\qquad

Period of a Pendulum

1. Measure the total time for a $m=0.05 \mathrm{~kg}, L=75 \mathrm{~cm}, A \approx 30^{\circ}$ (the angle between 4:00 and 6:00), pendulum to make 20 oscillations. (First set the pendulum already swinging; then start timing and start counting with " 0 " instead of " 1 " the moment the pendulum has swung all the way back.) Then divide by 20 to determine the period T (in seconds) of this pendulum.
2. Experimentally determine the dependence of the period T on the parameters below. (i) Record each new period, and (ii) state whether the period T depends (\uparrow, \downarrow, or constant) on the following parameters:
(a) Mass $m \uparrow$. T___s
(b) Mass $m \downarrow \cdot \mathrm{~T}_{-\ldots} \mathrm{s}$
(c) String length $L \uparrow . \mathrm{T}$ \qquad s
(d) String length $L \downarrow$. T \qquad s
(e) Oscillation amplitude $A \uparrow$. T \qquad
(f) Oscillation amplitude $A \downarrow$. T___s ($\mathrm{T} \uparrow, \downarrow$, or constant?)
(g) Gravitational constant $g \downarrow$ (?)
(h) Constant phase $\phi \downarrow \uparrow$. T \qquad s
s ($\mathrm{T} \uparrow, \downarrow$, or constant?)

The exact expression for a pendulum period is $\mathrm{T}=$ \qquad .

- Look for significant dependencies, and not negligible variations.
- Change one parameter at a time!

Mass-Spring Period

1. Measure the total time for a $m=0.5 \mathrm{~kg}, k \approx 9.5 \mathrm{~N} / \mathrm{m}$, $A=5 \mathrm{~cm}$ (as measured down from its equilibrium position) to make 20 oscillations. (First set the mass already oscillating; then start timing and start counting with " 0 " instead of " 1 " the moment the mass is at its lowest point.) Then divide by 20 to determine the period T (in seconds) of this mass-spring system.
2. Experimentally determine the dependence of the period T on the parameters below. (i) Record each new period, and (ii) state whether the period T depends (\uparrow, \downarrow, or constant) on the following parameters:
(a) Mass $m \uparrow$. T \qquad s
($\mathrm{T} \uparrow, \downarrow$, or constant?)
(b) Mass $m \downarrow$. T \qquad s
($\mathrm{T} \uparrow, \downarrow$, or constant?)
(c) Spring strength $k \uparrow \mathrm{~T}$ \qquad
(use two springs in parallel)
($\mathrm{T} \uparrow, \downarrow$, or constant?)
(d) String strength $k \downarrow \mathrm{~T}$ \qquad s
(use two springs in series)
($\mathrm{T} \uparrow, \downarrow$, or constant?)
(e) Oscillation amplitude $A \uparrow$. T \qquad s $\quad(\mathrm{T} \uparrow, \downarrow$, or constant?)
(f) Oscillation amplitude $A \downarrow$. T \qquad s ($\mathrm{T} \uparrow, \downarrow$, or constant?)
(g) Constant phase $\phi \downarrow \uparrow$. T \qquad s ($\mathrm{T} \uparrow, \downarrow$, or constant?)

The exact expression for a mass-spring period is $\mathrm{T}=$ \qquad .

- Look for significant dependencies, and not negligible variations.
- Change one parameter at a time!

Simple Harmonic Motion (SHM) parameters

The most general form of the equation that describes any object undergoing SHM (simple harmonic motion) is given by:
$y(t)=A \sin \left(\frac{2 \pi t}{T}+\phi\right)+B$.

Amplitude A

Constant phase ϕ Simple harmonic motion
(Displacement yas a
function of time)

Equilibrium value B

Applying SHM Parameters

Consider the specific case of this graph of angular position versus time for an $m=0.2 \mathrm{~kg}$ pendulum:

1. What are the values and units of these SHM parameters?

	Value?	Units?
(a) A		
(b) T		
(c) ϕ		
(d) B		

For the following situations (2)-(5), redraw the angular position $\theta(t) \leftrightarrow y(t)$ versus time graph from (1) if the physical parameters below are changed. Scale (rescale) your axes as necessary.
2. The mass m is doubled.
3. The string L is doubled.
4. The amplitude A is doubled.
5. The parameter ϕ is doubled.
6. For each of the above situations (2)-(5), demonstrate for yourselves what the actual pendulum motion looks like, by using the appropriate m, L, A, and ϕ in your demonstration.

mass is doubled

θ

amplitude is doubled
θ

ϕ is doubled

