

Interference in vector meson production in Au+Au Collisions $\sqrt{s_{NN}} = 200 \text{ GeV}$ from STAR

Brooke Haag UC Davis

Outline

- Ultra Peripheral Heavy Ion Collisions (UPCs)
 - What is a UPC?
 - Vector Meson Production / Interference
 - Triggers
- Analysis of UPC events
 - Fitting Scheme
 - Observation of interference effects in t spectrum

Presented at the Annual Meeting of the Division of Nuclear Physics October 25-28, 2006 Nashville, Tennessee

Ultra Peripheral Collisions

ρ^o Production Mechanisms

 $Au+Au \rightarrow Au+Au+\rho^{\circ}$

Courtesy of F. Meissner

• Photon emitted by a nucleus fluctuates to virtual qq pair

- Virtual qq pair elastically scatters from other nucleus
- Real vector meson (i.e. J/ψ , ρ°) emerges
- Photon and pomeron are emitted coherently
- Coherence condition limits transverse momentum of produced ρ

Coulomb Excitation

- Photons exchanged between ions give rise to excitation and subsequent neutron emission
- Process is independent of ρ^o production

$$\sigma(AuAu \rightarrow Au^*Au^* + \rho^o) = \int d^2bP_{\rho}(b)P_{XnXn}(b)$$

DNP, Nashville, October 2006

 p_T

h

 $2R_{\Lambda}$

$$A_{o}(x_{o}, \vec{p}, b) = A(p_{\perp}, y, b)e^{i[\phi(y) + p \cdot (x - x_{o})]} - A(p_{\perp}, -y, b)e^{i[\phi(-y) + p \cdot (x - x_{o})]}$$

• Cross section comes from square of amplitude:

$$\sigma = A^{2}(p_{\perp}, y, b) + A^{2}(p_{\perp}, y, b) - 2A(p_{\perp}, y, b)A(p_{\perp}, -y, b) \times \cos[\phi(y) - \phi(-y) + \vec{p} \cdot \vec{b}]$$

• We can simplify the expression if $y \rightarrow 0$:

$$\sigma = 2A^2(p_{\perp}, b)(1 - \cos[\vec{p} \cdot \vec{b}])$$

4

Triggers

$Au+Au \rightarrow Au+Au+\rho^{o}$

(UPC Topology)

- Central Trigger Barrel divided into four quadrants
- Verification of ρ decay candidate with hits in North/South quadrants
- Cosmic Rav Background vetoed in Top/Bottom quadrants

$Au+Au \rightarrow Au^*+Au^*+\rho^o$

(UPC Minbias)

- Minimum one neutron in each Zero Degree
 Calorimeter required
- Low Multiplicity

Central Trigger Barrel North South Bottom Veto

Trigger Backgrounds

- Cosmic Rays
- Beam-Gas interactions
- Peripheral hadronic interactions
- Incoherent photonuclear interactions

Studying the Interference

- Generate MC t spectra with and without interference
- Calculate MC ratio in order to illustrate interference effect
- Fit MC ratio

Measuring the Interference

Apply overall fit

$$\frac{dN}{dt} = Ae^{-kt}(1 + c[R(t) - 1])$$
• A= overall normalization
• k = exponential slope
• c = degree of interference

c = 1expected degree of interference

> c = 0no interference

interference

Illustration of Fitting Methodology

Results Summary

	С	χ^2/dof
excitation		
0 < y < 0.5	1.01±0.08	51/47
0.5 < y < 1.0	0.93±0.11	80/47
No excitation		
0.1 < y < 0.5	0.85±0.12	88/47
0.5 < y < 1.0	1.06±0.21	84/47

Systematic Error Study

Fitting Systematics

• Sensitivity of overall fitting to ratio fit

- Extract interference parameter c
- Sensitivity of fitting to slope ($\sim R_A^2$) parameter
 - Apply fit and extract k
 - Fix *k* to 100%, 90%, 80% of extracted value
- Re-fit spectrum and extract interference parameter c
 Theoretical Systematics
- Comparison between models
 - Hencken, Baur, Trautmann, Phys.Rev.Lett.96:012303,2006
 - Klein, and Nystrand, Phys.Rev.Lett. 84:2330,2000

Detector Effects

- Momentum resolution
- Forward/Backward comparison

$$\frac{dN}{dt} = Ae^{-kt}(1+c[R(t)-1])$$

Summary & Outlook

Interference in vector meson production has been observed at STAR.

- At small t, the predicted downturn is clearly seen.
- The measured degree of interference is consistent with unity.
- Currently in the process of systematic error study and refining fitting scheme.

