
Lecture 12 Energy 
 
We are now at the point where we can talk about one of the most powerful 
tools in physics, energy.  Energy is really an abstract concept.  We have 
indicators of energy (temperature, velocity for example)  – things that imply 
the existence of energy – but we can’t reach out and grab energy.  
Something that we understand well is money.  We can make a direct analogy 
between energy and money.   

• money, like energy, has no single, unique definition 
• one vague definition of energy is “the ability to do work” 
• one vague definition of money is “the ability to purchase goods” 
• both can be transformed and transferred in various ways 
• kinetic energy = cash 
• potential energy = savings account 
• work = getting a paycheck or paying bills 

 
So now that we’ve mentioned these terms : kinetic, potential, work we should 
try to explain them more.  Let’s develop a model: 
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Work in the physics definition is a mechanical transfer of energy to or from 
a system by the pushes and pulls of external forces.  When energy is added 
to a system, work is positive, and when energy is removed from a system, 
work is negative. 
 
Here we can get into thinking of two different concepts:  a property vs. a 
process.  Energy is a property of a system  (the system has a certain amount 
of energy) versus a process like work (work changes the energy of the 
system, it is not something the system contains).  Another way of seeing this 
is that we can define changes in a property (ΔE, ΔK, ΔU), but we would never 
define changes in a process ΔW.  We can’t define Winitial and Wfinal the way 

SYSTEM 
Motional Energy = kinetic energy = K 
Stored Energy = potential energy = U 
 
 
Mechanical Energy = Emech = K + U 
 

Energy Transfer 
 
Work = W 



we can define Einitial and Efinal.  Work is an energy transfer – by definition a 
system can’t “contain”  a transfer. 
 Now we can start filling in the details of our model.  We’ve mentioned 
kinetic energy as an energy of motion, but we can be even more specific: 
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2  you see a direct dependence on velocity.  The faster an object 

moves, the more kinetic energy it has.  The more mass it has, the more 
kinetic energy it has.  Now we can ask the question, what causes kinetic 
energy to change?  What causes changes in velocity (i.e. acceleration)?  
Looking at Newton’s Second Law, we can see that force changes velocity, and 
in turn causes changes in kinetic energy.  How can we then calculate those 
changes?  What we’re really calculating is a transfer of energy (work) due to 
a force exerted on the system.  Let’s stop for a moment and consider a 
specific example. 
If a cart is moving on a track, the way we would slow it down would be to 
exert a force on it. 
 
 
 
 
You do negative work on the system because the cart slows down, i.e. energy 
is leaving the system. 
 
So we can infer W∝F, but if we look at units we are missing something: 
Force has units of force (Newtons) while work should have units of energy.  
But what are units of energy?  Let’s go back to our definition of Kinetic 

Energy, 
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So the unit of energy is a Newton times a meter, otherwise defined as a 
Joule.  Back to our work relationship W∝F, but there’s something missing.  
If work has to be defined in Joules (Newtons × meters) it follows that we 
should include a distance in the formula.  The actual formula is W = Fdcosθ . 
where does the angle come in?  If we go back to our example of the cart on 
the track 
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In this picture the angle between F and d (displacement of the cart) is 180°.  
This gives us W = Fdcos180° = -Fd.  What if we exerted a force at another 
angle? 
 
 
 
 
Now the angle is < 180°, estimate 150°.  W = Fdcos150° = -0.86Fd.  We can 
see that this is less than when the two were 180° apart.  We can see that 
stopping the cart would be more efficient if we pushed directly against the 
cart, as opposed to pushing at an angle, i.e. we can transfer more energy out 
of the system:  Fd > 0.86Fd.  The cosine term accounts for this difference 
in efficiency. 
 
Let’s try an example using work and energy.  Take a cart attached to a 
mass/pulley system. 
 
 
 
 
 
 
 
If we allow the mass to pull the cart, we can then analyze the forces 
involved and see which ones do work: 
 
 
 
 
 
 
 
 
 
Now for friction and Tension.  First tension – we can predict whether it does 
positive or negative work.  We know the cart is speeding up.  Therefore 
there must be some positive work being done on the system.  Now let’s look 
at the work done by the tension force:  W = Tdcos0° = Td.  This is definitely 

v 
F 

v 

N 

W 

T f 

First, let’s look at the normal force and weight.  
If Work = Fdcosθ, where θ is the angle between 
F and d, the normal force and weight are at an 
angle of 90° with respect to the displacement.  
Therefore they do no work.  They do not affect 
the (kinetic) energy of the system. 
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positive, and we observe that our system is speeding up.  So these two facts 
support each other.  Now for friction:  W = fdcos180° = -fd.  Friction is 
doing negative work, which would imply that the system is losing energy i.e. it 
should be slowing down.  We can make two observations.  First, if we 
removed the tension, the cart would slow down, friction would transfer the 
kinetic energy out of the system.  With the tension in the system, we can 
imply that since the system is speeding up, the positive work must be winning 
out over the negative work, that is: 
 
Td > fd or Td – fd > 0 so there is a net transfer of energy into the system 
and we can see this by virtue of the fact that the cart is speeding up.  
Velocity is an indicator of Kinetic Energy.  If velocity increases so does 
Kinetic Energy (K = ½ mv2).   
 
Now let’s look at the reverse situation:  if I push the cart up the track 
against the force of tension in the string. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now, if we assume that there is no acceleration in the system, I’m pushing 
the cart with a constant velocity, then there should be no net work in the 
system.  Wnet = 0 since Δv = 0 which implies ΔE = 0.  The energy leaving the 
system (negative work) balances the energy entering the system (positive 
work).  So let’s break the work down force by force.  The normal force and 
weight do no work because they are perpendicular to the displacement.  The 
work done by my pushing is positive W = Pdcos0° = Pd.  I am putting energy 
into the system.  The tension and friction are doing negative work, WT = 
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Tdcos180° = -Td, Wf = fdcos180° = -fd.  We can come up with an equation 
from all these expressions: 
Wnet = Pd – Td – fd = 0 (assuming a = 0) 
 
Let’s summarize our findings: 

• work is a transfer of energy into (W > 0) or out of (W < 0) a system  
• friction does negative work (always acts opposite displacement) 
• normal force does no work (always acts perpendicular to the 

displacement) 
 
Now let’s analyze a new scenario.  If I swing a ball over my head ( in a 
horizontal circle) at a constant speed, what is the work done in this problem? 
 
 
 
 
The displacement vectors point tangent to the circle (top view) : 
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First, we label the forces. 

The force is always perpendicular to the 
displacement in this case.  There is no work done 
by this force, nor is there work done by the 
weight (which is also perpendicular to the 
displacement). 


