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Preface

This book is an extension of a course for advanced undergraduate and
graduate students that I have taught at the University of California,
Davis over the last ten years. It represents an attempt to gather useful
information for new practitioners in the field of relativistic heavy-ion
collisions in one place. As a resource for students, the text is on a rather
basic level of theoretical depth. There is not a strong focus on data
because the most recent data from the Relativistic Heavy Ion Collider
is in a state of flux and no final conclusions have been drawn.

There are some excellent references that go beyond the scope of
this book which can be used for more in-depth studies of theory. Cross
sections and perturbative QCD is covered well in Halzen and Mar-
tin ’Quarks and Leptons: An Introductory Course in Modern Particle
Physics’, the CTEQ ‘Handbook of Perturbative QCD’ and, on a more
phenomenological level, Perkins ’Introduction to High Energy Physics’.
For more on ultraperipheral collisions, see the reviews by Baur et al.
and Bertulani et al.. The review by Cleymans, Gavai and Suhonen
’Quarks And Gluons At High Temperatures And Densities’ was very
useful in preparation of the chapters on thermodynamics and hydro-
dynamics. The book ‘Thermal Physics’ by Kittel and Kroemer gives a
good basic introduction to thermodynamics. The books ‘Finite Tem-
perature Field Theory’ by Kapusta and ‘Introduction to Relativistic
Heavy Ion Collisions’ by Csernai go further in depth in on these topics.
Both Ramond ‘Field Theory: A Modern Primer’ and Cheng and Li
‘Gauge Theory of Elementary Particle Physics’ give good discussions
of Grassman variables. Cheng and Li also have an excellent discussion
of symmetries. A good early book on lattice gauge theory is ‘Quarks,
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vi Preface

Gluons and Lattices’ by Creutz. The earlier textbook, ‘Introduction
to High-Energy Heavy-Ion Collisions’ by Wong has an understandable
section on lattice gauge theory. For finite temperature on the lattice,
there are a number of very good reviews by Karsch and by Gupta.

For a snapshot of the conclusions reached from the early RHIC runs
with Au+Au, d+Au and pp collisions at 200 GeV in the center of mass,
see Volume 757 of Nuclear Physics A containing reviews by all of the
first four RHIC experiments. A compendium of new data is available
in the proceedings of the Quark Matter conference series, the major
meeting in this field.

This book is organized into two parts. The first part covers the
basic physics of heavy ion collisions with chapters on kinematics, cross
sections, geometry, thermodynamics, hydrodynamics and lattice gauge
theory. It includes examples in the text and exercises at the end of
each chapter. The second part includes several chapters that are more
like extended examples using concepts developed in the first part. The
chapters on high mass thermal dileptons and quarkonium cover two
high energy probes in some depth. The third discusses fragmentation
and hadronization of final state particles in proton-proton collisions.

Finally, I would like to thank my colleagues at UC Davis and the
students in the class that have helped make this course better. In
particular I would like to mention Daniel Cebra, Mike Anderson and
Brooke Haag. Roppon Picha was great help, putting all the equations
in my hand-written lecture notes into LaTeX. I would like to thank
Frithjof Karsch for discussions about the lattice chapter. I also thank
Jean Cleymans, Vesa Ruuskanen and Bengt Friman for discussions
on other sections and Joe Kapusta for useful remarks. I thanks Carl
Schwarz at Elsevier for originally suggesting that I do this book and
enthusiasm about the project. Last but not least I thank Jørgen and
Kristina for their patience during the completion of the book.
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Part I

Basics





Chapter 1

Kinematics and invariants

1.1 Introduction

Over the years, nuclear collision energies have increased from beam ki-
netic energies of a few MeV/nucleon on fixed targets in small university
laboratories to, at present, collider energies at large laboratories with
international collaborations. As the energy is increased, the relevant
degrees of freedom change. At the lowest energies, the nucleus may
remain intact or be broken up into light nuclear fragments. As various
thresholds for particle production are reached, some of the energy of
the system may go into producing new particles, such as pions or kaons.
At high enough energies, the relevant degrees of freedom are expected
to be quarks and gluons rather than hadrons, forming the quark-gluon
plasma.

