
Lecture 15 Energy 
 
More practice with conservation of energy 
Conservation of Momentum (Elastic vs. Inelastic Collisions) 
 
Now that we understand a little about conservation of energy, the best way 
to gain facility with it is to practice problems. 
 
Example 1 
Two balls, one twice as heavy as the other, are dropped from rest from the 
roof of a building.  Just before hitting the ground, the heavier ball has  
a. one-half b. the same c. twice d. four times 
the kinetic energy of the lighter ball. 
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Since both balls fall the same distance, they have to have the same final 
velocity.  We have proven this through conservation of energy! 
 
Example 2 
A spring-loaded gun shoots a ball 12 m straight up into the air.  The ball is 
shot again, but this time the spring is compressed only half as far.  If air 
resistance and friction are negligible, the new height of the ball will be: 
a. 3m    b. 6m    c. 12m    d. 24m    e. 48m 
We can again use conservation of energy in this problem: 
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All the initial energy of compression goes into gravitational potential.  
 

! 

"Ugrav + "Uspring = 0

"Ugrav = #"Uspring

mg"y = #
1

2
k"x

2

"y = #
k"x

2

2mg
=12m

 

 
But now if we compress it half as much Δx2 = Δx1/2 .  So we can solve for the 
new Δy. 
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So if you compress it half as far, you only get the ball to go a fourth as high.  
Notice we didn’t even need all the numbers.  We never knew the spring 
constant or the mass. 
 
Something we haven’t talked a lot about is reference level (where Ugrav = 0).  
It actually doesn’t matter where you put it.  We’ve mostly considered the 
floor to be the reference level, but we could just as easily use the ceiling.  
What matters is ΔU, and that stays the same no matter where Ugrav = 0.   
 
 
 
Let’s do an example using different reference levels.   

Ugrav Uspring 



A ball (m = 0.2kg) is dropped from rest from a height of 2m.  Find the speed 
of the ball just before it hits the ground. 
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So we can see, regardless of choice of reference level Δy is the same, which 
makes our ΔU the same. 
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Another issue we haven’t dealt with yet is what to do when a force like 
friction does work.  Work is a transfer of energy, so if we’re dealing with 
conservation of energy we have to include it somehow.  I’m going to write 
down a more complete statement of conservation of energy now: 
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This formula now includes all the possible energy transformations and 
transfers that can occur.  So far we’ve only analyzed systems where 
conservative forces and no external forces have been present.  Now we’ll 
introduce non-conservative forces and external forces. 
 
Conservative and non-conservative forces are defined with respect to the 
work they do.  A conservative force can do work to transfer energy from 
one system to another (gravity can do work to transfer energy from 
potential to kinetic, spring forces are also conservative)  so that mechanical 
energy can be conserved. A non-conservative force can do work to transfer 
energy from the system to the environment (friction can do work to 
transfer energy to heat the environment)  so that mechanical energy cannot 
be conserved. External forces (like a push or pull) transfer energy into the 
system, again mechanical energy cannot be conserved under an external 
force. 
 
Let’s go through some scenarios and see if we can list the basic elements: 

• which objects are included in a system 
• conservative interaction forces, non-conservative interaction forces, 

external forces 
• Specify the value of ΔK, ΔU, Wnc, Wext. 
• Energy transformations 
• Energy transfers 

 
Pushing a block across a table (with friction) at constant speed. 
 objects in system: block 
 external force: push, non-conservative force: friction 
 ΔK = 0, ΔU = 0, Wnc < 0, Wext > 0 
 The work done by the push is positive (energy going into system), the  

work done by friction is negative (energy leaving the system).  These 
contributions are equal and opposite.   

 
The block sliding to a halt after you release it. 
 objects in system: block 
 non-conservative force: friction 
 ΔK < 0, ΔU = 0, Wnc < 0, Wext = 0 
  
 



Energy is transferred from the kinetic energy system out to the 
environment through the work done by friction. 
 
Picking up the block and placing it on a high ledge. 
objects in system: block 

 external force:  lifting force,  
 ΔK = 0, ΔU > 0, Wc > 0, Wnc = 0, Wext > 0 

There is no change in kinetic because initial and final velocity are zero.  
The positive work done by the lifting force is transferred into the 
gravitational potential energy system by the conservative force of 
gravity.  
 
Recall that we discussed collisions briefly with conservation of 
momentum.  But we never discussed the difference between elastic 
and inelastic collisions.  But now that we know about energy, we can 
understand the difference.   
 
In an elastic collision, the total kinetic energy of a system is 
conserved.  For instance, two billiard balls colliding represents an 
elastic collision.  Kinetic energy may be exchanged between the two 
balls, but Ki = Kf. (Figure 6.13 pp.197) 
 
In an inelastic collision, the total kinetic energy of a system is not 
conserved.  Energy is lost through work done by non-conservative 
forces.  Heat, sound, or light may be generated.  You may permanently 
deform one of the objects involved in the collision.  You can think of a 
clay ball colliding with a billiard ball.  In an inelastic collision Kf < Ki. 
(Figure 6.12 pp.195) 
 
Now let’s do an example working with an elastic collision: 
A 0.30 kg object with a speed of 2.0m/s in the positive x-direction 
has a head-on elastic collision with a stationary 0.70kg object located 
at x = 0.  What is the distance separating the objects 2.5s after the 
collision? 
 
What we need to find is the velocity of each object after the 
collision.  If this is an elastic collision (free of any external forces) we 
can say two things: 
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Now let’s determine what we know and don’t know: 
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Now we can expand our equations from above: 
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