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Central collisions of gold nuclei are simulated by several existing models and the central net baryon density ρ

and the energy density ε are extracted at successive times for beam kinetic energies of 5–40 GeV/nucleon. The
resulting trajectories in the (ρ, ε) phase plane are discussed from the perspective of experimentally exploring the
expected first-order hadronization phase transition with the planned FAIR at GSI or in a low-energy campaign at
the Relativistic Heavy Ion Collider.
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I. INTRODUCTION

One of the major goals of high-energy heavy-ion research
is to explore the properties of strongly interacting matter,
particularly its phase structure [1]. The regions of temperature
and baryon density that can be accessed depend on the collision
energy. Thus systems with a very small net baryon density
but rather high temperature are formed at the Relativistic
Heavy Ion Collider (RHIC) [2] sNN � (200 GeV)2], while it
is expected that the creation of the highest possible baryon
densities would occur at more moderate collision energies
(sNN � (6 GeV)2 [3]), such as those becoming available at the
planned Facility for Antiproton and Ion Research (FAIR) [4]
or at the low-energy end of RHIC.

Our understanding of the quantum chromodynamics (QCD)
phase diagram is best developed at vanishing chemical
potential, µC = 0, where lattice QCD calculations are most
easily carried out. The most recent results indicate that the
transformation from a low-entropy hadron resonance gas to
a high-entropy quark-gluon plasma occurs smoothly as the
temperature is raised, with no real phase transition being
present [5].

However, at zero temperature most models predict the
occurrence of a first-order phase transition when the density
is raised [6], though no firm results are yet available for the
corresponding value of the chemical potential, µ0. However,
if the T = 0 transformation is in fact of first order, one
would expect the phase boundary to extend into the region of
finite temperature and terminate at a certain critical endpoint,
(µc, Tc) [6]. Indeed, recent lattice QCD results [7] suggest
the presence of such a first-order phase transition line and an
associated critical end-point, though its precise location is not
yet determined.

FAIR, which is under construction at GSI in Germany,
will make it possible to create compressed baryonic matter
in the laboratory, matter with a high net baryon density.
The increasing interest in this area of physics is underscored

by the recent proposal for a low-energy campaign at RHIC
aimed at the identification of the critical point [8] and by
current discussions about the feasibility of searching for the
mixed phase at the Joint Institute for Nuclear Research (JINR)
Nuclotron [9].

To assess the prospects for using these facilities to explore
the phase structure it is important to know what thermody-
namic environments are being generated in the bulk of the
collision systems at the various bombarding energies available.
For this purpose, we employed a number of existing models
to simulate central collisions of gold nuclei in the beam
energy range anticipated at FAIR (5–40 GeV/nucleon) and
then extracted key information about the bulk environments
generated in the course of a collision.

II. THE INFORMATION EXTRACTED

Generally, the systems involved in a high-energy nuclear
collision evolve rapidly in time and, furthermore, they are
far from being uniform in space. The former feature prevents
equilibrium from being fully established, whereas the latter
feature invalidates the familiar thermodynamic relations that
pertain to bulk matter. As a consequence, dynamical simulation
models are indispensable in the exploration of these processes.

However, within a given microscopic transport model, it is
possible to extract the characteristics of the local environment
at any point in space and time and on this basis ascertain
the degree of local equilibrium achieved and extract the
corresponding local characteristics.

Such a study was first made by Dorso et al. [10], who
calculated the breakup of an initially compressed and heated
nucleus and extracted its thermodynamic phase evolution.
This analysis showed that the bulk of the system entered
the spinodal region associated with the first-order nuclear
liquid-gas phase transition. Furthermore, the resulting frag-
mentation pattern exhibited signs of filamentation, a general
characteristic feature of spinodal phase decomposition.
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As an instructive reference case for our present study, we
consider central collisions of two gold nuclei and focus on the
physical conditions at the center of the system. Thus, in the
center-of-mass (c.m.) frame, we consider only a small region
around the origin, r = (0, 0, 0), and then seek to characterize
the physical environment there as it evolves in the course of
time.