The modern era of heavy-ion collisions arrived with beam energies of
10-200 GeV/nucleon at fixed-target facilities: the Alternating Gradient
Synchrotron (AGS) at Brookhaven National Laboratory (BNL) and the
Super Proton Synchrotron (SPS) at the European Center for Nuclear
Research (CERN). Both the AGS and the SPS accelerated protons
and several types of ions onto fixed targets of heavy nuclei. While
the AGS accelerated silicon, Si, and gold, Au, ions, the SPS provided
oxygen, O, sulfur, S, and lead, Pb, beams as well as, more recently,
indium, In. Proton-proton (pp) and proton-nucleus (pA) interactions
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4 1. Kinematics and invariants

are used as baseline comparison measurements to distinguish true dense
matter effects in nucleus-nucleus (AB) collisions from those already
present in pp and pA collisions. For gold ions (nuclear mass number,
A, of 197), the maximum energy at the BNL AGS was 10 GeV/nucleon
while the maximum lead ion (A = 208) energy at the CERN SPS was
158 GeV/nucleon. Lower energy ion beams were also used to perform
energy scans, down to 2 GeV/nucleon at the AGS and 20 GeV/nucleon
at the SPS.

Note that the maximum energy per nucleon of the heaviest ion
beam is not as high as the maximum possible proton beam energy,
Emax. The maximum energy for ions is EmaxZ/A where Z is the proton
number (nuclear charge). Protons and lighter ions can be accelerated
to higher energies per nucleon, E/A, due to their larger charge-to-mass
ratio, Z/A. The Z/A ratio determines the acceleration capability be-
cause while the uncharged neutrons are unaffected by the electromag-
netic fields, they remain bound in the nucleus. The maximum possible
center-of-mass energy for these fixed-target machines is rather low, 4.4
GeV/nucleon for Au+Au collisions at the AGS and 16.8 GeV/nucleon
for Pb+Pb collisions at the SPS.

Now, two nuclear colliders take heavy-ion physics to the next level.
In a collider, both collision partners, the ‘projectile’ and ‘target’ are
accelerated, leading to much higher energies than those possible at
fixed-target facilities. The Relativistic Heavy-Ion Collider (RHIC) at
BNL and the Large Hadron Collider (LHC) at CERN produce Au+Au
and Pb+Pb collisions at energies up to 200 GeV/nucleon and 5500
GeV/nucleon respectively in the center of mass. Diagrams of the RHIC
and LHC accelerator complexes are shown in Figs. 1.1 and 1.2. These
high energies, far above production threshold for most particles, make
it possible to study the production of rare particles not accessible at
lower energy facilities.

At the RHIC complex, the atoms are stripped of some of their
electrons, leaving a positive charge which is accelerated by an electric
field in the Tandem van de Graaff. The ions are then sent through a
beam line in vacuum at 5% the velocity of light via a magnetic field.
Protons are accelerated by the Linac and then sent to the Booster.
Both ions and protons are further accelerated by the Booster and then
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Figure 1.1: Schematic diagram of the RHIC accelerator complex [1].
Image courtesy of Brookhaven National Laboratory.

fed into the AGS where the ions are further accelerated from 37% the
velocity of light to 99.7% the velocity of light. After reaching 99.7%
the velocity of light, the ion beam is sent via a transfer line to the
RHIC ring. A magnetic field that switches field direction sends the
ions either left to travel clockwise around the ring or right to travel
counterclockwise in the second ring. The ring is 2.4 miles (3.8 km)
in circumference. The two oppositely-directed beams can collide at
one of six interaction points. The first experiments at RHIC (STAR,
PHENIX, PHOBOS and BRAHMS) occupied four of these interaction
points. Together, these four experiments included 970 physicists from
around the world working to build the detectors, take and analyze the
data.

