

Interference in Coherent Vector Meson Production in UPC Au+Au Collisions at $\sqrt{s} = 200$ GeV

Brooke Haag UC Davis

Outline

• Ultra Peripheral Heavy Ion Collisions (UPCs)

- What is a UPC?
- Vector Meson Production / Interference
- STAR detectors / Triggers
- Analysis of UPC events
 - Fitting Scheme
 - Observation of interference effects in t spectrum
 - Systematic Errors and Outlook

Ultra Peripheral Collisions

- Photonuclear interaction
- Two nuclei "miss" each other (b > 2R_A), electromagnetic interaction dominates over strong interaction
- Photon flux ~ Z^2
 - Weizsäcker-Williams Equivalent Photon Approximation

$$\frac{d^3N(k,r)}{dkd^2r} = \frac{Z^2\alpha x^2}{\pi^2 kr^2}K_1^2(x) \qquad x = \frac{kr}{\gamma}$$

No hadronic interactions

Exclusive ρ^{o} Production

$$Au+Au \rightarrow Au+Au+\rho^{o}$$

- Photon emitted by a nucleus fluctuates to virtual qq pair
- Virtual qq pair elastically scatters from other nucleus
- Real vector meson (i.e. J/ ψ , ρ°) emerges
- Photon and pomeron are emitted coherently
- Coherence condition limits transverse momentum of produced ρ

ρ^o Production With Coulomb Excitation

 $Au+Au \rightarrow Au^*+Au^*+\rho^{\circ}$

- Photons exchanged between ions give rise to excitation and subsequent neutron emission
- Process is independent of ρ^{o} production

$$\sigma(AuAu \rightarrow Au^*Au^* + \rho^o) = \int d^2bP_{\rho}(b)P_{XnXn}(b)$$

Courtesy of S. Klein

$$A_{o}(x_{o}, \vec{p}, b) = A(p_{\perp}, y, b)e^{i[\phi(y) + \vec{p} \cdot (\vec{x} - \vec{x}_{o})]} - A(p_{\perp}, -y, b)e^{i[\phi(-y) + \vec{p} \cdot (\vec{x} - \vec{x}_{o})]}$$

• Cross section comes from square of amplitude:

 $\sigma = A^2(p_\perp, y, b) + A^2(p_\perp, y, b) - 2A(p_\perp, y, b)A(p_\perp, -y, b) \times \cos[\phi(y) - \phi(-y) + \vec{p} \cdot \vec{b}]$

• We can simplify the expression if $y \rightarrow 0$:

$$\sigma = 2A^2(p_{\perp}, b)(1 - \cos[\vec{p} \cdot \vec{b}])$$

6

STAR

Cosmic Ray Background vetoed in Top/Bottom quadrants Cosmic Ray Background vetoed in Top/Bottom quadrants

*+0°

UPC Minbias

- Minimum one neutron in each Zero Degree Calorimeter required
- Low Multiplicity
- Not Hadronic Minbias!

Trigger Backgrounds

- Cosmic Rays
- Beam-Gas interactions
- Peripheral hadronic interactions
- Incoherent photonuclear interactions

• Generate similar MC histograms

- Generate MC ratio
- Fit MC ratio

Measuring the Interference

• Apply overall fit

$$\frac{dN}{dt} = Ae^{-kt}(1 - cR(t)) \cdot dt$$

- A= overall normalization
- k = exponential slope
- c = degree of interference

STAR Collaboration Meeting, MIT, July 2006

 $C = 1.009 \pm 0.081$

$$\chi^2$$
/DOF = 50.77/47

STAR Collaboration Meeting, MIT, July 2006

13

 $C = 0.8487 \pm 0.1192$

 χ^2 /DOF = 87.92/47

Results Summary

	С	χ²/dof
Minbias		
0.1 < y < 0.5	1.009±	50.77/47
	0.081	
0.5 < y < 1.0	0.9275±	80.18/47
	0.1095	
Topology		
0.1 < y < 0.5	0.8487±	87.92/47
	0.1192	
0.5 < y < 1.0	1.059± 0.208	83.81/47

Systematic Error Study

	Standard Cut	Varied Cut	Data Set	Entries	Uncertainty
zVertex	zVertex < 50	zVertex > 0	minbias	811	0.0422
	0.1 < y < 0.5				
			topology	1989	0.1883
	zVertex < 50	zVertex > 0	minbias	637	0.1526
	0.5 < y < 1.0				
			topology	1100	-0.323
	zVertex < 50	zVertex < 0	minbias	826	0.1188
	0.1 < y < 0.5				
			topology	1844	0.0379
	zVertex < 50	zVertex < 0	minbias	628	0.0454
	0.5 < y < 1.0				
Λ			topology	955	-0.414
rapidity	0.1 < y < 0.5	0 < y < 0.5	minbias	2014	0.0935

Systematic Error Study

$$R(t) = a + \frac{b}{(t+0.012)} + \frac{c}{(t+0.012)^2} + \frac{d}{(t+0.012)^3} + \frac{e}{(t+0.012)^4}$$

$$R(t) = a + \frac{b}{(t+0.012)} + \frac{c}{(t+0.012)^2} + \frac{d}{(t+0.012)^3} + \frac{e}{(t+0.012)^4} + \frac{f}{(t+0.012)^5}$$

Fit	Data Set	Uncertainty	
6 parameter	minbias	0.013	1.3%
	topology	0.008	0.9%

The 5 parameter fit is sufficient -- adding another parameter doesn't improve the analysis.

Paper Proposal

http://www.star.bnl.gov/protected/pcoll/bhaag/NewPage/Frames.html

Backup Slides

STAR Collaboration Meeting, MIT, July 2006

19

Topologiyn napjdityuystudy