Name_____

Coefficient of Linear Expansion

Introduction

The linear expansion of a heated solid or liquid can be measured by a quantity α , the coefficient of linear expansion. This coefficient is defined in such a way that it measures the percentage change in the length per degree temperature change.

$$\underline{L_{o}} \qquad \Delta L \qquad \alpha = \frac{\Delta L}{L_{o} \Delta T}$$

The coefficient varies with different materials. The purpose of this lab is to use the formula stated above to determine the coefficient of three materials with a specially designed apparatus.

Procedure

Draw a diagram of the apparatus, labeling all major features

Describe how it works

Record measurements in Table 1. Calculate α on the next page and record your findings in the table.

L _o (cm)	ΔL (cm)	Ti(°C)	Tf(°C)	Δ <i>T</i> (° <i>C</i>)	α	Metal?

 Table 1: Measurements to Determine the Coefficient of Linear Expansions for Three Metals

Name_____

Sample Calculations:

Questions

- 1. Explain how linear expansion of metal rods could be used as a thermometer. What would be some of the problems with this method?
- 2. How does the centesimal meter work?(draw a picture if it helps)
- 3. Calculate the percent error for each of the α values calculated in Table 1(using values from your book). What could have contributed to the error in this experiment?