Name

\qquad

Freefall without drag

Consider the vertical motion of a basketball as described below.
[0] At $t=0$ seconds, it is moving straight upwards with a speed of $2.0 \mathrm{~m} / \mathrm{s}$. (Assume that it has long since left the hand of the person throwing it, and neglect any effect of air resistance throughout its motion.)
[1] At some unknown time, it reaches it maximum height.
[2] At some unknown time, it is moving downwards with a speed of $2.0 \mathrm{~m} / \mathrm{s}$, past the point at which it started its motion at $t=0$ seconds.

1. Draw a $v(t)$ graph for the basketball, and scale the vertical v and horizontal t axes. What time did the basketball reach its highest height?
2. Determine the maximum height of the basketball, above the point at which it started its motion at $t=0$ seconds. (use the area under your graph)
3. What is the slope of your $v(t)$ graph at each of the instances in time described above? Is the \pm sign of your slope consistent with the direction of your acceleration vector?
4. Find the total area bounded by your $v(t)$ graph from $t=0$ seconds to when the basketball reaches it maximum height? What is the total area bounded by your $v(t)$ graph from $t=0$ seconds to when the basketball falls downwards past its starting point?
5. On the same $v(t)$ graph that you have drawn on the board, show the motion of a basketball that just after released from rest, and allowed to fall downwards towards the floor.

Name

\qquad

Analysis of \perp contact forces

Put up the force diagrams assigned to you on the board. Also, make sure that you copy them all onto a piece of graph paper to be handed in.

1. Consider a 7 kg bowling ball on the floor. Draw a properly labeled and scaled force diagram for the 7 kg b.b. for each of the following cases (a)-(f). Use a scale of $\mathbf{0 . 5} \mathbf{~ c m}$ $\leftrightarrow 10 \mathrm{~N}$ (but also wito down the magnitude of each force, in \mathbf{N}). Off to the side of each diagram, show
. Label and scale the length of these net force vectors, in N . Use $g=9.8 \mathrm{~N} / \mathrm{kg}$ in your calculations.
(a) 7 kg bowling ball resting on the floor.
(b) 7 kg b.b. on the floor with you pulling up (say, with an attached rope) with a force of 10 N .
(c) 7 kg b.b. on the floor with you pulling up with a force of 65 N .
(d) 7 kg b.b. on the floor with you pushing down with a force of 10 N .
(e) 7 kg b.b. on the floor with you pushing down with a force of 65 N .
(f) 7 kg b.b. with you pulling up with a force of 70 N .

Look at all the force diagrams (a)-(f). Put up brief explanations for your answers to these multiple choice questions. There can be more than one possible answer.
3. The magnitude of the \perp contact force can be $\left[\begin{array}{c}\text { less than } \\ \text { equal to } \\ \text { more than }\end{array}\right]$ to the weight of an object.
4. The \perp contact force always points in the direction $\left[\begin{array}{c}\text { directly opposite of } \mathbf{F}_{\text {gravity }} \\ \perp \text { to the surface. }\end{array}\right]$.

Name

\qquad

Activity Cycle 8.2.1: TA instructions

The slope of the $v(t)$ graph is $-9.8 \mathrm{~m} / \mathrm{s}^{2}$, that is, if the students choose up as the positive direction. Knowing that the rise of the slope must be $\Delta v=-2.0 \mathrm{~m} / \mathrm{s}$ (the basketball has a velocity of $+2.0 \mathrm{~m} / \mathrm{s}$ at [0], and slows down to $v=0 \mathrm{~m} / \mathrm{s}$ at [1]), the run must be $\Delta t=0.20408 \mathrm{~s}$.

The triangular area bounded by the $v(t)$ graph is +0.20408 m from [0] $\rightarrow[1]$, which is the maximum height of the basketball. The triangular area bounded by the $v(t)$ graph from [1] $\rightarrow[2]$ is -0.20408 m , such that the total area from $[0] \rightarrow[2]$ is 0 m , as it returns back to the same place. (The factor of ten or 0.1 that seems to propagate throughout is because $g=9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 10 \mathrm{~m} / \mathrm{s}^{2}$.)

\square
Drawing the force diagrams is where many students have conceptual difficulties-should $=0$ at [1]? After all, isn't velocity zero there? What about the \perp contact force of the hand that originally put the basketball into motion? Note that the force diagrams are identical throughout this process.