At the LHC, both protons and lead ions start their acceleration
chain using Linacs which then feed into the Proton Synchrotron (PS)
and the SPS before being transferred to the LHC rings. Note that
on Fig. 1.2 there are several tangential lines lines off the PS and SPS
rings (East Area on the PS and North and West Areas on the SPS)
which end in fixed-target experimental areas. In addition there is a
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Figure 1.2: Schematic diagram of the CERN accelerators [2]. CERN
copyright.

beam line from the SPS to a neutrino production area. The neutrinos
are detected at the Gran Sasso laboratory in Italy, 456 miles (730 km)
away. The LHC rings are 16.9 miles (27 km) in circumference. The
CERN complex straddles the borders of Switzerland and France. There
are four interaction points for experiments (ALICE, ATLAS, CMS and
LHCb). To get an idea of the geography, ATLAS is the only detector
located in Switzerland. The others are all in France. The LHC tunnel
is 50-175 m underground. The varying distance below ground is due
to the fact that the tunnel runs under the Jura mountain range. The
ALICE experiment is dedicated to heavy-ion studies. CMS and ATLAS
were mainly conceived as proton-proton experiments but CMS is also
an approved heavy-ion experiment and ATLAS also has a heavy-ion
group. The LHCb detector is designed to study CP violation in bottom
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quark-antiquark systems. The ALICE experiment alone has more than
1000 collaborators, greater than all the RHIC experiments combined.

We will not go into detail here about the acceleration process or
particle detectors but will instead concentrate on the theory behind
understanding these collisions.

Here we introduce some of the important kinematic variables and
notation used to describe particle interactions in heavy-ion collisions.
Since heavy-ion experiments now are at energies approaching those of
fundamental interactions in particle physics, it is appropriate to use
relativistic kinematics and four-vector notation. The next section cov-
ers this notation while the following section deals with boost-invariant
quantities.

1.2 Four-vectors and kinematic variables

We first introduce some kinematic variables that are useful to describe a
particle’s position and momentum. We will discuss how these variables
transform under special relativity and introduce quantities invariant
under Lorentz transformations.

It is useful to describe a particle’s position and momentum in terms
of four-vectors. In the case of position, the four-vector is represented
as xµ where µ = 0, · · · , 3 and

xµ = (x0, x1, x2, x3) = (ct, x, y, z) . (1.1)

The zeroth coordinate is the time coordinate while µ = 1, 2 and 3 are
the spatial coordinates. We will use boldface type to distinguish four-
vectors more explicitly here but note that this is not typically done.
The right-hand side of Eq. (1.1) identifies the zeroth component of the
four-vector with the time variable while the components with µ = 1, 2
and 3 are the positions on the x, y and z spatial axes. The spatial four
vector is often collapsed to two components with the introduction of a
transverse coordinate, xT =

√
x2 + y2, neglecting the azimuthal angle,

so that

xµ = (t, xT , z) (1.2)
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where we have now taken c = 1, as is often done.
The momentum four-vector can be defined similarly so that

pµ = (p0, p1, p2, p3) = (E/c, px, py, pz) (1.3)

= (E, pT , pz) (1.4)

Note that now the zeroth component corresponds to the particle energy
and pT =

√
p2

x + p2
y, again neglecting the azimuthal angle. We have

again taken c = 1 between Eqs. (1.3) and (1.4).
To multiply four-vectors, we need to be able to raise and lower the

indices, essentially to change a row vector to a column vector. We use
the metric tensor gµν to raise and lower the indices where

gµν =





1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



 . (1.5)

When the metric tensor operates on a four-vector, it changes the sign
of the three-vector components, µ = 1, 2, 3. The four-vector with the
lowered index is written as a column vector rather than a row vector
so that e.g.,

xµ = gµνx
ν =




t

−xT

−z



 (1.6)

pµ = gµνp
ν =




E

−pT

−pz



 . (1.7)

Then, when we multiply four-vectors, we multiply a row vector with
four components by a column vector with four components, resulting
in a scalar. We have

a · b = aµbµ = gµνaµbν = a0b0 − !a ·!b (1.8)

where a and b are any pair of four-vectors. Two cases are particularly
useful in our further studies. They are the multiplication of the position
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and momentum four-vectors of a particle, p · x, and the multiplication
of two momentum four-vectors. The first is denoted by

p · x = Et − !p · !x (1.9)

while the second is

p1 · p2 = E1E2 − !p1 · !p2 (1.10)

which, when 1 = 2, collapses to

p · p = p2 = E2 − |!p|2 = m2 . (1.11)

Then, since the square of the particle mass, m, is always greater than
or equal to zero, p2 = m2 ≥ 0 and p2 is a ‘time-like’ quantity since the
zeroth components of the four-vectors dominate. If, on the other hand,
the square of a four-vector is negative, a2 < 0, it is referred to as a
‘space-like’ quantity since the spatial (3-vector) contribution is largest.
For example, in deep-inelastic scattering, the square of the momentum
transferred from the lepton to the proton, q2, is negative but is usually
referred to as Q2 = −q2 ≥ 0, as we discuss later.

