Name____

1

Wave interference

For each of the cases (a)-(e) below:

- 1. Calculate $\Delta \Phi = \Phi_1 \Phi_2$.
- 2. Use Graphing Calculator to "add" the two harmonic waves together. Make *n* the time variable. Set $0 \le n \le 1$, with 100 steps. Do the waves add constructively or destructively?
- 3. Match the experimental setups (I)-(V) with the cases (a)-(e).
- 4. What does switching the black/red wires do to Φ_1 and Φ_2 ?
- 5. What does placing the speakers in front/back of each other do to x_1 and x_2 ?

	1.	2.	3.	
	$\Delta \Phi = ?$	const.?	Set-up	Graph
		dest.?	(I)-(V)?	(A)-(E)?
(a) $\Phi_1 = 0, \Phi_2 = 0;$				
$x_1 = x, \ x_2 = x.$				
(b) $\Phi_1 = 0, \ \Phi_2 = \pi;$				
$x_1 = x, \ x_2 = x.$				
(c) $\Phi_1 = 0, \Phi_2 = 0;$				
$x_1 = x, \ x_2 = x + \lambda.$				
(d) $\Phi_1 = 0, \Phi_2 = 0;$				
$x_1 = x, \ x_2 = x + \frac{\lambda}{2}.$				
(e) $\Phi_1 = 0, \ \Phi_2 = \pi;$				
$x_1 = x + \frac{\lambda}{2}, \ x_2 = x.$				

Done early? Match the graphs (A)-(E) with the cases (a)-(e).

Name

Match these experimental set-ups below (I)-(V) below with the cases (a)-(e) from your exit handout.

- I. Plug two speakers into the *same* wave function generator, wired the same way, standing face to face.
- II. Plug two speakers into the *same* wave function generator, wired oppositely, standing face to face.
- III. Plug two speakers into the *same* wave function generator, wired the same way, both facing you, but one speaker a full wavelength in front of the other.
- IV. Plug two speakers into the *same* wave function generator, wired oppositely, both facing you, but one speaker a half wavelength in front of the other.
- V. Plug two speakers into the *same* wave function generator, wired the same way, both facing you, but one speaker a half wavelength in front of the other.

Match these graphs (A)-(E) below with the cases (a)-(e) from your exit handout and the speaker configurations (I)-(V).