We are particularly interested in the net baryon density
ρ(t) = ρB(t) − ρB̄(t) and the energy density ε(t). The local
stress tensor is also of interest but will not be examined
here. Because we focus on the center of the system, there
is no collective flow by symmetry. (Although this is strictly
true only on the average, each individual event might display
some flow at the origin, but this possibility is unimportant and
may be safely disregarded.) We do not wish to engage in a
technical discussion of how these quantities can be extracted
in the various models but refer the reader to the relevant
literature cited for each particular model. We only note here
that in numerical treatments that employ a grid in position
space, such as fluid dynamics, these values can simply be read
off at the appropriate lattice site (the origin, in the present
case), whereas methods that represent the dynamical state
of the system in terms of individual (test) particles must
resort to an average over a suitably small test volume �V

around the origin. (Due to the strong Lorentz contraction
early on, the test volume must initially be sufficiently thin;
a typical choice would be |x|, |y|, γcm|z| � 2 fm, where γcm

is the Lorentz factor associated with the initial nuclear
motion in the c.m. frame. However, as the longitudinal
expansion progresses and the system grows increasingly dilute,
it may improve the sampling statistics to stretch the test
box.)

It is important to note that both ρ and ε have well-defined
values at all times. In particular, their extraction does not
require that local thermal equilibration has been reached. This
is one advantage of considering these particular observables
for the present study. However, of course, their thermodynamic
relevance does depend on the degree of local equilibration
achieved, as reflected principally in the isotropy of the pressure
tensor.

In each individual model, it may be possible to also
extract local thermodynamic quantities, such as temperature T ,
chemical potential µ, or entropy density σ , but although most
extraction methods can be cast in sufficiently general terms
to make them applicable also to nonequilibrium scenarios,
those quantities have physical meaning only in equilibrium.
Furthermore, importantly, even if equilibrium is reached,
identical values of ρ and ε will generally lead to different
values for those thermodynamic quantities from one model to
the other, due to their differences in mean fields and degrees
of freedom.

By contrast, the mechanical quantities ρ and ε are inher-
ently more robust variables because they are subject to local
conservation laws. For example, in ideal fluid dynamics the
conservation of four-momentum is expressed as ∂µT µν = 0,
whereas the conservation of baryon charge is expressed by the
continuity equation ∂µjµ = 0. Because the various dynamical
models generally abide by these basic conservation laws,
they will have a tendency to yield similar results for the

corresponding quantities. By asking about the behavior of
such conserved observables we may therefore expect to obtain
relatively robust answers. [Of course, for the purpose of
discriminating between models (which is not our purpose
here), it would probably be better to consider observables that
are more sensitive to the specific model ingredients.]

To further underscore the qualitative difference between
“mechanical” or “dynamical” quantities such as ρ and ε and
“thermodynamical” quantities such as µ and T , we note
that the above-mentioned conservation laws guarantee that
the local energy or (baryon) charge density cannot change
without the occurrence of a suitable amount of energy or
charge transport, which requires some time. By contrast, there
are no such conservation laws restricting the rate of change of
the local temperature or entropy or chemical potential, which
can change essentially instantaneously as a result of local
reaction processes, such as ionization or chemical bonding.
(Although such phenomena may well offer useful signals of
the hadronization phase transition, which can be viewed as
some sort of bonding, they are not of interest for the present
study.)

A further advantage of considering the variables ε and ρ

rather than T and µ is that the equation of state, i.e., the pres-
sure p(ε, ρ), is then always a single-valued function, whereas
this is not always the case for p(T ,µ). Indeed, precisely when a
first-order phase transition is present, the bulk pressure (i.e., the
pressure of a spatially uniform system), p(T ,µ), is multivalued
throughout the region of phase coexistence. Because of this
feature, if the phase trajectory were represented as (µ(t), T (t)),
it would exhibit a rather complex behavior as the expansion
drives the system through the phase coexistence region, thus
complicating the analysis considerably. This problem is not
encountered in the (ρ(t), ε(t)) representation, where the phase
trajectory has a regular behavior throughout. This makes it
easy, for example, to see how long time will be spent in
the spinodal phase-coexistence region where bulk matter is
mechanically unstable.

III. PHASE DIAGRAM

The most relevant features of the ρ-ε phase plane are
depicted in Fig. 1. At a given density ρ, the zero-temperature
compressional energy, εT =0(ρ), provides a lower bound on
the energy density ε, so the accessible region is correspond-
ingly limited. A useful reference is provided by the phase-
coexistence boundaries associated with a recently constructed
equation of state [11] that has a first-order phase transition at all
baryon densities. Also shown is the corresponding boundary
of a schematic equation of state that has a critical point at a
finite density, as is now generally expected. Although these
boundaries are only approximate and illustrative, they may
serve as convenient references on the plots of the calculated
phase trajectories.