Figure 1.3 shows the collision of two particles at ultrarelativistic
energies. The vertical axis is the time direction where the lower half
plane is before the collision while the upper half plane is after the
collision. The projectile comes from the left (z < 0) and goes off to
the right. The target comes from the right (z > 0) and goes off to
the left. The diagonal lines where t2 − z2 = 0 along the path of the
‘projectile’ and the ‘target’ define the ‘light cone’. The collision occurs
at t = z = 0. The upper part of the light cone, where t2−z2 > 0, is the
time-like region. Particle production in a real collision occurs in the
upper half plane within the light cone. Outside the light cone, where
t2 − z2 < 0, is the space-like region.

Most experiments are either done with either a beam on a fixed
target (laboratory frame) or in a collider. We use special relativity to
write the laboratory quantities in the center-of-mass frame by

(
E∗

p∗z

)
=

(
γ −βγ

−βγ γ

)(
E
pz

)
(1.12)
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t

z

t

t

2−z2>0

2−z2<0

Figure 1.3: The collision axis representing one space (z) and one time
dimension. The time-like (t2 − z2 > 0) and space-like (t2 − z2 < 0)
regions after the collision at t = z = 0 are indicated.

where the variables in the new frame are ‘starred’. Note that only
the energy and longitudinal momentum are changed under the Lorentz
transformation so that !p∗

T = !pT . The velocity of the particle is denoted
by β so that !β = !p/E. When transforming the projectile and target
momenta from the laboratory to the center-of-mass frame, the particle
has only a longitudinal velocity and we can write β = pz/E. The
gamma factor, γ, is related to the velocity by γ = (1 − β2)−1/2 so
that, after substituting for β, we have γ = E/

√
E2 − p2

z = E/m since
pT = 0. Then, defining β and γ as the velocity and boost factor from
the laboratory frame to the center-of-mass frame, we have

E∗ = γ(E − βpz) , (1.13)

p∗z = γ(pz − βE) . (1.14)

We now define two variables that are very convenient for describing
particle kinematics, the transverse mass and the rapidity. The trans-
verse mass, mT , is related to the difference between the squares of the
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energy and longitudinal momentum,

m2
T = E2 − p2

z = p2
T + m2 . (1.15)

It is an invariant under Lorentz transformations.

EXAMPLE: By substituting Eqs. (1.13) and (1.14) into Eq. (1.15),
show that m2

T is an invariant.
By substitution,

(E∗)2 − (p∗z)
2 = (γ(E − βpz))

2 − (γ(βE − pz))
2

= γ2(E2(1 − β2) − p2
z(1 − β2)) . (1.16)

Then, using the definition of γ and β,

(E∗)2 − (p∗z)
2 = E2 − p2

z . (1.17)

The rapidity of a particle can also be defined in terms of its energy
and longitudinal momentum, as in Eq. (1.15) above. In this case,

y =
1

2
ln

E + pz

E − pz
. (1.18)

The rapidity of the particle can be written in terms of its velocity,
β, instead of the momentum and energy if we define its direction of
motion to be along the z axis since β = pz/E. Then

y =
1

2
ln

1 + β

1 − β
. (1.19)

We can make use of Eq. (1.18) to define the energy and longitudinal
momentum in terms of the transverse mass and rapidity, using the defi-
nitions of the hyperbolic sine and cosine, sinh y = [exp(y)−exp(−y)]/2
and cosh y = [exp(y) + exp(−y)]/2. Then, using the definition of ra-
pidity in Eq. (1.18), we have

E = mT cosh y , (1.20)

pz = mT sinh y . (1.21)

EXAMPLE: Using Eq. (1.18), prove these equalities.
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We can exponentiate the left- and right-hand sides of Eq. (1.18) to find

exp(y) =

√
E + pz

E − pz
, exp(−y) =

√
E − pz

E + pz
.

Then we form the sum and difference of the two exponentials,

exp(y) + exp(−y) =
E + pz√
E2 − p2

z

+
E − pz√
E2 − p2

z

=
2E

mT
,

exp(y) − exp(−y) =
E + pz√
E2 − p2

z

−
E − pz√
E2 − p2

z

=
2pz

mT
.

