 12.5 ± 0.56 8.82 ± 0.35

m⊥ −mπ (GeV/c2) 40-50% 50-60% 60-70% 70-80% 80-100%
0.0189 165 ± 14.4 95.1 ± 9.0 47.7 ± 5.3 23.2 ± 3.2 6.67 ± 2.2
0.0478 148 ± 7.0 80.2 ± 4.6 41.4 ± 2.7 16.0 ± 1.8 4.07 ± 0.81
0.0842 103 ± 4.5 62.8 ± 3.7 34.4 ± 2.2 15.7 ± 1.5 3.00 ± 0.52
0.125 71.3 ± 2.8 43.0 ± 2.3 23.5 ± 1.5 10.0 ± 1.0 1.86 ± 0.34
0.169 52.6 ± 3.0 32.2 ± 1.2 16.4 ± 1.3 7.71 ± 0.41 1.79 ± 0.17
0.214 40.3 ± 2.2 23.7 ± 1.2 13.7 ± 0.56 5.97 ± 0.34 1.26 ± 0.14
0.261 31.1 ± 1.2 18.7 ± 0.71 9.79 ± 0.48 4.55 ± 0.27 0.956 ± 0.16
0.308 22.3 ± 1.1 13.7 ± 0.55 7.38 ± 0.35 3.21 ± 0.21 0.656 ± 0.13
0.356 18.4 ± 0.66 11.2 ± 0.45 5.67 ± 0.28 2.34 ± 0.37 0.588 ± 0.12
0.404 13.6 ± 0.50 8.65 ± 0.37 4.46 ± 0.33 1.68 ± 0.13 0.480 ± 0.066
0.452 10.8 ± 0.42 6.78 ± 0.30 3.31 ± 0.19 1.35 ± 0.11 0.351 ± 0.053
0.501 8.76 ± 0.40 4.75 ± 0.27 2.51 ± 0.18 0.996 ± 0.10 0.228 ± 0.045
0.550 6.54 ± 0.31 3.98 ± 0.23 1.76 ± 0.14 0.740 ± 0.076 0.185 ± 0.034
0.599 5.59 ± 0.30 3.14 ± 0.20 1.47 ± 0.18 0.645 ± 0.087 0.152 ± 0.040

Table 10.2: π− d2N/(2πm⊥dm⊥dy) at y = 0.05 for various h− multiplicity bins, Fig. 10.7
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Chapter 11

Conclusions and Summary

We have studied the general characteristics of charged particle production in Au + Au colli-

sions at √s = 130 GeV. The gross features of the cross section indicate that the collision is

dominated by geometry, as evidenced by the shape of the multiplicity distribution. Glauber

model studies are able to reproduce the measured dσ/dNh− distributions and are useful to

obtain a statistical determination of the number of participants in the collision for a given

event sample, a quantity related to the impact parameter of the collision. This determi-

nation of the collision centrality will be used in future studies of the centrality dependence

of many experimental observables, such as the production of strange mesons and baryons,

charge �uctuations and identical particle correlations to name a few.

From the yield of charged hadrons, we �nd that particle production per participant in

central collisions increases by 38% relative to pp̄ and 52% compared to nuclear collisions at
√

sNN = 17 GeV. The h− p⊥ spectrum in Au + Au distribution is harder than that of the pp̄

reference system at similar centre-of-mass energies for the p⊥ region up to 2 GeV/c. Scaling

of produced particle yield with number of participants shows a strong dependence on p⊥, with

Wounded Nucleon scaling achieved only at the lowest measured p⊥. The h− pseudorapidity

distribution is almost constant within |η| < 1, indicating that at these energies we are

approaching a boost invariant mid-rapidity region. This �nding contrasts the results from

lower energies where the η distribution was found to peak at mid-rapidity. The shape
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of the η distribution in the mid-rapidity region is found to be similar for all centralities.

Comparing the p⊥ distributions for di�erent centralities to the distribution measured in

peripheral collisions, we �nd a rise in the number of produced particles with increasing p⊥

up to p⊥ < 2 GeV/c. This is also consistent with the observed rise when comparing to pp̄

collisions. However, the ratio of Au + Au to pp̄ indicates that the limit of scaling with the

number of binary collisions Ncoll is not reached. As for future directions with p⊥ spectra,

an interesting indication coming from preliminary data at high p⊥ is that there a turnover

in the shape of this ratio beyond 2 GeV/c, which has been intensely debated in the context

of being a scenario consistent with partonic energy loss in a QGP.

The measured h− 〈p⊥〉 increases by 14% from peripheral (70−80%) to central collisions.

The shape is found to be relatively smooth. If decon�nement is reached in these collisions,

this behaviour is consistent with a cross over region between the decon�ned and hadronic

phase, instead of a strong �rst order phase transition. From the combination of the pseudo-

rapidity and p⊥ distribution results, we discussed the applicability of the Bjorken estimate

of the initial energy density. The lower limit of ε ≥ 3.9 GeV/fm3, taken at face value and

comparing to µ = 0 lattice results, leads to the conclusion that necessary conditions for QGP

formation are in fact reached. Stated another way, to the question of whether the QGP can

be formed in the high energy RHIC collisions, the answer is a�rmative. Of course, this

does not mean that one has a proof of decon�nement, but it helps to set the stage for the

measurement of the additional probes of QGP formation, which are needed to provide the

detailed evidence.

The rapidity distribution of negative pions is found to be relatively �at in the range

|y| < 0.8. Although this is still a small range compared to the rapidity gap of ∼10 units

between the colliding nuclei, this again signals the approach to the limit of a boost-invariant

baryon-free mid-rapidity region. The pion transverse mass spectra below 0.6 GeV/c are well

parameterized by a Bose-Einstein distribution with inverse slope parameter T ' 190 MeV.

The slope parameter is relatively independent of centrality, perhaps growing with increasing

centrality up to a centrality of 60% of σAuAu but then saturating. For the most central
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collision, the slope parameter shows a small but systematic drop with rapidity. This is an

indication that boost invariance is not fully achieved. A possible cause for this is increase

in the baryon content with rapidity. The rapidity and transverse momentum distributions

of protons and anti-protons will help shed more light on this subject. The measurement of

the m⊥ spectra of more massive hadrons (kaons, protons, λs, etc.), as well as a combination

of identical particle correlations and spectra, are natural extensions to the studies presented

here in order to determine the conditions at kinetic freeze-out such as transverse �ow velocity

βflow
⊥ and the kinetic freeze-out temperature Tf.o..

Identifying decon�nement and a complete characterization of the QGP will require data

from a wide spectrum of experimental observables, systematic variations of centre-of-mass

energies and nuclear species, pp and pA reference data and candid guidance from theory.

We hope that the results presented here provide useful baseline information to both the

experimental and theoretical e�orts in this search.
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