Figure 1 also shows where the hadronic freeze-out occurs
[12]. This representation brings out the fact that the freeze-out
environments are quite different from those near the phase
coexistence boundary, thus underscoring the importance of
studying the propagation and survival of any proposed phase-
transition signals through freeze-out.
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FIG. 1. (Color online) The ρ-ε phase plane used for representing
the extracted dynamical evolution of the central environment in
Au+Au collisions. The energetically accessible region is bounded
from below by the zero-temperature compressional energy density
εT =0(ρ). The hadronic freeze-out is indicated at the lower left [2].
The phase coexistence region obtained in Ref. [11] on the basis of an
excluded volume is delineated by the outer contour, whereas the inner
contour, which depicts a schematic boundary with a critial point, will
serve as a reference for the phase trajectories.

A. Isentropic expansion

To establish an instructive framework for understanding
the results obtained with the various dynamical models,
we consider first adiabatic expansions. For this we use the
hadronic chiral flavor-SU(3) model [13]. This model is based
on a chiral hadronic SU(3) Lagrangian that incorporates
and couples the complete set of baryons from the lowest
flavor-SU(3) octet, the entire multiplets of scalar, pseudoscalar,
vector, and axial vector mesons, as well as baryon resonance
states [13–15]. These hadrons have various types of interaction
that endow them with effective masses and induce spontaneous
chiral symmetry breaking as well as scale breaking via a
dilaton field. The parameters of the model are fixed by
symmetry considerations, hadronic vacuum observables, or
nuclear matter saturation properties. The model provides a
satisfactory description of both finite nuclei and neutron
stars [13,16,17] and, furthermore, it has been used for fluid-
dynamical studies of the space-time evolution and HBT radii
in relativistic nuclear collisions [14].

With the baryon resonance couplings chosen suitably, the
phase diagram of the SU(3) model is in qualitative agreement
with the picture obtained from lattice results [18], as illustrated
by the corresponding phase boundary in Fig. 2. (But it is seen
to differ quantitatively from the schematic reference boundary
discussed above—a useful reminder of that fact that the phase
boundary is still rather poorly understood.) Furthermore, phase
trajectories that are consistent with the phase diagram of the
model can be obtained by performing adiabatic expansions.
Such expansions conserve the entropy per net baryon and
that condition in turn yields a unique trajectory in the ρ-ε
phase plane, once the initial phase point (ρi, εi) has been
specified.
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FIG. 2. (Color online) The chiral hadronic SU(3) model: The en-
ergetically inaccessible region (gray area) and the phase-coexistence
region (shaded area within solid boundary) are shown together with
the corresponding quantities for the schematic equation of state
displayed in Fig. 1. Also shown are the phase trajectories (ρ, ε)
resulting from adiabatic expansions starting from counterstreaming
Lorentz-contracted nuclei at the indicated beam kinetic energies
E0 (A GeV).

A simple but rough estimate of the initial conditions
can be obtained by assuming that the very early dynamics
is dominated by the interpenetration of the two Lorentz-
contracted nuclei. Then the early baryon density (in the c.m.
frame) is ρi = 2γcmρ0, where ρ0 ≈ 0.15 fm−3 is the normal
nuclear saturation density present in the nuclear interior and
γcm is the Lorentz factor of the nuclei in the c.m. frame,
γ 2

cm = 1 + E0/2mN , where E0 is the beam kinetic energy per
nucleon for a stationary target. In the c.m., the energy per
baryon is γcmmN , so the energy density is εi = γcmmNρi =
2γ 2

cmmNρ0 = (2mN + E0)ρ0. The resulting phase trajectories
(ρ, ε) are depicted in Fig. 2. They are straight lines through
the phase-coexistence region, whereas they are slightly convex
above it and slightly concave below it.

As we shall see, the corresponding adiabatic compression
(obtained by following these phase trajectories in the opposite
direction) are remarkably similar to the calculated dynamical
paths through the early nonequilibrium stage when coun-
terstreaming dominates, whereas the subsequent dynamical
expansion trajectories generally exhibit gentler slopes.

IV. DYNAMICAL RESULTS

We have employed a number of different dynamical
models in this comparative study. Because they have been
already described in the literature we present only brief
characterizations here and concentrate on the resulting phase
trajectories.

A. Three-fluid hydrodynamics

We first consider the three-fluid model [3], which treats
two baryon-rich fluids originating with the incoming nuclei
and a baryon-free fluid created through the collisions among
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FIG. 3. (Color online) The time evolution of the net baryon density ρ(t) (left) and the total energy density ε(t) (right) at the center of a
head-on Au+Au collision for various bombarding energies (indicated in A GeV), in the three-fluid model.

the [equation-of-state- (EOS) dependent] constituents of the
first two fluids. The evolution of the baryon-free fluid is
delayed by a formation time τ , during which it neither
thermalizes nor interacts with the baryon-rich fluids. After
its formation, it starts to interact with the baryon-rich fluids
and quickly thermalizes. With a purely hadronic equation of
state, this model was used to carry out a systematic analysis of
various observables at incident energies between few and about
160 GeV/nucleon, and a comparison with results of transport
models was made as well.

