Name

Period of a Pendulum

- 1. Measure the total time for a m = 0.05 kg, L = 75 cm, $A \approx 30^{\circ}$ (the angle between 4:00 and 6:00), pendulum to make 20 oscillations. (First set the pendulum *already* swinging; then start timing and start counting with "0" instead of "1" the moment the pendulum has swung all the way back.) Then divide by 20 to determine the period T (in seconds) of this pendulum.
- Experimentally determine the dependence of the period T on the parameters below. (i) Record each new period, and (ii) state whether the period T depends (↑, ↓, or constant) on the following parameters:
 - (a) Mass $m \uparrow . T___s$ $(T\uparrow, \downarrow, \text{ or constant?})$ (b) Mass $m \downarrow . T___s$ $(T\uparrow, \downarrow, \text{ or constant?})$ (c) String length $L\uparrow . T___s$ $(T\uparrow, \downarrow, \text{ or constant?})$ (d) String length $L\downarrow . T___s$ $(T\uparrow, \downarrow, \text{ or constant?})$ (e) Oscillation amplitude $A\uparrow . T___s$ $(T\uparrow, \downarrow, \text{ or constant?})$ (f) Oscillation amplitude $A\downarrow . T___s$ $(T\uparrow, \downarrow, \text{ or constant?})$ (g) Gravitational constant $g\downarrow$ (?) $(T\uparrow, \downarrow, \text{ or constant?})$ (h) Constant phase $\phi\downarrow\uparrow . T__s$ $(T\uparrow, \downarrow, \text{ or constant?})$

The exact expression for a pendulum period is T =_____.

- Look for *significant* dependencies, and not negligible variations.
- Change one parameter at a time!

1

Mass-Spring Period

- 1. Measure the total time for a m = 0.5 kg, $k \approx 9.5$ N/m, A = 5 cm (as measured down from its equilibrium position) to make 20 oscillations. (First set the mass *already* oscillating; then start timing and start counting with "0" instead of "1" the moment the mass is at its lowest point.) Then divide by 20 to determine the period T (in seconds) of this mass-spring system.
- Experimentally determine the dependence of the period T on the parameters below. (i) Record each new period, and (ii) state whether the period T depends (↑, ↓, or constant) on the following parameters:
 - (a) Mass m↑. T___s
 (b) Mass m↓. T___s
 (c) Spring strength k↑ T___s
 (use two springs in parallel)
 (d) String strength k↓ T___s
 (use two springs in series)
 (c) Oscillation amplitude A↑ T
 (c) Oscillation amplitude A↑ T
 - (e) Oscillation amplitude $A \uparrow$. T____s (T \uparrow, \downarrow, or constant?)
 - (f) Oscillation amplitude $A \downarrow . T_{_}s$ ($T \uparrow, \downarrow, or constant?$)
 - (g) Constant phase $\phi \downarrow \uparrow$. T___s (T\uparrow, \downarrow, or constant?)

The exact expression for a mass-spring period is T =_____.

- Look for *significant* dependencies, and not negligible variations.
- Change one parameter at a time!

Simple Harmonic Motion (SHM) parameters

The most general form of the equation that describes *any* object undergoing SHM (simple harmonic motion) is given by:

3

Applying SHM Parameters

Consider the specific case of this graph of angular position versus time for an m = 0.2 kg pendulum:

1. What are the values *and* units of these SHM parameters?

	Value?	Units?
(a) <i>A</i>		
(b) T		
(c) φ		
(d) <i>B</i>		

For the following situations (2)-(5), redraw the angular position $\theta(t) \leftrightarrow y(t)$ versus time graph from (1) if the physical parameters below are changed. Scale (rescale) your axes as necessary.

- **2**. The mass *m* is doubled.
- **3**. The string *L* is doubled.
- 4. The amplitude *A* is doubled.
- **5**. The parameter ϕ is doubled.
- 6. For each of the above situations (2)-(5), demonstrate for yourselves what the actual pendulum motion looks like, by using the appropriate m, L, A, and ϕ in your demonstration.

