Name

\qquad

Projectile Motion

A. Solve the problem and fill in the chart with the requested information.

A nerf gun fires a ball at a speed of $25 \mathrm{~m} / \mathrm{s}$ at an angle of 5° above the horizontal. What height does the ball reach? How long is the ball in the air? What is the ball's horizontal range?

Sample Calculations:

	Initial Angle (θ)	Muzzle Velocity (m / s)	Maximum Height (m)	Time (s)	Range (m)
Trial 1	25°	25			
Trial 2	40°	36			
Trial 3	35°	15			
Trial 4	62°	72			

Table 1: Predicted values for projectile motion

B. Verifying values via the Internet

In the computer room, login and go online. Enter the web address
http://Galileo.phys.Virginia.EDU/classes/109N/more stuff/Applets/ProjectileMotion/jarapplet.html
Now enter values into the java applet and fill in the time and range columns of the table.

	Initial Angle (θ)	Muzzle Velocity $(\mathrm{m} / \mathrm{s})$	Time (s)	Range (m)
Trial 1	$\mathbf{2 5}^{\circ}$	25		
Trial 2	$\mathbf{4 0}^{\circ}$	36		
Trial 3	$\mathbf{3 5}^{\circ}$	15		
Trial 4	$\mathbf{6 2}^{\circ}$	72		

Table 2: Computer generated values for projectile motion

1. Make a fifth trial (using the values from trial 4) where you only change the mass of the projectile from 10.0 kg to 1.0 kg . Does this affect the path of the projectile? Explain.
2. Your classmate says, " Can you explain why the velocity of a projectile stays at a constant $9.8 \mathrm{~m} / \mathrm{s}$? " Explain what, if anything, is wrong with this statement using the physics you have learned.
