
1

Defining your own commands

I will only touch on this subject. In the preamble, you may define your
own commands with the \newcommand{}[]{} command. These become
indispensable when writing long, structured documents. For example, all
through these example documents, I have been writing package names in
a sans serif font and commands in a fixed-width typewriter font, but using
\textsf and \texttt respectively.

It would have been much better of me to define new commands, let’s
say \pkg and \cmd, for these tasks. Have a look in the preamble to this
document how I should have gone about this:

\newcommand{\pkg}[1]{\textsf{#1}}

\newcommand{\cmd}[1]{\texttt{#1}}

The commands should be fairly self-evident. The first argument is the
name of the new command. The second optional argument is the number
of arguments your new command is to have; and the third argument stands
for the definition of your command, with passed arguments #1. . .#9 (yes,
that means no more than nine arguments).

So now let’s say I’m talking about the \cmd{href} command of the
\pkg{hyperref} package. Notice I’m using my new commands. Not only
are they styled how I like, they even make logical sense now. The source now
contains more meaning than if I’d written “the \texttt{href} command
of the \textsf{hyperref} package”. The same is even more true for my
other new command \strong—see the first word of the next paragraph.

Furthermore, what if I wish to change the way I’m displaying those
commands? Imagine if I’d typed in explicitly every font-changing command
(as is the case for all of these example documents). To change packages to
bold and commands to small caps I’d have to go through the whole lot of
them and alter every single instance. If I’ve defined \pkg in the preamble
and used it instead, I simply have to alter my definition and re-compile my
document. I’m sure you can see the advantage.