A large body of data was well reproduced, including proton
and pion rapidity distributions, proton transverse-mass spectra,
	 and 	̄ rapidity distributions, protons and pion elliptic
flow (except for the proton v2 at 40 A GeV), multiplicities
of pions, positive kaons, φ mesons, hyperons, and antihy-
perons, including multistrange particles. This agreement is
achieved at the expense of substantial enhancement of the
interflow friction, as compared to that estimated from free
hadronic cross sections. Problems were met in reproducing
the transverse flow [19], e.g., the directed flow requires a
softer EOS at the top energies of the Alternating Gradient
Synchrotron (AGS) and the Super Proton Synchrotron (SPS).
This failure appears to suggest that the employed purely
hadronic equation of state is too hard and thus leaves room
for softening due to deconfinement. Further studies are in
progress [20].

The evolutions of the central values of ρ and ε in head-on
Au+Au collisions obtained with the three-fluid model are
depicted in Fig. 3 for beam kinetic energies ranging from
5 to 40 GeV/nucleon. At each beam energy, ρ(t) and ε(t)
are approximately proportional and exhibit a rapid growth
as the two Lorentz-contracted nuclei interpenetrate, followed
by a somewhat slower decrease reflecting the subsequent
expansion. As the beam energy is increased, the entire history
is being compressed in time.

The separate evolutions ρ(t) and ε(t) are then combined in
Fig. 4 to yield the corresponding dynamical phase trajectory
[ρ(t), ε(t)]. At each beam energy, the return path depicting
the expansion lies below the early (outwards) path, although

the two paths generally differ only relatively little. As was
the case for the adiabatic results considered above, each such
“common” path is fairly straight and its slope increases steadily
with the beam energy. For the lowest energy, 5 A GeV,
the trajectory just makes it to the hadronic boundary of the
schematic phase coexistence region, whereas the next energy,
10 A GeV, already produces a turning point on the plasma side
beyond the schematic phase coexistence region. Thus, of the
trajectories shown, this one spends the longest time traversing
the phase coexistence region during the expansion phase, and
the crossing time becomes ever shorter as the beam energy is
raised.

It should be recalled that the projection onto the (ρ, ε) phase
plane requires no assumption about local equilibrium (which
is very convenient for the purpose of the present study). In
fact, generally, the central conditions are far from equilibrated
during the early part of the collision. Therefore, before any
thermodynamical implications could be made it would be
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FIG. 4. (Color online) The phase trajectories (ρ(t), ε(t)) for the
three-fluid collisions addressed in Fig. 3, together with the schematic
reference phase boundary depicted in Fig. 1.
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FIG. 5. (Color online) The time evolution of the central net baryon density ρ(t) (left) and the corresponding phase trajectory (ρ(t), ε(t))
(right) at the center of a head-on Au+Au collision at various bombarding energies (indicated in A GeV), in the PHSD model, together with the
schematic reference phase boundary depicted in Fig. 1.

necessary to carefully analyze the degree of equilibrium
attained at any particular time of interest.

B. Parton-hadron string dynamics

We now consider a number of microscopic transport
models. The first one is a recently extended version of
the HSD model [21] called PHSD (parton-hadron-string
dynamics) [22]. This version includes additionally an early
partonic phase with an equation of state from lattice QCD
and quasiparticle properties for quarks, antiquarks, and gluons
that have been obtained from fits to lattice results [23]. On
the hadronic side it treats explicitly the familiar baryon octet
and decouplet and selected higher resonances as well as their
antiparticles. On the meson side it includes the pseudoscalar
and vector meson nonets as well as some higher meson
resonances (a1, etc.). Hadrons of even higher mass are treated
as “strings” that reflect the continuum excitation spectrum
of mesons or baryons. Because the results from the novel
PHSD are very similar to those from HSD (without partonic
phase) for central Au+Au collisions below about 25 A GeV
we omit a more detailed description of the PHSD model
here.