Rearranging terms and using the definitions of cosh y and sinh y, we have

Eqs. (1.20) and (1.21).

An advantage of rapidity over velocity is that it transforms more
straightforwardly under Lorentz boosts. If y is defined as in Eq. (1.18),
then, in the boosted frame,

y∗ =
1

2
ln

(
E∗ + p∗z
E∗ − p∗z

)
= y −

1

2
ln

(
1 + β

1 − β

)
. (1.22)

EXAMPLE: Prove Eq. (1.22).
Substituting the definitions of E∗ and p∗z from Eqs. (1.13) and (1.14) and
rearranging terms, we have

y∗ =
1

2
ln

(
E∗ + p∗z
E∗ − p∗z

)
=

1

2
ln

(
γ(E − βpz) + γ(pz − βE)

γ(E − βpz) − γ(pz − βE)

)

=
1

2
ln

((
1 − β

1 + β

)(
E + pz

E − pz

))
= y −

1

2
ln

(
1 + β

1 − β

)
.

We now examine two extreme cases and look at the particle rapidity.
The first case is when the velocity, β, is very small, β # 1. Then we
can expand the numerator and denominator of Eq. (1.19) to find

y ≈ β . (1.23)

EXAMPLE: Prove Eq. (1.23).
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Using x = 1 ± β in Eq. (1.19), we make a Taylor expansion of ln x around
x0 = 1. Then

ln x ≈
x − x0

x0
−

(x − x0)2

2x2
0

+
(x − x0)3

3x3
0

+ · · · . (1.24)

We write Eq. (1.19) as

y =
1

2
[ln(1 + β) − ln(1 − β)] .

and substitute the values of x and x0 (x − x0 = ±β) into Eq. (1.24) to find

y =
1

2
[β − β2/2 + β3/3 − (β − β2/2 − β3/3)] =

1

2
[2β + 2β3/3]

≈ β + O(β3) .

On the other hand, when the particle momentum is so high that the
mass can be ignored, p % m, we can relate the rapidity to the pseudo-
rapidity, η, and then to the angle of emission, θ. The pseudorapidity
is often a more useful experimental measure, especially if the particles
detected are not identified and their masses are thus unknown. We de-
fine the angle of particle emission relative to the z axis as cos θ = pz/p.
Then E + pz =

√
p2 + m2 + pz and

√
p2 + m2 = p

√
1 + (m/p)2 ≈ p(1 + m2/2p2 + · · · ) (1.25)

when p % m. Then

E + pz ≈ p([1 + pz/p] + m2/2p2) = p(1 + cos θ) + m2/2p2))

= 2p(cos2(θ/2) + m2/4p2) (1.26)

using the definition 2 cos2(θ/2) = 1 + cos θ. Similarly, E − pz =
2p(sin2(θ/2) + m2/4p2) since 2 cos2(θ/2) = 1 − cos θ. Because p % m,
we can drop the second term in each equality so that

y ≈ − ln[tan(θ/2)] ≡ η . (1.27)

It is often more convenient to use rapidity for phenomenological calcu-
lations since the mass of the desired particle is known. On the other
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hand, pseudorapidity is typically used by experimentalists for reasons
of convenience. As stated above, if the measured particles are uniden-
tified, then rapidity cannot be defined as in Eq. (1.18). In addition,
a typical detector or detector component covers some well-defined θ
region with respect to the beam axis, making pseudorapidity a natural
variable to use.

1.3 Invariants

The momentum and position of a particle are not frame invariant. How-
ever, many of the physical quantities, such as cross sections and rates,
measured in experiments should be independent of the frame in which
the measurement is made. Thus, for convenience, the cross sections
are normally written in terms of invariants. These invariants, based on
four-momenta, are used to describe interactions between particles and
thus appear in calculations of the scattering cross sections. A typical
two-body scattering diagram is shown in Fig. 1.4. The invariants are

p p

p

p

θ
2

3

1

4

Figure 1.4: A typical 2 → 2 scattering diagram with particles 1 and 2
incoming while 3 and 4 are outgoing.

the squares of sums or differences of four-momenta. There are three


