Name_____

Thermodynamic processes

For any *process* that takes a system from an initial state to a final state, the following quantities can be determined:

Change in internal energy of the system

• This can be calculated from equipartition:

$$U = \frac{1}{2} (\text{modes}) nRT \rightarrow \Delta U = \frac{1}{2} (\text{modes}) nR\Delta T.$$

Work done on/by system

• This can be calculated from the area under a *PV* curve:

 $W = -P\Delta V_{(\text{at constant pressure})}$

Heat transferred from/to system

• This can be obtained via the First Law of thermodynamics:

 $Q = \Delta U + W_{(W = work done by the system on the environment)}$

Name_____

The above relations are always true for an ideal gas system that goes through any type of process!

Cyclic processes

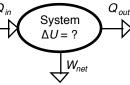
State	Р	V	Т
Ι	1.93 ×10 ⁵ Pa	$1.72 \times 10^{-2} \text{ m}^3$	400 K
II	1.50 ×10 ⁵ Pa	$2.22 \times 10^{-2} \text{ m}^3$	400 K
III	1.50 ×10 ⁵ Pa	$1.72 \times 10^{-2} \text{ m}^3$	310 K

One mole of an ideal monatomic gas undergoes the following states:

- 1. Draw a *PV* diagram, showing the processes $I \rightarrow II$, $II \rightarrow III$, and $III \rightarrow I$. (Process $I \rightarrow II$ is an isotherm, but approximate it here by a straight line.)
- **2**. Fill in this table.
- 3. In process $I \rightarrow II$, there is Iboth heat added to the system, and the system

Process	ΔU [J]	<i>W</i> [J]	<i>Q</i> [J]
I→II			
II→III			
III→I			

also does work. Explain how the U of the system changes. Then how are Q and W related for this process?


4. In process II \rightarrow III, was there more or less heat transferred than work done? Explain how the U of the system changed.

More With Cyclic processes

We will analyze the cyclic process from above further.

Consider the amounts of W, Q, and ΔU totaled over one complete cycle (use your table above).

- 1. What is the net amount of work W_{net} transferred in/out? What is the net amount of heat Q_{net} transferred in/out? What is the net change ΔU_{net} of the system?
- 2. Calculate the total area contained *inside* the PV diagram "triangle." How does this area compare to the net amount of work W_{net} transferred out of the system?
- 3. Find the amounts of energy transfers (Q) for this whole cyclic process. Carefully distinguish between the amount of heat transferred into the system (Q_{in}), and the amount of heat transferred out of the system (Q_{out}).

(Note: $Q_{net} = Q_{in} - Q_{out}$.)

4. This system takes in heat (Q_{in}) , transfers some of it out as work (W_{net}) , and then transfers out more heat (Q_{out}) . Write an algebraic (energy conservation) equation relating Q_{in} , Q_{out} , and W_{net} .