We recall that the HSD model has been extensively
compared to experimental data from nucleus-nucleus reactions
for energies of 1 A GeV to the top RHIC energies [sNN =
(200 GeV)2] for hadrons made up from the light u, d quarks,
strange hadrons [24,25] as well as open and hidden charm [26].
It compares rather well with data (and the URQMD model
described below) for observables such as hadron rapidity
distributions [24] but falls somewhat low in the K+/π+ ratio
at top AGS and FAIR energies. Collective flow observables
[v1(y), v2(y)] are reproduced rather well in the energy regime
of the Schwerionen Synchrotron (SIS) and AGS [27] due
to momentum-dependent scalar and vector self-energies for
the baryons. However, the transverse slope of kaons and
antikaons is underestimated for bombarding energies above
about 5 A GeV in central Au+Au collisions, which has lead

to the suggestion that a “new phase of matter” or “partonic
degrees of freedom” should already be encountered at top
AGS energies [28].

The results obtained with PHSD are shown in Fig. 5. [Here
and for the subsequent models, we do not show ε(t) because it
is approximately proportional to ρ(t).] The time evolution of
the densities ρ(t) are remarkably similar to those obtained with
the three-fluid model discussed above, but it can be seen that
PHSD leads to somewhat smaller compressions, particularly
at higher collision energies.

The PHSD phase trajectories are therefore also rather
similar to those obtained with the three-fluid model, except for
somewhat smaller compressions and excitations at the highest
energies. (We may also note that both models yield a curious
double-hump structure of the density maxima, particularly
at the higher energies.) Furthermore, at each energy, the
inward path is rather similar to the outward path, though the
differences are larger than those obtained with the three-fluid
model. We also note that the 5 A GeV phase trajectory turns
around just at the hadronic border of the schematic phase
coexistence region (as for the three-fluid model), whereas
the 10 GeV/nucleon phase trajectory turns around at just the
schematic plasma phase boundary of this region.

C. Ultrarelativistic quantum molecular dynamics

The ultrarelativistic quantum molecular dynamics model
(URQMD) [29,30] is a microscopic model used to simulate
(ultra-)relativistic heavy-ion collisions in the energy range
from the BEVALAC and SIS up to AGS, SPS, and RHIC
allowing for a consistent calculation of excitation functions.
Its main goals are to gain understanding of the various physical
phenomena within a single transport model, including creation
of dense hadronic matter at high temperatures, properties of
nuclear matter, � and resonance matter, mesonic matter and
antimatter, creation and transport of rare particles in hadronic
matter, creation, modification and destruction of strangeness
in matter, and emission of electromagnetic probes.
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FIG. 6. (Color online) The time evolution of the central net baryon density ρ(t) (left) and the corresponding phase trajectory (ρ(t), ε(t))
(right) at the center of a head-on Au+Au collision at various bombarding energies (indicated in A GeV), in the URQMD model, together with
the schematic reference phase boundary depicted in Fig. 1. The symbols on the curves are separated by �t = 1 fm/c.

The initial projectile and target nuclei are modeled accord-
ing to the Fermi gas ansatz and the nucleons are represented
by Gaussian-shaped density distributions. URQMD includes
in its collision term 55 different baryon species with masses
up to 2.25 GeV, 32 meson species (including strange meson
resonances) that are supplemented by their corresponding
antiparticle, and all isospin-projected states. All these states
can be produced in string decays, s-channel collisions, or
resonance decays. For excitations with masses higher than
2 GeV a string picture is used. The hadron-hadron collisions
are performed stochastically like in the cascade models.
The elementary cross sections are fitted to available pp, πp

data and the isospin symmetry are used whenever possible
to reduce the number of individual cross sections. For the
interactions where no experimental data exist (e.g., hyperon-
baryon resonance scattering), the additive quark model is
used.

The interactions are based on a nonrelativistic density-
dependent Skyrme-type equation of state with additional
Yukawa and Coulomb potentials at low energies. However,
no potentials were used in the present calculations. For
the high-energy regime and baryon-antibaryon annihilation,
URQMD uses a string model similar to the Lund model
[31,32]. The strings, or the color tubes, are first formed
in the high-energy hh interactions and then fragment into
hadrons and new strings according to the Lund fragmentation
procedure. For the ultrahigh energies (top SPS energies and
beyond) the formation of jets is also introduced into the
model.

The URQMD results are shown in Fig. 6. While the time
evolutions of the densities ρ(t) and ε(t) are qualitatively similar
to those obtained with the other models discussed, the URQMD
compressions are somewhat higher than those of PHSD and
more similar to the quark-gluon string model (QGSM) results
(see below). A likely reason for this is that neither URQMD
nor QGSM has any constraint on the closest approach between
two baryons, whereas both the three-fluid model and PHSD
have some repulsion.

