
Lecture 18 Torque and Rotational Motion (Chapter 8) 
Analyzing Angular Motion Problems 
Torque 
Newton’s Second Law and Rotational Equilibrium 

 
Last time we went through defining various rotational quantities like 
rotational velocity and rotational acceleration.  I also mentioned quickly that 
we have a set of kinematic equations that describe rotational motion just 
like we have a set of kinematic equations that describe translational motion.  
So in the interest of figuring out how to use these equations, we should do 
an example: 
 
A microwave oven has a rotating plate 30 cm in diameter for even cooking.  
The plate accelerates from rest at a uniform rate of 0.87 rad/s2 for 0.50 s 
before reaching its constant final speed.  (a) How many revolutions does the 
plate make before reaching its final speed?  (b)  What are the final angular 
speed of the plate and the tangential speed at its rim? 
 
So, what are the equations we have available? 
 

! 

" =#$t

# =
#

o
+#

2

# =#
o

+%$t

$" =#
o
$t +

1

2
%$t 2

# 2
=#

o

2
+ 2a$"

 

 
Now we can list knowns and unknowns: 
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r =15cm = 0.15m

"o = 0

# = 0.87 rad
s
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t = 0.50s
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view from above 



We can find the revolutions first (i.e. Δθ): 
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So this means that the plate only goes through a tiny fraction of a revolution 
before it gets to its final speed.  This makes sense since microwave plates 
don’t move too quickly. 
 
Now we can try to solve for ω: 
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Now that we have the angular speed we can solve for the tangential speed at 
the rim, knowing the radius of the plate: 
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v = r"

v = (0.15m)(0.44 rad
s
) = 0.066m

s

 

 
So if you had something sitting at the edge of the plate, (an olive?)  and it 
slipped as the plate accelerated, it would leave the plate with a velocity of 
0.066 m/s.   
 
 
 
 
We can now move on to talking more about torque.  First, we should define 
some terms, namely translational versus rotational motion.  (p. 261, Figure 
8.1) has a nice figure of this.  If we take something that is translating, i.e. 
moving in the x-direction, all of its particles are moving in that direction.  If 
we look at something that is rotating, it has a fixed axis and the particles 

vT = 0.066m/s 



move with different velocities at any given time.  Finally, to get something 
that is rolling, we add the translation and rotation vectors.  Notice the 
object that is rolling has twice the velocity at the top than at the center, 
and is momentarily stationary at the point of contact.  We can define the 
condition for rolling without slipping (if it slipped it wouldn’t go anywhere) by 
looking at the diagram.  This condition is defined as the velocity of the 
center of mass:  vCM = rω. 
 
The way we get this is fairly straightforward (Figure 8.2, p.262): 
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So recall last time we talked about how torque is rotational force.  We 
defined torque as 
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" = rF sin# , where θ is the angle between r and F.  We did 
some straightforward examples last time namely with θ = 90°.  Now we 
should try some tougher examples.  (Figure 8.4, p. 264) 
 
The drain plug on a car’s engine has been tightened to a torque of 25 m•N.  
If a 0.15 m long wrench is used to change the oil, what is the minimum force 
need to loosen the plug?  Assume the force makes a 30° with the length of 
the wrench. 
 
 
 
 
 
 
So if we write down our equation for torque: 
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" = rF sin#

" = 25m •N

" = 0.15m(sin30
o
)F = 25m •N

F = 333N

 

 
Recall the lab from last time.  You worked to try to balance the torques in a 
system such that τnet = 0.  This is called rotational equilibrium.  Though 
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torques are being exerted on a system, they sum to zero and we get no 
angular acceleration (rotational motion).  When all the forces on a system 
add to zero we get translational equilibrium, and the (translational motion) 
acceleration of the system is zero. 
 
The meterstick scenario of your lab is a good example of a system in 
translational and rotational equilibrium.  We can add up all the forces and set 
them equal to zero, just as we can add up all the torques and set them equal 
to zero. 
 
Now that we’ve discussed equilibrium conditions we can discuss what happens 
when a system is not in equilibrium, when you have an angular acceleration.  
For a rigid body (something that’s not a particle) we have the rotational 
analog to Newton’s Second Law: 
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"
net

= I#  
Where the net torque is proportional to angular acceleration.  The I factor 
is called the moment of inertia.  You can think of it like rotational mass.  It 
not only matters how much mass is in a system, but also how it is distributed.  
(Demo:  Disks with adjustable masses inside.) 
 
The formula for Rotational Inertia is: 
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"mr
2.  This is if you have point masses 

in your system, like a barbell for instance.  We’ll do two different examples: 
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Now if we move the axis, it will change the calculation: 
 
 
 
 

m1 = m2 = 30kg 
x1 = x2 = 0.50m 
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So if we look at Newton’s Second Law, τnet = Iα or α = τnet/I, for a given 
torque the acceleration will be less for the second scenario because I is 
bigger.  It would be tougher to get the second dumbbell to rotate because 
of where we’ve put the axis of rotation, though we haven’t actually changed 
the masses! 
 
But what if we don’t have point masses to deal with?  What if we have solid 
objects?  It actually requires calculus to do this, so we’ve given you a table 
of objects to deal with (p.278).  If you needed one of these on an exam, it 
would be provided to you.  Notice that these all involve the mass and the 
radius in one form or another. 
 
Next time we’ll work on some torque problems involving Newton’s Second 
Law.  But what I want to talk about now is rotational kinetic energy.  When 
something rotates it has kinetic energy associated with the rotation equal to 
½ Iω2. 
 
Let’s go ahead and do a quick example: 

A uniform, solid 1.0kg cylinder rolls without slipping at a speed of 
1.8m/s on a flat surface. (a) What is the total kinetic energy of the 
cylinder? (b) What percentage of this total is rotational kinetic energy? 
We can list our knowns and unknowns: 
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m1 = m2 = 30kg 
x1 = 0 x2 = 1m 


