
Lecture 17 Circular Motion (Chapter 7) 
Angular Measure 
Angular Speed and Velocity 
Angular Acceleration 

 
We’ve already dealt with circular motion somewhat.  Recall we learned about 
centripetal acceleration:  when you swing something around in a circle the 
net force points toward the center of the circle.  The centripetal 
acceleration can be calculated using the velocity of the object and the 
radius of the circle: 
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We jumped into centripetal acceleration because we were talking about how 
forces and acceleration were related.  But now we’re ready to fill out our 
understanding of circular motion. 
 
So we’ll start with Angular Measure.  Consider a particle moving in a circular 
path. (p. 220, Figure 7.1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can use r and θ to find x and y: 
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x = rcos"

y = rsin"
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We have our traditional Cartesian (x-y) 
coordinate system.  But this isn’t optimal for 
measuring something going in a circle. 

There is another coordinate system, polar 
coordinates, that is better for circular motion.  
For something moving in a circle, r is constant.  
So while x and y constantly change for a 
particle moving in a circle, only θ changes in 
polar coordinates. 



Recall that we defined linear displacement Δx = xf – xi.  For circular motion, 
we can define angular displacement Δθ = θf – θi. 
 
Another variable important to circular motion is arc length (s).  Arc length is 
the distance between two points on a circle.  (Figure 7.2, p. 220) 
The formula is: 
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The units of arc length are meters, assuming that r is measured in meters 
and θ is measured in radians.  There are 2π radians in 360°. There are π 
radians in 180°.   
If we solve for θ, we get: 

! 

" =
s

r
 which is the ratio of two lengths.  This makes a radian a pure number, 

dimensionless quantity.   
 
Let’s try an example: 
You measure the length of a distant car to be subtended by an angular 
distance of 2.0°.  If the car is actually 5.0m long, approximately how far 
away is the car? 
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Now that we understand angular measure, we can move onto angular speed 
and velocity.   
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At this point, we’ve gone over speed and velocity a great deal.  We 

understand that velocity is 
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.  Now for circular motion we have to define 

the angular analog: 
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The units are typically radians/second, but revolutions/minute (rpm) are alos 
common units.  The direction is defined based on whether the speed is 
clockwise or counter-clockwise.  The rule to follow is to use your right hand 
and wrap it in the direction of motion.  If the angular speed is counter-
clockwise, your thumb points up (positive direction).  This is the direction of 
the vector associated with counter-clockwise motion. If the angular speed is 
clockwise, your thumb points down (negative direction).  This is the direction 
of the vector associated with clockwise motion.  This is just a convention 
that has been defined arbitrarily because its easier to define vectors up and 
down than it is to define them clockwise and counter-clockwise. 
 
Let’s try an example: 
A gymnast on a high bar swings through two (clockwise) revolutions in a time 
of 1.90s.  Find the angular velocity of the gymnast. 
 
The angular displacement of the gymnast is  
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We can talk about the rate of angular change, but what if we want to know 
the linear velocity of the circular motion?  (Figure 7.6, pp.224) 
There is a very easy relationship: 
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v = r"    
ω has to be in radians per second.  This means v will be in meters per second.  
 
Let’s try an example: 
The tangential speed of a particle on a rotating wheel is 3.0m/s.  If the 
particle is 0.20 m from the axis of rotation, how long will it take for the 
particle to go through one revolution? 



So what do we need to do? 
go from tangential velocity to angular velocity, then use the fact that we 
know there are 2π radians in one revolution to get the amount of time it 
takes to complete one revolution. 
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Of course now that we’ve covered angular velocity the next logical thing to 
cover is angular acceleration. 
It is defined in terms of the change of angular velocity over time: 
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   the units of angular acceleration are commonly radians/s2. 

 
We can do a quick example to demonstrate how to use angular acceleration: 
 
During an acceleration, the angular speed of an engine increases from 700 
rpm to 3000 rpm in 3.0s.  What is the average angular acceleration of the 
engine? 
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Each second the angular velocity of the engine is increasing by 80 rad/s. 
 
Something to point out now is that just as we had a set of equations for 
linear displacement, velocity, acceleration ⇒ we have a set of kinematic 
equations for angular displacement, velocity, and acceleration. (Table 7.2, 
p.236) 
 



We’ll come back during the next lecture to work a problem utilizing these 
equations, but for now we’re going to segue into ideas of rotational force. 
 
Recall that we had Newton’s second law which told us Fnet = ma.  This implies 
that force and acceleration are connected.  We’ve just defined angular 
acceleration, therefore there must be some rotational force connected to it.  
In physics we do define a rotational force. We call it torque.  The basis of 
torque is the idea that to produce a change in rotational motion, we need a 
rotational force. 
 
Let’s think about what factors might be involved in a rotational force.  If 
you think about trying to loosen a tight bolt, how do you maximize this 
effort?   
First, do you hold the wrench close to the head or toward the end of the 
handle? 
Does it matter how hard you push? 
 
These questions make sense when you consider the definition of torque: 
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r is called the lever arm, F is the force applied and θ is the angle between 
them. 
 
 
 
 
 
Obviously, the first case is going to have the maximal effect.  The lever arm 
is longer and the angle between the force and lever arm is 90°.  The biggest 
that the sine function can be is 1.  So by exerting the force at 90°, we’re 
maximizing the torque.  Also, by making the lever arm (r) as long as possible, 
we’re also maximizing the torque. 
 
Let’s try a problem utilizing balanced torques: 
We have three masses suspended from a meterstick.  The question is how 
much mass must be suspended from the right side of the meterstick to be in 
equilibrium (no angular acceleration). 
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We have four forces to deal with here:  Force of gravity on the meterstick, 
weight of m1, weight of m2, weight of m3 (unknown). 
 
So what we can do is to draw a diagram showing all the potential torques: 
 
 
 
 
 
 

axis of rotation 