D. Quark-gluon string model

The QGSM [33–36] incorporates partonic and hadronic
degrees of freedom and is based on Gribov-Regge theory
(GRT) [37], accomplished by a string phenomenology of
particle production in inelastic hadron-hadron collisions. To
also describe hadron-nucleus and nucleus-nucleus collisions,
the cascade procedure of multiple secondary interactions of
hadrons was implemented. The QGSM incorporates string
fragmentation, formation of resonances, and rescattering of
hadrons but simplifies some nuclear effects (for example, it
neglects the mean fields).

As independent degrees of freedom the QGSM includes
the octet and decuplet baryons, the octet and nonet vector
and pseudoscalar mesons, and their antiparticles. The initial
momenta and positions of nucleons inside the nuclei are gen-
erated in accordance with the Fermi momentum distribution
and the Woods-Saxon density distribution, respectively. Pauli
blocking of occupied final states is taken into account.

Strings in the QGSM can be produced as a result of the
color exchange mechanism or, like in diffractive scattering,
momentum transfer. The Pomeron, which is a pole with an
intercept αP (0) > 1 in GRT, corresponds to the cylinder-type
diagrams. The inclusive spectra in the QGSM have automat-
ically the correct triple-Regge limit for the Feynman variable
x → 1 and double-Regge limit for x → 0 and satisfy all
conservation laws. The particular stages of the collision model,
namely (i) initialization of interacting projectile and target
nuclei, (ii) string formation via inelastic nucleon-nucleon
(hadron-hadron) interaction, (iii) string fragmentation (i.e.,
hadronization), and (iv) hadron-hadron rescattering, are solved
basically by Monte Carlo simulation techniques.

The results obtained with QGSM are shown in Fig. 7. The
time evolution of the densities ρ(t) and ε(t) are qualitatively
similar to those obtained with the three models discussed
above and quantitatively closest to URQMD for the reason ex-
plained above (no repulsion). However, especially at the lower
energies, the QGSM expansion trajectories fall significantly
below those of the other models.
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FIG. 7. (Color online) The QGSM evolution of the central net baryon density, ρ(t) (left), and the corresponding phase trajectory (ρ(t), ε(t))
(right) at the center of a head-on Au+Au collision at various bombarding energies (indicated in A GeV), with the time increments �t between
the symbols indicated in parentheses. Also shown is the schematic reference phase boundary depicted in Fig. 1.

The model assumptions of URQMD and QGSM are
rather similar and the absence of hadron repulsion results in
higher maximum compressions than those produced by the
other models. However, these two models have significantly
different expansion dynamics, probably due to larger number
of baryonic resonances included in URQMD. As a result of
this, the QGSM dynamics are dominated by the propagation
of nucleons and pions, whereas URQMD leads to significant
resonance production. Because the relatively abundant QGSM
pions (which are light) will propagate at velocities much higher
than those of the URQMD resonances (which are heavy),
they will leave the interaction region earlier, thus causing the
energy density to decrease more rapidly than in URQMD.
This mechanism is especially important at the lower energies
where heavy resonances play a significant role and it gradually
subsides as the energy is raised, consistent with the results.

E. Nuclear Boltzmann equation

The nuclear Boltzmann equation has proven to be quantita-
tively useful for the description of nuclear collisions at lower
energies, up to a few GeV/nucleon, and it may therefore be of
interest to employ it also here. For this purpose, we use the
Boltzmann-Ühling-Uhlenbeck model developed by the group
in Gießen (GIBUU) [38–41].

GIBUU explicitly propagates 9 N∗ and 9 � resonances
with masses below 2 GeV as well as the S = −1 hyperons
	 and 
 and 19 hyperon resonances; the cascades and
charmed baryons are included. The included mesons are
π, η, ρ, σ, ω, η′, φ, ηc, J/ψ,K, K̄,K∗, and K̄∗. The baryon-
baryon (meson-baryon) collisions below

√
s = 2.6 GeV are

treated within the resonance scenario, whereas the string model
is applied above.

Thus GIBUU contains a larger set of the baryonic reso-
nances than most other transport models (excepting URQMD
and the Tübingen QMD model) and it consequently leads to
higher pion numbers in vacuum. Medium corrections to the
cross sections NN ↔ NR and NN ↔ NNπ reduce the pion

number in medium. The in-medium reduced cross sections are
implemented (optionally) in GIBUU. They are computed with
the Dirac masses from the NL2 model [42]. In particular, the
NN ↔ N� matrix element is given by the one-pion exchange
model, as was done in the calculations of Dmitriev et al. [43]
but with the vacuum � and nucleon masses replaced by the
Dirac values that causes a strong in-medium reduction of the
cross section [40].

