
Lecture 16 Energy 
 
Conservation of Energy (including Wnc and Wext) 
Elastic vs. Inelastic Collisions 
 
Another issue we haven’t dealt with yet is what to do when a force like 
friction does work.  Work is a transfer of energy, so if we’re dealing with 
conservation of energy we have to include it somehow.  I’m going to write 
down a more complete statement of conservation of energy now: 
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This formula now includes all the possible energy transformations and 
transfers that can occur.  So far we’ve only analyzed systems where 
conservative forces and no external forces have been present.  Now we’ll 
introduce non-conservative forces and external forces. 
 
Conservative and non-conservative forces are defined with respect to the 
work they do.  A conservative force can do work to transfer energy from 
one system to another (gravity can do work to transfer energy from 
potential to kinetic, spring forces are also conservative)  so that mechanical 
energy can be conserved. A non-conservative force can do work to transfer 
energy from the system to the environment (friction can do work to 
transfer energy to heat the environment)  so that mechanical energy cannot 
be conserved. External forces (like a push or pull) transfer energy into the 
system, again mechanical energy cannot be conserved under an external 
force. 
 
Let’s go through some scenarios and see if we can list the basic elements: 

• which objects are included in a system 
• conservative interaction forces, non-conservative interaction forces, 

external forces 
• Specify the value of ΔK, ΔU, Wnc, Wext. 
• Energy transformations 
• Energy transfers 

 
 
 



Pushing a block across a table (with friction) at constant speed. 
 objects in system: block 
 external force: push, non-conservative force: friction 
 ΔK = 0, ΔU = 0, Wnc < 0, Wext > 0 
 The work done by the push is positive (energy going into system), the  

work done by friction is negative (energy leaving the system).  These 
contributions are equal and opposite.   

 
The block sliding to a halt after you release it. 
 objects in system: block 
 non-conservative force: friction 
 ΔK < 0, ΔU = 0, Wnc < 0, Wext = 0 

Energy is transferred from the kinetic energy system out to the 
environment through the work done by friction. 
 

Picking up the block and placing it on a high ledge. 
objects in system: block 

 external force:  lifting force,  
 ΔK = 0, ΔU > 0, Wc > 0, Wnc = 0, Wext > 0 

There is no change in kinetic because initial and final velocity are zero.  
The positive work done by the lifting force is transferred into the 
gravitational potential energy system by the conservative force of 
gravity.  

 
Let’s try a problem including the full statement of conservation of energy: 

A 50 kg student on a sled starts from rest at a vertical height of 20 
m above the horizontal base of a hill and slides down.  (a).  If the sled and 
the student have a speed of 10 m/s at the bottom of the hill, this system is:  
conservative, nonconservative, or neither.  Why? 
(b) What is the work done by the nonconservative force? 
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Let’s assume that we have a conservative system, that there are no 
non-conservative forces taking energy out of the system and putting 
it into the environment.  We’ll put our reference level at the bottom 
of the hill so that U=0 there. 
If mechanical energy is conserved: 
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Somehow, we’ve lost energy.  In the final state we only have 2500J of 
energy when we started with 9800J.  So work by non-conservative forces 
(i.e. friction) must have been done.  Our energy diagram needs to change: 

 
 
 
 
 
 
 
 

We can even find the work done by the non-conservative force.  It’s just the 
difference between the initial and final energy. 
 Ei – Ef = 9800J – 2500J = 7300J 
So, this system is a non-conservative system because friction did 7300 J of 
negative work and gave that energy to the environment. 

 
Recall that we discussed collisions briefly with conservation of momentum.  
But we never discussed the difference between elastic and inelastic 
collisions.  But now that we know about energy, we can understand the 
difference.   
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In an elastic collision, the total kinetic energy of a system is 
conserved.  For instance, two billiard balls colliding represents an 
elastic collision.  Kinetic energy may be exchanged between the two 
balls, but Ki = Kf. (Figure 6.13 pp.197) 
 
In an inelastic collision, the total kinetic energy of a system is not 
conserved.  Energy is lost through work done by non-conservative 
forces.  Heat, sound, or light may be generated.  You may permanently 
deform one of the objects involved in the collision.  You can think of a 
clay ball colliding with a billiard ball.  In an inelastic collision Kf < Ki. 
(Figure 6.12 pp.195) 
 
Let’s do an example of an elastic collision: 
 
A 4.0 kg ball with a velocity of 4 m/s in the +x-direction collides head 
on elastically with a stationary 2.0 kg ball.  What are the velocities of 
the balls after the collision? 
 
In an elastic collision we can say: 
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So let’s utilize these relationships along with a diagram to solve the 
problem. 
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Using equations 1&2 we can go through some algebra (p.197) to come 
up with a third equation we can use: 
 

! 

(vA )i + (vA ) f = (vB )i  
 
From there you can do some more algebra to come up with equations 
for (vA)f and (vB)f: 
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Notice that the final velocity of ball A and ball B depends on the 
initial velocity of ball A.  This makes sense since ball A is the only ball 
carrying momentum in the initial state. 
If we look at three special limiting cases, these equations make sense.  
(p. 199) 
 
If mA = mB, ball A stops and ball B shoots off.  
 
If mA >> mB, ball A maintains most of its initial velocity and ball B 
shoots off with lots of velocity.  (Think bowling ball hitting golf ball.) 
 



If mA << mB, ball A recoils off ball B and ball B basically doesn’t move.  
(Think golf ball hitting bowling ball.) 
 
So now let’s refer back to our original problem. 
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The small ball shoots off with a quick velocity while the larger ball 
slows down slightly. 


