## Name

$\qquad$

## Coefficient of Linear Expansion

## Introduction

The linear expansion of a heated solid or liquid can be measured by a quantity $\alpha$, the coefficient of linear expansion. This coefficient is defined in such a way that it measures the percentage change in the length per degree temperature change.


The coefficient varies with different materials. The purpose of this lab is to use the formula stated above to determine the coefficient of three materials with a specially designed apparatus.

## Procedure

Draw a diagram of the apparatus, labeling all major features

Describe how it works

Record measurements in Table 1. Calculate $\alpha$ on the next page and record your findings in the table.

| $L_{\boldsymbol{o}}(\mathrm{cm})$ | $\Delta L$ (cm) | $\operatorname{Ti}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{Tf}\left({ }^{\circ} \mathrm{C}\right)$ | $\Delta T\left({ }^{\circ} \mathrm{C}\right)$ | $\alpha$ | Metal? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Table 1: Measurements to Determine the Coefficient of Linear Expansions for Three Metals

## Name

## Sample Calculations:

## Questions

1. Explain how linear expansion of metal rods could be used as a thermometer. What would be some of the problems with this method?
2. How does the centesimal meter work?(draw a picture if it helps)
3. Calculate the percent error for each of the $\alpha$ values calculated in Table 1(using values from your book). What could have contributed to the error in this experiment?