GIBUU provides a good reproduction of nucleon collective
flows [44] as well as pion and kaon multiplicities [40,45], at
SIS energies. From AGS to the lower SPS energies, GIBUU
overestimates pion multiplicities (with vacuum cross sections)
but gives a reasonable description of the kaon multiplicities
[41], as do HSD and URQMD. The direct comparison with
the HSD and URQMD calculations on the pion and kaon
production at 2–40 A GeV [41] has demonstrated that the
model yields a somewhat higher K+/π+ ratio due to additional
meson-meson channels in KK̄ production.

GIBUU is suitable not only for nucleus-nucleus and hadron-
nucleus collisions but also for photon-, electron-, and neutrino-
induced reactions. This gives the possibility of testing the
same dynamical part of the model with various physical initial
conditions. A new numerical realization of the model [46] is
currently being tested.

The results presented here are based on the old version
[38,39,41], with the calculations done in the cascade mode, i.e.,
without a mean field and using vacuum cross sections. These
results are shown in Fig. 8. They are rather similar to those
obtained with PHSD, the main differences being that GIBUU
reaches slightly higher densities and the difference between
the outward and the inward trajectory grows somewhat faster
as the collision energy is raised.

V. COMPARISONS

We now compare the phase trajectories obtained with the
different models at various collision energies through the
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FIG. 8. (Color online) The time evolution of the central net baryon density ρ(t) (left) and the corresponding phase trajectory (ρ(t), ε(t))
(right) at the center of a head-on Au+Au collision at various bombarding energies (indicated in A GeV), in the GIBUU model, together with
the schematic phase boundary shown in Fig. 1.

anticipated FAIR range. These comparisons are shown in Fig. 9
for the beam energies E0 = 5, 10, 20, and 40 GeV/nucleon.

First, we note that by and large there is a remarkable degree
of agreement among the results of the different models. The
most notable exception is the QGSM expansion paths, which
come out significantly lower than those of the other models,
as already discussed in Sec. IV D.

For the subsequent discussion, to make a concrete analysis
possible, we take the adopted reference phase boundary at face
value. But it is important to keep in mind that this particular
boundary, though not inconsistent with any information we
presently have, is likely to be quantitatively inaccurate.
However, its qualitative form is expected to be correct and our
comments below are therefore expected to be robust, provided
that appropriate adjustments are made in the specific energy
values mentioned.

At the lowest beam energies (under 5 A GeV or so with
the adopted phase boundary), the degree of compression and
agitation attained does not suffice to bring the central part of the
system into the phase coexistence region and such collisions
are not likely to have a bearing on the possible existence of
a phase transition. However, due to their relative slowness,
these collisions achieve of high degree of local equilibrium and
the data obtained in this range may well provide quantitative
information on the equation of state at the corresponding
moderate compressions.

Above those “subthreshold” energies follows a range of
beam energies (approximately 5–10 GeV/nucleon for the
adopted reference phase boundary), within which the highest
degree of compression occurs within the region of phase co-
existence. As the beam energy is increased through this range,
the turning point of the phase trajectory moves across the
coexistence region, starting at the hadronic phase coexistence
boundary and ending at the plasma boundary. Though some-
what more violent, these trajectories are generally expected
to still attain a high degree of local equilibrium. Furthermore,
importantly, they spend the longest period of time within the
phase coexistence region. Therefore, this energy range appears

to be especially well suited for generating signals of the phase
transition.

As the collision energy is increased further, the turning point
of the phase trajectory moves further inside the plasma region
and, at the same time, the expansion path steepens. The time
spent crossing the phase coexistence region then decreases,
both in absolute terms and relative to the overall expansion
time, so one would expect any phase-transition signals to
gradually subside.

Ultimately, beyond a certain critical collision energy (for
which the expansion phase trajectory passes straight through
the critical point), the phase trajectory never enters the
coexistence region but passes entirely to the left of the critical
point. Though interesting in its own right, this supercritical
region of collision energy would not be expected to elucidate
the character of the deconfinement phase transformation, i.e.,
to help determine whether there is in fact a first-order transition
at sufficiently high baryon density.

