4.7 GeV Cu+Al beam+pipe event analysis Brooke Haag Hartnell College University of California, Davis Light flavor spectra meeting October 29, 2009 ## Summary of Low Energy Test Runs | Collision
Energy
(GeV) | Single
Beam
Energy | Single
Beam P _z
(GeV/C) | Fixed
Target
√s | Single
Beam
Rapidity | Center of
Mass
Rapidity | |------------------------------|--------------------------|--|-----------------------|----------------------------|-------------------------------| | 22.4
Cu+Cu | 11.2 | 11.16 | 4.66
Cu+Al | 3.18 | 1.59 | | 19.6
Au+Au | 9.8 | 9.76 | 4.47
Au+Al | 3.04 | 1.52 | | 9.2
Au+Au | 4.6 | 4.50 | 3.21
Au+Al | 2.28 | 1.14 | ### Proposed Beam Energy Scan Fixed Target points # Event characteristics 0.8 1 m_T - m₀ (GeV) 0.4 0.6 0.2 $$y = 1.59 \pm 0.25$$ $y = 1.59 \pm 0.25$ $$y = 1.13 \pm 0.25$$ $y = 1.13 \pm 0.25$ ### Conclusions and Outlook - we have been able to extract yields and spectra from several species for fixed target collisions at lab rapidity - need to understand centrality - need to understand detector efficiency at high rapidities - need much better statistics this study is a proof of principle - the ultimate aim is to get yields and slopes which compare favorably with published data in this energy range