Name

Freefall without drag

Consider the vertical motion of a basketball as described below.
[0] At $t=0$ seconds, it is moving straight upwards with a speed of $2.0 \mathrm{~m} / \mathrm{s}$. (Assume that it has long since left the hand of the person throwing it, and neglect any effect of air resistance throughout its motion.)
[1] At some unknown time, it reaches it maximum height.
[2] At some unknown time, it is moving downwards with a speed of $2.0 \mathrm{~m} / \mathrm{s}$, past the point at which it started its motion at $t=0$ seconds.

1. Draw a motion diagram for the basketball described above.
2. Draw a velocity graph for the basketball, and scale the vertical v and horizontal t axes. What time did the basketball reach its highest height?
3. Determine the maximum height of the basketball, above the point at which it started its motion at $t=0$ seconds. (use the area under your graph)
4. What is the slope of your v graph at each of the instances in time described above? Is the \pm sign of your slope consistent with the direction of your acceleration vector?
5. Find the total area bounded by your v graph from $t=0$ seconds to when the basketball reaches it maximum height? What is the total area bounded by your v graph from $t=0$ seconds to when the basketball falls downwards past its starting point?
6. On the same v graph that you have drawn on graph paper, show the motion of a basketball that just after released from rest, and allowed to fall downwards towards the floor.