We also note that the adiabatic expansion results obtained
with the SU(3) model correspond approximately to the
backtracking of the very early (and mostly nonequilibrium)
dynamics when the two Lorentz-contracted nuclear densities
are being forced to interpenetrate. This feature mostly reflects
the fact that the adopted initial values were taken to reflect
such a scenario. If suitably modified initial conditions were
chosen, for example, obtained from the turning point of a
dynamical trajectory, then the resulting expansion path would
exhibit a large degree of resemblance with the corresponding
dynamical trajectory. Thus one may characterize the actual
dynamical expansions as being approximately adiabatic.

Finally, we wish to emphasize that none of the dynamical
models employed (except possibly PHSD) incorporate a first-
order phase transition. They would therefore not be suitable,
in their present form, for studying actual dynamical conse-
quences of a phase transition. However, the presence of such a
phase transition is not expected to have an overwhelming effect
on the gross dynamics, primarily due to the predominance
of the overall expansion. [This expectation is supported by
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FIG. 9. (Color online) The phase trajectories (ρ(t), ε(t)) at the center of a head-on Au+Au collision for various bombarding energies as
obtained with the indicated models, together with the schematic phase boundary shown in Fig. 1 and the hadronic freeze-out line [2]. The
symbols on the URQMD and QGSM curves are separated by the time intervals indicated in parentheses (fm/c).

comparisons between HSD (which does not contain a partonic
phase) and PHSD (which does have a partonic phase) in
the energy range considered here.] Therefore, it must also
be expected that the effects of a phase transition would be
relatively subtle and might best be studied with carefully
designed correlation observables.

VI. CONCLUDING REMARKS

The present study has sought to elucidate the bulk condi-
tions that may be expected to occur in nuclear collisions in
the energy range where a possible first-order hadronization
phase transition would be encountered. For this we have
employed a number of existing dynamical models to central
Au+Au collisions and extracted the time evolution of net
baryon density ρ and the energy density ε at the center
of the system where these are expected to achieve their
largest values. The different models exhibit a large degree of
mutual agreement on the behavior of the corresponding phase
trajectories (ρ(t), ε(t)), as was summarized in Fig. 9, even if
they differ substantially in other regards.

A central issue in the physics of strongly interacting matter
is whether the hadronization phase transformation is of first

order at sufficiently high baryon density. The calculation of
the corresponding critical point, and the associated phase
boundary, poses a significant theoretical challenge and the
question may ultimately have to be settled by experiment.

The experimental investigation of this question may employ
conceptually different strategies. One strategy searches for the
critical point by means of special signals that may occur if the
phase trajectory reaches its vicinity. However, the location of
the critical point remains theoretically poorly understood and,
as is well illustrated by Fig. 9, a small shift in its position would
require a relatively large change in the collision energy of the
critical phase trajectory that passes through it. Consequently,
it is hard to predict what energy range would be most suitable
for this approach. Indeed, our present studies cannot rule out
that the critical collision energy lies somewhere in the SPS
range above the energies reachable by the planned FAIR.

A different experimental strategy seeks direct evidence
of the first-order transition by concentrating on signals that
might appear as a result of the phase trajectory encountering
the phase-transition line. One would expect that such signals
would best be generated if the bulk of the system were brought
well inside the phase coexistence region, where a phase
decomposition is favored, and kept there for a time sufficient
to allow the development of the macroscopic nonuniformities
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associated with the phase decomposition. Though also associ-
ated with significant uncertainties, this issue can probably be
assessed with somewhat larger confidence. Thus, considering
the large degree of mutual agreement between the different
dynamical results and taking first the adopted schematic phase
boundary at face value, the present study suggest that the
optimal beam energy is around 10 A GeV, corresponding
to

√
sNN ≈ 2.36 GeV + 2.36 GeV for a collider. We must,

however, make allowances for the fact that the adopted
schematic phase boundary is not expected to be quantitatively
accurate. Furthermore, the dynamical models, though yielding
fairly similar results, may all possess common inaccuracies.
With a factor of 2 used to account for such uncertainties, the
present study would then suggest that the optimal conditions
for exploring the hadronization phase transition are likely
(though not certain) to occur for beam kinetic energies of
5–20 GeV/nucleon, corresponding to

√
sNN ≈ 3.6–6.4 GeV

for a collider.
These numbers suggest that the planned FAIR at GSI is

well matched for such studies. Furthermore, this region may

also be accessible at the low-energy end of RHIC at BNL, as
well as at a possible upgraded Nuclotron at JINR in Dubna.
Of course, further dynamical studies are required before it is
possible to identify the specific candidate signals and to assess
whether they can indeed be expected to develop sufficiently
even at the optimal collision energy. We hope that this study
will provide stimulation in this regard.
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