Interference in Vector

 Meson Production in Au+Au Collisions at $\sqrt{s}=200 \mathrm{GeV}$Brooke Haag
UC Davis

Outline

- Ultra Peripheral Heavy Ion Collisions (UPCs)
- What is a UPC?
- Vector Meson Production / Interference
- STAR detectors / Triggers
- Analysis of UPC events
- Fitting Scheme
- Observation of interference effects in t spectrum

Ultra Peripheral Collisions

- Photonuclear interaction
- Two nuclei "miss" each other ($b>2 R_{A}$), electromagnetic interaction dominates over strong interaction
- Photon flux $\sim Z^{2}$
- Weizsäcker-Williams Equivalent Photon Approximation
(J.D. Jackson, Classical Electrodynamics, 3rd Edition, pp.724-729)
- No hadronic interactions

Exclusive ρ^{0} Production

$$
A u+A u \rightarrow A u+A u+\rho^{\circ}
$$

- Photon emitted by a nucleus fluctuates to virtual qq pair
- Virtual qq pair elastically scatters from other nucleus
- Real vector meson (i.e. $J / \psi, \rho^{\circ}$) emerges
- Photon and pomeron are emitted coherently
- Coherence condition limits transverse momentum of produced ρ

ρ° Production With Coulomb Excitation

$$
A u+A u \rightarrow A u^{*}+A u^{*}+\rho^{\circ}
$$

- Photons exchanged between ions give rise to excitation and subsequent neutron emission
- Process is independent of ρ° production

$$
\sigma\left(A u A u \rightarrow A u^{*} A u^{*}+\rho^{o}\right)=\int d^{2} b P_{\rho}(b) P_{X n X n}(b)
$$

Courtesy of S. Klein

Interference

Nucleus 1 emits photon which scatters from Nucleus 2

Nucleus 2 emits photon which scatters from Nucleus 1

- Possibilities indistinguishable, so amplitudes combine

$$
\sigma \approx\left|A_{1}-A_{2} e^{i p_{T} b}\right|^{2} \longrightarrow A_{1}=A_{2}
$$

- At midrapidity, they cancel. $\sigma \approx \sigma_{o}\left[1-\cos \left(p_{T} b\right)\right]$
- Away from midrapidity, $A_{1} \neq A_{2}$ and interference is reduced

STAR Analysis Detectors

Triggers

Topology(UPC)

$\mathrm{Au}+\mathrm{Au} \rightarrow \mathrm{Au}+\mathrm{Au}+\rho^{\circ}$

- Central Trigger Barrel divided into four quadrants
- Verification of ρ decay candidate with hits in North/South quadrants
- Cosmic Ray Background vetoed in Top/Bottom quadrants

Minbias $A u+A u \rightarrow A u^{*}+A u^{*}+\rho^{o}$ Trigger Backgrounds

- Minimum one neutron in each Zero Degree Calorimeter required
- Low Multiplicity
- Cosmic Rays
- Beam-Gas interactions
- Peripheral hadronic interactions
- Incoherent photonuclear interactions

Finding the ρ^{0} in 200 GeV Au+Au data

Background

from like

sign pairs
Overall fit

Breit-Wigner

 mass peak- Mass measurement $\rightarrow .766 \pm .003 \mathrm{GeV}$,

Particle Data Book $\rightarrow .770 \mathrm{GeV}$

- Width measurement $\rightarrow .165 \pm .006 \mathrm{GeV}$, Particle Data Book $\rightarrow .149 \mathrm{GeV}$

Interference from direct pion production

Measuring the Interference

- Determine ρ^{o} candidates by applying cuts to the data

MinBiasData

qTot	0	
nTot	2	
nPrim	2	
\|zVertex		$<50 \mathrm{~cm}$
\|rVertex		$<8 \mathrm{~cm}$
rapidity	>0.1	
	<0.5	
$\mathrm{M}_{\text {Inv }}$	$>0.55 \mathrm{MeV}$	
	< 0.92 MeV	
P_{T}	$>0 \mathrm{GeV}$	
	$<0.1 \mathrm{GeV}$	

Measuring the Interference

- Generate similar MC histograms

Measuring the Interference

- Generate MC ratio
- Fit MC ratio

Measuring the Interference

- Apply overall fit

$$
c=1
$$

expected degree of
interference

$$
c=0
$$

no interference

Results

Minbias
$A u+A u \rightarrow A u^{*}+A u^{*}+\rho^{0}$
$C=1.009 \pm 0.081$
$\chi^{2} / D O F=50.77 / 47$

Total Fit

Topology
$\mathrm{Au}+\mathrm{Au} \rightarrow \mathrm{Au}+\mathrm{Au}+\rho^{\circ}$
$C=0.8487 \pm 0.1192$
$\chi^{2} /$ DOF $=87.92 / 47$

Results Summary

	c	$\chi^{2 / d o f}$
Minbias		
$0.5>y>0.1$	$1.009 \pm$ 0.081	$50.77 / 47$
$1.0>y>0.5$	$0.9275 \pm$ 0.1095	$80.18 / 47$
Topology		
$0.5>y>0.1$	$0.8487 \pm$	
0.1192		

Systematic Error Study

	Standard Cut	Varied Cut	Data Set	Uncertainty
zVertex	\mid zVertex $\mid<50$	zVertex >0	minbias	0.0422
			topology	0.1883
		zVertex <0	minbias	0.1188
			topology	0.0379
rapidity	$0.1<y<0.5$	$0.1<y<0.5$	minbias	0.0935

Systematic Error Study

Fit	Data Set	Uncertainty	
6 parameter	minbias	0.013	1.3%
	topology	0.008	0.9%

Summary

Interference in vector meson production has been observed at STAR.

- At small t, the predicted downturn is clearly seen
- The measured degree of interference is

$$
c_{\text {avg }}=0.96 \pm 0.28 \text { (stat.) } \pm 0.08 \text { (sys.) } \pm 0.15 \text { (theory) }
$$

- Currently in the process of systematic error study and refining fitting scheme.

